首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Predicting nitrogen (N) mineralization has been one of the greatest challenges to improving N management in agriculture. A laboratory incubation experiment was conducted to study the N mineralization of soil amended with rock phosphate (RP)-enriched composts. The RP-enriched rice straw compost amended soil mineralized highest N as compared to compost prepared from mustard stover and tree leaves. The first-order model was found to be the most suitable for N because it provided the best fit to the experimental data and for its simplicity. The model predicted that potentially mineralized N (N0) was varied from 4.0 to 52.1 mg kg?1 and the mineralization rate k varied from 0.015 to 0.066 day?1. The rice straw compost amended soil had higher N0 value than mustard stover and tree leaves compost amended soil. This study demonstrated the importance of application of rock phosphate-enriched composts in improving N supplying capacity of soil.  相似文献   

2.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

3.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

4.
Phosphorus (P) fractionation of composted crop residues and Andosols amended with composted crop residues was conducted. Inorganic P (Pi) comprised 85% of total P in the composts. The distribution of inorganic P forms was in the following order: sodium hydroxide (NaOH) Pi > hydrochloric acid (HCl) Pi > sodium bicarbonate (NaHCO3) Pi > water (H2O) Pi. After 22 years of the compost application to two Andosols, total Pi concentration significantly increased. However, total organic P (Po) concentration in the composted soil was not significantly different from that in noncomposted soil. Among of Pi fractions, compost application distinctly increased Al-Pi concentration, followed by Fe-Pi. The ratio of Fe-Po to total P concentrations significantly decreased by compost application.  相似文献   

5.
Application of manure on the basis of crop nitrogen (N) need increases the level of soil phosphorus (P), which is concern for deterioration of surface water quality. Soil samples were collected from a long-term field study to investigate the impact of crop N need–based manure application on soil P fractions and P adsorption and release kinetics. The field experiment was initiated in 1990. The soil was moderately well-drained Kennebec (fine silty, mixed, mesic Cumulic Hapludolls). No-tillage (NT) and conventional-tillage (CT) treatments were established in main plots, and subplots had five N treatments, including a control, and annual application of 84 or 168 kg N ha?1 applied as ammonium nitrate (NH4NO3) or beef (Bos taurus) manure. Manure at the high N application rate had significantly greater Bray 1 P under NT than under CT at 0- to 5-cm soil depth. Nitrogen fertilizer treatments were not significantly different than the control for Bray 1 P. Continuous application of manure at the high N rate significantly increased all Hedley P fractions; however, the major increase was observed in high bioavailable P pools [iron oxide (FeO) P and sodium bicarbonate (NaHCO3) Pi] and hydrochloric acid (HCl) P fractions. Soil organic P (Po) pools, including both labile (NaHCO3-Po) and resistant [sodium hydroxide (NaOH) Po], were increased by application of N from any source, suggesting biomass production and return of residue to soil surface was the responsible factor. Continuous application of manure based on N need also significantly increased FeO-P, NaHCO3-Pi, and HCl-P fractions at lower soil depths (5–15 and 15–30 cm). Results from the P-adsorption study suggest that ability of soil to adsorb additional P was decreased by manure application and that EPC0 was increased. Maximum desorbable P was observed for manure treatments under NT, although the release constant k (h?1) was significantly less than with fertilizer N treatments.  相似文献   

6.
通过大田试验,研究黄淮平原潮土区不同轮作方式对不同土层土壤速效养分和小麦产量构成因素及产量的影响.采用随机区组设置连续的小麦-玉米(WM-WM-WM)、1周期小麦-玉米+1周期小麦-大豆(WM-WS-WM)、1周期小麦-玉米+1周期小麦-夏花生(WM-WP-WM)、连续的小麦-夏花生(WP-WP-WP)和连续的小麦-大...  相似文献   

7.
Abstract

Soil organic carbon (SOC) plays a key role in crop productivity and soil quality. Conservation agriculture has a positive effect on SOC accumulation in the surface soil horizons, but little information is available regarding the effect of the removal of crop residues by burning. This study aimed to assess the impact of different types of crop residue management practices on the total C distribution and natural abundance of 13C (‰, δ13C). Two volcanic soils, located in the Mediterranean temperate zone of Southern Chile, were studied: an Ultisol (Collipulli Series, CPL) and an Andisol (Santa Bárbara Series, SBA). Both soils had been cultivated under direct-drilling and a typical annual crop rotation system for a long period of time. Two different types of crop residue management practices were imposed in both soils: (i) crop residue burning (CPL-B; SBA-B) and (ii) crop residue retention over the soil (CPL-R; SBA-R), corresponding to treatments B and R, respectively. Soil profile distribution of the C content and natural abundance of 13C were analysed for bulk soils (down to 100 cm depth) and three particle-size fractions of the soils (down to 20 cm of soil depth): (a) ≤ 53 µm, (b) 53-212 µm and (c) ≥ 212 µm. It was found that the effect of crop residue management can be observed in the variations of C content and δ13C in the soil profile in both volcanic soils. Crop residue burning (B treatment) increased the C content in bulk soil and the particle-size fractions. On the other hand, soil organic matter of crop residue retention (R treatment) showed higher natural abundance of 13C (δ13C) compared with residue burning (B treatment) in the two volcanic soils. R treatment enriched the particle-size fractions (except ≥ 212 µm fraction of CPL soil) with 13C. Factors that could account for these findings are also discussed here.  相似文献   

8.
Crop performance on degraded soil needs special management practices to overcome soil quality limitations. In a 2-year(from summer 2006 to winter 2007–2008) field trial on a moderately degraded Alfisol in Swabi District(34°7′12′′N, 72°28′20′′E), Pakistan,the effects of three cropping patterns, cereal-cereal(CC), cereal-legume(CL), and cereal-cereal and legume intercrop(CLI), were tested in main plots under four fertilization treatments in sub-plots, including no fertilization(control), farmers' practice(FP, 60:45 kg ha~(-1) N:P_2O_5), recommended dose(RD, 120:90:60 kg ha~(-1) N:P_2O_5:K_2O), and integrated nutrient management(INM, 20 t ha~(-1) farmyard manure integrated with 50% N, 100% P, and K of recommended dose), using a split-plot randomized complete block design. The performance of CL was superior than CC in plant height, leaf area index(LAI), cob length, grain yield, biological yield, and grain protein(8%, 26%, 8%, 5%, 10%, and 8% increases, respectively), while CLI confirmed significant improvement only in LAI(25%) over CC. Response to nutrient inputs from all sources was in the order of INM RD FP control, and the maximum net economic return by INM(23% and 2.5 times higher than RD and FP, respectively) indicated severe deficiency of both macro-and micro-nutrients in the soil as well as degraded physical properties. Increases in soil organic matter, total N, total mineral N, available P and K, total porosity, and available water-holding capacity by 6%, 34%, 24%, 50%, 13%, 5%, and 7%, respectively, and decrease in soil bulk density by 4% after four crop seasons indicated optimistic changes in soil quality as a result of the combined effects of fertilization from organic and inorganic sources and legumes within crop rotation. This study suggests that keeping the soil covered under cereal-legume rotation crops all year round and treatment with INM(50% N from organic source and 50% from inorganic source) are the best management practice for sustained production on degraded Alfisols.  相似文献   

9.
With the emphasis on sustainable agriculture, attention has been increasingly turning to recycling of crop residues as a component of fertility management strategies for tropical soils. We assessed the effects of soybean residue (SR) and wheat residue (WR) applied either alone or in combination with fertilizer P (FP) on dynamics of labile P, distribution of P fractions, and P sorption in a semiarid tropical Alfisol by conducting a 16 w long incubation experiment. The amount of P added through crop residues, FP or their combinations was kept constant at 10 mg P (kg soil)–1. Addition of SR or WR resulted in net increase of labile inorganic (Pi) and organic P (Po) and microbial P throughout the incubation period, except that the WR decreased labile Pi during first 2 w due to Pi immobilization. The P immobilization associated with WR addition was, however, offset when fertilizer P was combined with WR. Generally, the increases in labile‐P fractions were larger with the SR and SR+FP than with the WR and WR+FP. The sequential fractionation of soil P at the end of 16 w indicated that a major part of added fertilizer P transformed into moderately labile and stable P fractions as evident from the increased NaOH‐Pi and HCl‐P in the FP treatment. In contrast, the addition of SR and WR alone or in combination with FP favored a build‐up in NaHCO3‐Pi and ‐Po and NaOH‐Po fractions while causing a decrease in NaOH‐Pi and HCl‐P fractions. The addition of these crop residues also effectively decreased the P‐sorption capacity and hence reduced the standard P requirement of the soil (i.e., the amount of P required to maintain optimum solution P concentration of 0.2 mg P l–1) by 24%–43%. Results of the study, thus, imply that soybean and wheat crop residues have the potential to improve P fertility of Alfisols by decreasing P‐sorption capacity and by redistributing soil P in favor of labile‐P fractions and promoting accretion of organic P.  相似文献   

10.
Application of nitrogen (N) fertilizers to increase crop yield is a worldwide practice, which also has a positive influence on the soil organic carbon (SOC) increase. This study was carried out to investigate the dynamics of SOC and its fractions under different levels of N fertilization in wheat grown inceptisols of Northeast India over a period of 2 years. For the purpose of this study, fertilizer treatments with five N levels (40, 60, 72, 80, and 100 kg N ha?1) were applied in randomized block design. Increased SOC particulate organic carbon (POC), humic acid carbon, and fulvic acid carbon were recorded under application of higher N. Stability of SOC as indicated by E4/E6 ratio and microbial biomass carbon (MBC) was higher on application of 72 kg N ha?1. Among the SOC fractions, POC and MBC respond rapidly to different N fertilization rates. Available N and phosphatase activity increased while pH and urease activity (UA) decreased as a function of applied N fertilizer levels. Nitrogen fertilization increased wheat yield and biomass with insignificant differences among 100, 80, and 72 kg N ha?1. Thus, under the present experimental conditions, application of 72 kg N ha?1 can sustain SOC and soil health without compromising wheat yield in the inceptisols of Northeast India.  相似文献   

11.
Seafood processing generates a substantial volume of wastes. This study examined the feasibility of converting the fish waste into useful fertilizer by composting. Groundfish waste and chitin sludge generated from the production of chitin were composted with red alder or a mixture of western hemlock and Douglas-fir sawdust to produce four composts: alder with groundfish waste (AGF); hemlock/fir with groundfish waste (HGF); alder with chitin sludge (ACS); and hemlock/fir with chitin sludge (HCS). The resulting AGF had a higher total N and a lower C:N ratio than the other three composts. A large portion of the total N in the AGF, HGF, and HCS composts was in inorganic forms (NH4+-N and NO3?-N), as opposed to only two percent in the ACS compost. Alder sawdust is more quickly decomposed, which favored N retention and limited nitrification during the composting period. It was less favorable than the hemlock/Douglas fir sawdust for composting with chitin sludge. Corn growth on soil amended with compost was dependent upon both compost type and rate. Nitrogen and P availabilities in all composts except the ACS were high and compost addition enhanced corn yields, tissue N and P concentrations, and N and P up-take. Neither the total N concentration nor the C:N ratio of the composts was an effective measure of compost N availability in the soil. Because soil inorganic N test levels correlated well with the corn biomass, tissue N and N uptake, they should be an effective measure of the overall compost effects on soil N availability and corn growth response. Phosphorus concentration, which increased linearly with increasing compost rates, was related to soil P availability from compost additions and correlated well with corn biomass, tissue P concentration and P uptake under uniform treatments of N and K fertilizers. Composting groundfish waste with alder or hemlock/Douglas-fir sawdust can produce composts with sufficient amounts of available N and P to promote plant growth and is considered to be a viable approach for recycling and utilizing groundfish waste.  相似文献   

12.
A field experiment was carried out in northern Vietnam to investigate the effects of adding different additives [rice (Oriza sativa L.) straw only, or rice straw with added lime, superphosphate (SSP), urea or a mixture of selected microorganism species] on nitrogen (N) losses and nutrient concentrations in manure composts. The composts and fresh manure were applied to a three-crop per year sequence (maize–rice–rice) on a degraded soil (Plinthic Acrisol/Plinthaquult) to investigate the effects of manure type on crop yield, N uptake and fertilizer value. Total N losses during composting with SSP were 20% of initial total N, while with other additives they were 30–35%. With SSP as a compost additive, 65–85% of the initial ammonium-N (NH4-N) in the manure remained in the compost compared with 25% for microorganisms and 30% for lime. Nitrogen uptake efficiency (NUE) of fresh manure was lower than that of composted manure when applied to maize (Zea mays L.), but higher when applied to rice (Oriza sativa L.). The NUE of compost with SSP was generally higher than that of compost with straw only and lime. The mineral fertilizer equivalent (MFE) of manure types for maize decreased in the order: manure composted with SSP?>?manure composted with straw only and fresh manure?>?manure composted with lime. For rice, the corresponding order was: fresh manure?>?manure composted with SSP/microorganisms/urea?>?manure composted with lime/with straw alone. The MFE was higher when 5 tons manure ha?1 were applied than when 10 tons manure ha?1 were applied throughout the crop sequence. The residual effect of composted manures (determined in a fourth crop, with no manure applied) was generally 50% higher than that of fresh manure after one year of manure and compost application. Thus, addition of SSP during composting improved the field fertilizer value of composted pig manure the most.  相似文献   

13.
The decrease in soil fertility in agroecosystems due to continuous harvesting, loss of fine soil and oxidation of soil organic carbon (SOC) is well known. This study evaluates for a humid tropical climate in South Andaman Island, India, the impact of a 15-yr old Pueraria cover crop (CC) under a coconut plantation, with and without phosphorus (P) application, on the soil N mineralization rate (NMR), the mineral N pool (NH4+-N and NO3-N), microbial biomass carbon (MB-C) and SM under four treatments, (1) no cover crop (NCC), (2) no cover crop + phosphorus (NCC+P), (3) CC, and (4) cover crop + phosphorus (CC+P) during three seasons, wet (May–October), post-wet (November–January) and dry (February–April). The NCC treatment served as a control. In addition, an ex-situ experiment was conducted to verify the effect of P application on NMR and MB-C under 100% field capacity (FC), 50 and 25% FC representing the different seasons. The NMR, mineral N pool and MB-C increased by 37, 46 and 41%, respectively under the CC compared to the control. SOC and fine soil particles were also greater under the CC by 41 and 461%, respectively, compared to the control. The application of P to the CC increased soil N mineralization, the mineral N pool and MB-C by 33, 16 and 14%, respectively. The amount of mineralized N was greater under the CC and CC+P treatments by 39 and 73%, respectively than the control. The ex-situ experiment showed that the P application increased NMR and MB-C, but the increases were highest in the 50% FC and lowest in 100% FC. It is proposed for the humid tropics that a CC could be used for enhancing SOC and increasing soil N mineralization under coconut plantations and other similar agroecosystems.  相似文献   

14.
Abstract

Despite being a major domain of global food supply, rice–wheat (RW) cropping system is questioned for its contribution to biomass burning in Indo-Gangetic Plains (IGP). Enhancing the yield and soil quality properties in this system is therefore necessary to reduce environmental degradation and maintain agricultural productivity. A field experiment evaluated the effects of soil management practices such as rice residue (RS) incorporation, and nitrogen (N) application on crop yield and micronutrients transformations in a RW cropping system of north-western India. The results revealed that N application (120?kg N ha?1) and RS incorporation (7.5 t ha?1) significantly increased micronutrients cations and crop yield compared with no-residue (RS0). Irrespective of N application, crop grain yield under RS incorporation (Rs7.5 t ha?1) was significantly higher than RS0 incorporation. Significant increase in all the micronutrient transformations was recorded in N120/Rs7.5 t ha?1 compared with RS0. Among different fractions, crystalline Fe bound in Zn, Mn, and Cu and amorphous Fe oxide in Fe fractions were the dominant fractions under N application (N120) and RS incorporation (RS7.5) treatment. Our study showed that application of N120 followed by RS7.5 can be more sustainable practice under RW cropping system for improvement in micronutrients availability and crop yield. This practice also provides an opportunity to incorporation of crop residues as an alternative to burning, which causes severe air pollution in the RW cropping system in the IGP.  相似文献   

15.
An experiment was carried out to study the changes in nutrient contents during preparation of enriched organomineral fertilizers using rice straw, low‐grade rock phosphate (RP), waste mica, and phosphate‐solubilizing microorganism (Aspergillus awamori). Composting reduced the total carbon (C) but increased total nitrogen (N) content with the progress of composting. This was reflected in the decrease of the C/N ratio. Significant increases in total phosphorus (P) and potassium (K) were also observed where both RP and waste mica was added along with Aspergillus awamori. Ammonium N (NH4 +‐N) decreased while nitrate N (NO3 ?‐N) increased at the end of composting. Olsen P content increased up to 90 days, thereafter decreased up to day 150, whereas ammonium acetate K (NH4OAc‐K) increased gradually with the progress of composting. The study thus revealed that crop residue could be converted into a value‐added product through composting technology using low‐grade rock phosphate and waste mica along with phosphate‐solubilizing microorganisms.  相似文献   

16.
Isotope fractionation during composting may produce organic materials with a more homogenous δ13C and δ15N signature allowing study of their fate in soil. To verify this, C, N, δ13C and δ15N content were monitored during nine months covered (thermophilic; >40 °C) composting of corn silage (CSC). The C concentration reduced from 10.34 to 1.73 g C (g ash)−1, or 83.3%, during composting. Nitrogen losses comprised 28.4% of initial N content. Compost δ13C values became slightly depleted and increasingly uniform (from −12.8±0.6‰ to −14.1±0.0‰) with composting. Compost δ15N values (0.3±1.3 to 8.2±0.4‰) increased with a similar reduced isotope variability.The fate of C and N of diverse composts in soil was subsequently examined. C, N, δ13C, δ15N content of whole soil (0-5 cm), light (<1.7 g cm−3) and heavy (>1.7 g cm−3) fraction, and (250-2000 μm; 53-250 μm and <53 μm) size separates, were characterized. Measurements took place one and two years following surface application of CSC, dairy manure compost (DMC), sewage sludge compost (SSLC), and liquid dairy manure (DM) to a temperate (C3) grassland soil. The δ13C values and total C applied (Mg C ha−1) were DM (−27.3‰; 2.9); DMC (−26.6‰; 10.0); SSLC (−25.9‰; 10.9) and CSC (−14.0‰; 4.6 and 9.2). The δ13C of un-amended soil exhibited low spatial (−28.0‰±0.2; n=96) and temporal (±0.1‰) variability. All C4 (CSC) and C3 (DMC; SSLC) composts, except C3 manure (DM), significantly modified bulk soil δ13C and δ15N. Estimates of retention of compost C in soil by carbon balance were less sensitive than those calculated by C isotope techniques. One and two years after application, 95 and 89% (CSC), 75 and 63% (SSLC) and 88 and 42% (DMC) of applied compost C remained in the soil, with the majority (80-90%) found in particulate (>53 μm) and light fractions. However, C4 compost (CSC) was readily detectable (12% of compost C remaining) in mineral (<53 μm) fractions. The δ15N-enriched N of compost supported interpretation of δ13C data. We can conclude that composts are highly recalcitrant with prolonged C storage in non-mineral soil fractions. The sensitivity of the natural abundance tracer technique to characterize their fate in soil improves during composting, as a more homogeneous C isotope signature develops, in addition to the relatively large amounts of stable C applied in composts.  相似文献   

17.
A composting experiment was carried out to study changes in physical [color, odor, temperature, organic matter (OM) loss], chemical [C:N ratio, water-soluble organic carbon (Cw):organic N (Norg) ratio, NH4 +-N and NO3 ?-N, humic acid (HA):fulvic acid (FA) ratio, humification index (HI) and cation-exchange capacity (CEC):total organic carbon (TOC) ratio)] and biological [seed germination index (GI)] parameters to assess compost maturity and stability over a period of 150 days. Five composts were prepared using a mixture of different farm wastes with or without enrichment of N, rock phosphate (RP) and microorganism (MO) inoculation. All the composts appeared to change to a granular and dark grey color without foul odor, and attained a constant temperature with no measurable changes (ambient level) at 120 days of composting. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss > 42%, C:N ratio < 15, HA:FA ratio > 1.9, HI > 30%, CEC:TOC ratio > 1.7 and Cw:Norg ratio < 0.55. Composts enriched with N + RP or N + RP + MO matured at 150 and 120 days, respectively, whereas composts without any enrichment or enrichment with N or RP + MO did not mature even at 150 days of composting.  相似文献   

18.
Distribution of boron (B) in different fractions is still not well defined when it is applied in B-deficient alkaline calcareous soil and after harvesting of the sown crop. In the present greenhouse experiment with green gram crop, three B-deficient soils with calcium carbonate contents of 0.8 (S I), 2.1 (S II), and 4.6 (S III) percent were collected from different sites in Ludhiana and Bhatinda Districts, Punjab, India. The treatments composed of five levels of soil-applied B (0, 0.5, 0.75, 1.0, and 1.5 mg B kg?1) soil and the experiment was laid out in Completely Randomized Design (CRD) factorial design with three replications. Mean readily soluble, specifically adsorbed, and oxide-bound B fractions got increased significantly with increase in B applications. Distribution of readily soluble B was more in low calcareous soil than in high calcareous soil. Mean values of specifically adsorbed, oxide-bound, residual, and total B were significantly more in high calcareous soils as compared to low calcareous soils. At maturity, specifically adsorbed B converted into other fractions to maintain equilibrium in soil solution. Organically bound B was greater than the oxide-bound B fraction. Among all fractions, residual fraction accounted for the major portion of the total B. Available B was negatively and significantly correlated with calcium carbonate (CaCO3) content of soil (r = ?0.99*). At the same time, specifically bound B was also negatively and significantly correlated with readily soluble B (r = ?0.99*) whereas organically bound B was positively correlated with organic carbon content of soil (r = ?0.99*).  相似文献   

19.
Sugar beet waste (SB), treated by Aspergillus niger under the conditions of 10-, 20-, and 30-day-solid state fermentation, supplemented or not with rock phosphate (RP), was added to a soil-plant system. Plant growth responses depended on the time period of preincubation of the agrowaste characterized by different lignocellulosic composition and N and P contents before introduction into soil. Maximum growth and nutrient uptake of alfalfa during three crop cycles were recorded in a soil amended with microbially-treated SB waste+RP. This effect was more pronounced in treatments with arbuscular mycorrhizal (AM) fungus grown in soil enriched with 10- and 20-day-microbially-treated SB+RP, when the respective average total plant growth increased 233% and 343% over the non-mycorrhizal control containing untreated SB. Compared to other treatments, plant mycorrhization was ineffective when 30-day-treated agrowaste was used. Similarly, plant nodule numbers and uptake of metal ions depended on both the time period of waste preincubation and mycorrhization.  相似文献   

20.
长期施肥对盐渍化土壤肥力的影响   总被引:3,自引:0,他引:3  
The long-term effects of annual fertilizer applications on the fertility of salt-affected soils under the rotation system of wheat (Triticum aestivum L.) and maize (Zea mays L.) are not well documented. In 1984, research plots were established to test the effects of annual applications of different rates of nitrogen (N) and phosphorus (P) fertilizers on the fertility of a salt-affected soil (Typic Ustochrept) at the Quzhou Experimental Station, Quzhou County, Hebei Province, China. In October 2001, composite soil samples (0-20 and 20 40 cm) were collected from each plot and analyzed for soil fertility indices. Seventeen years of N and P fertilizer applications increased the soil organic matter (SOM) in the surface layer. With combined N, 270 (N1) and 540 (N2) kg N ha^-1 year^-1, and P, 67.5 (P1) and 135 (P2) kg P205 ha^-1 year^-1, fertilizer applications, total soil N mostly significantly decreased (P〈0.05). Soil total P in the 0-20 cm layer of the P2 treatment significantly (P (0.05) increased as compared to those of the other treatments. Rapidly available P (RP) in the 0-20 cm layer of the N1P2 treatment was significantly higher than those in the other treatments except the P2 treatment; and RP in the 0-20 cm layer of the P2 treatment significantly increased as compared to those of the other treatments except the P1 and N1P2 treatments. RP in the subsurface soil layer (20-40 cm) of the P2 treatment (4.2 mg P kg^-1) was significantly (P〈0.05) higher than those in the other treatments. Nevertheless, long-term N fertilization did not significantly increase the alkali-hydrolyzable N in the soil. However, in the salt-affected surface soils the application of combined N and P fertilizers over 17 years significantly (P〈0.05) decreased rapidly available potassium (K). The results suggested that while under long-term fertilizer applications some soil fertility parameters could be maintained or enhanced, careful monitoring of soil fertility was necessary as other nutrients such as K could become depleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号