首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chickpea (Cicer arietinum L.) seedlings growing on different concentrations of inorganic phosphate and pyrophosphate in agar based MS-medium were studied for their growth and activities of phosphatases in cotyledon, shoots and roots. Growth of seedlings was affected with both Inorganic Phosphate (Pi) and Pyrophosphate (PPi). Germination was completely inhibited beyond 100 mM monopotassium phosphate (KH2PO4) and 20 mM sodium pyrophosphate. Specific activities of acid phosphatases of cotyledons, shoots and roots decreased under high Pi-supply however alkaline phosphatases were not affected. Addition of PPi increased specific activities of acid phosphatases of roots and shoots at 3 days after germination (DAG) stage, but decreased at later stages of seedling growth. There was an appearance of PPi-specific acid phosphatase in roots under PPi-supply.  相似文献   

2.
Several studies suggest that the Fabaceae‐Rhizobium symbiosis is particularly sensitive to iron (Fe) deficiency with respect to NO3‐dependent plants. The aim of this study, which is part of a screening program for common bean tolerance to Fe deficiency, was to study genotypical differences in Fe requirement and Fe use‐efficiency of common bean cultivars depending on symbiotic nitrogen fixation (SNF). Results show that ARA14 produces more whole plant dry matter and particularly more nodule biomass than Coco blanc. ARA14 is characterized by a high capacity of nitrogen fixation and a better Fe use‐efficiency for the growth and the function of the nodules.  相似文献   

3.
ABSTRACT

Phosphorus (P) is a finite, non-renewable, and natural resource and a vital major nutrient for plant metabolic and developmental processes. However, adverse soil biogeochemical characteristics of alkaline-calcareous soils (especially Aridisols) and highly weathered acid soils (i.e., Ultisols and Oxisols) render orthophosphate (Pi) as the least available major nutrient due to P complexation, sorption, and/or fixation. In such soil environments, plant bioavailable P is only a small fraction of total soil P, seriously limiting crop growth and production. Different plant species, and even cultivars of the same species, may display a suite of growth responses that enable them to solubilize and scavenge soil P either by enhancing external Pi acquisition or reprioritizing internal Pi use under P-stress soil environments. This paper reports relative growth responses, P acquisition and P-use efficiency characteristics by 14 cultivars of spring wheat (Triticum aestivum L.) grown in solution culture with high/low P supply induced by applying soluble NH4H2PO4, sparingly soluble rock phosphate, and Ca3(PO4)2. The wheat cultivars exhibited considerable genetic diversity in biomass accumulation, P concentrations, P contents, factor (PSF) and P efficiency characteristics [i.e., P utilization efficiency (PUE), P efficiency (PE), and PE ratio (PER)]. Plant growth and PE parameters were significantly correlated, while P uptake was linearly related with biomass increase and solution pH decrease. The wheat cultivars with high PUE, PER and P uptake, and low PSF, and plant P concentration were more efficient in utilizing P and, hence, more tolerant under P-stress environment. Biomass and P contents of “P efficient/low-P tolerant” wheat cultivars were superior to “P inefficient/low-P sensitive” cultivars at all P-stress levels. Hence, “P efficient/low-P tolerant” cultivars are the most desirable wheat genotypes for P-stress environments because they are able to scavenge more P from sparingly soluble P sources or soil-bound P forms.  相似文献   

4.
ABSTRACT

Effects of three supplemental calcium (Ca++; 2.5, 5.0, and 10 mole m?3) concentrations on ion accumulation, transport, selectivity, and plant growth of salt-sensitive species, Brassica rapa ‘Sani’ in saline medium were investigated. Supplemental Ca++ in the presence of 125 mol m?3 sodium chloride (NaCl) did not improve the dry weight and leaf area indicating no role played by Ca++ in the alleviation of salinity induced growth inhibition. However, calcium chloride (CaCl2) did significantly affect sodium (Na+), potassium (K+), and Ca++ contents of roots and shoots. The ion contents of shoots were significantly greater than those of roots per g dry weight, indicating ion transportation to shoots is greater than ion accumulation in roots. Use of CaCl2 in 125 mol m?3 NaCl reduced the Na+ content but increased K+ and Ca++ contents in shoots. Sodium contents in shoots differed among the supplemental Ca++ treatments indicating the role of CaCl2 in Na+ ions transportation. Calcium content in shoots declined significantly in the control treatment (0 CaCl2) but increased significantly in 10 mol m?3 CaCl2. The root also showed the effects of Ca++ on the reduction of Na+ content and the increase of K+ and Ca++ content. Unexpectedly, 5 mol m?3 CaCl2 induced the highest Na+ content in roots at 16 days after treatment. Supplemental CaCl2 application influenced the K+ or Ca++ selectivity over Na+ in two ways, ion accumulation at roots and transport to shoots. However, high CaCl2 treatments allowed greater Ca++ selectivity over Na+ than low CaCl2. Likewise, high supplemental CaCl2 showed higher K+ selectivity over Na+ than low CaCl2. A marked increase in K+ versus Na+ selectivity for the transport process occurred at 10 mol m?3 CaCl2 treatments. The roots and shoots exhibited higher K+/Na+ and Ca++/Na+ ratios in high CaCl2 treatment than in low. The results are discussed in context to supplemental Ca++ concentrations, ions accumulation, transportation and selectivity of salt sensitive Brassica rapa cultivar.  相似文献   

5.
Abstract

The relationship between internal phosphorus (P) concentration [P] and kinetics of phosphate (Pi) uptake was investigated in maize seedlings grown hydroponically at different Pi concentrations (0.1–1,000 µM) and in the phase of Pi deprivation (0–10 d). The results indicated when the internal [P] was higher than 85 µmol g?1 dw, apparent Km, Cmin, and Vmax were significantly (P<0.01) related to [P]s in shoots and roots; when the internal [P] was lower than 85 µmol g?1 dw, Km and Cmin were small and only Vmax was significantly related (P<0.01) to internal [P]s. Three equations were deduced from the linear regressions of the kinetic parameters and [P]s in shoots. Using these equations, the values of apparent Km, Cmin, and Vmax of Pi uptake of seedlings grown in different circumstances were calculated according to [P]s in shoots. In all the circumstances involved, for Km and Cmin, there was a parallel relationship between the values estimated by [P]s in shoots and by the Pi‐depletion technique; for Vmax, the values estimated by [P]s in shoots were consistent with those obtained from Pi‐depletion experiments except the period of supplying Pi to the Pi‐starved seedlings over several days. These results indicated it is possible to estimate the Pi‐uptake status according to shoot P concentrations in maize plants under experimental conditions, which might be helpful to estimate in‐season status of Pi uptake of maize plants in the field.  相似文献   

6.
This study investigated phosphorus (P) accumulation and rhizosphere characteristics of Polygonum hydropiper under high levels (400, 800, and 1600 mg P kg?1) of inorganic P (Pi) and organic P (Po), supplied as KH2PO4 and myo-inositol hexaphosphoric acid dodecasodium salt, respectively. Mining (ME) and non-mining (NME) ecotypes were used since they differed in the capacity of nutrient acquisition. Biomass and P accumulation in shoots and roots of the ME increased by increasing Pi levels, whereas they decreased by increasing Po concentrations. Rhizosphere pH declined by 0.15–0.45 U for the ME and 0.04–0.14 U for the NME. Orthophosphate was the most abundant form, and it depleted greatly in the rhizosphere, with higher effect by the ME than by the NME. Glycerophosphate and inositol hexakisphosphate concentrations increased in the rhizosphere under high Po treatments with higher effect by the ME than by the NME. Rhizosphere acid phosphomonoesterase, alkaline phosphomonoesterase, and phytase activities of both ecotypes were higher in high P treatments than the treatment without P, whereas phosphodiesterase activity decreased. Significantly higher enzyme activities were observed in the rhizosphere soil of the ME than the NME. Probably, the ME might obtain higher shoot P than the NME from P-enriched soils through changes in rhizosphere properties.  相似文献   

7.
《Journal of plant nutrition》2013,36(12):2745-2761
ABSTRACT

Effect of cadmium (Cd) on biomass accumulation and physiological activity and alleviation of Cd-toxicity by application of zinc (Zn) and ascorbic acid in barley was studied, using semisolid medium culture including 15 treatments [four Cd concentration treatments: 0.1, 1, 5, 50?µmol?L?1, four treatments with addition of 300?µmol?L?1 Zn or 250?mg?L?1 ascorbic acid (ASA) based on these four Cd concentrations, respectively, and three controls: basic nutrient medium, and with Zn or ASA, respectively]. Cadmium addition to semisolid medium, at a concentration of 1, 5, and 50?µmol?L?1, inhibited biomass accumulation and increased malondialdehyde (MDA) content of barley plants, while the addition of 0.1?µmol?L?1 Cd increased slightly dry mass. There was a tendency to a decrease in Zn, copper (Cu) concentrations both in shoots and roots and iron (Fe) in shoots of barley plants exposed to 1 to 50?µmol?L?1 Cd. In addition, there were indications of a stress repose characterized by increased superoxide dismutase (SOD) and peroxidase (POD) activities relative to plants not subjected to Cd. The physiological changes caused by Cd toxicity could be alleviated to different extent by application of 300?µmol?L?1 Zn or 250?mg?L?1 ASA in Cd stressed plants. The most pronounced effects of adding Zn or ASA in Cd stressed medium were expressed in the decreased MDA and increased biomass accumulation, e.g., MDA contents were reduced (p≤0.01) by 4.8%–17.8% in shoots and 0.5%–19.7% in roots by adding 300?µmol?L?1 Zn, in 50?µmol?L?1 Cd stressed plants, and by 1.3%–7.4% in shoots and 2.6%–4.5% in roots by application of 250?µmol?L?1 ASA, respectively. However, ASA addition may enhance Cd translation from root to shoot, accordingly, ASA would be unsuitable for the edible crops grown in Cd contaminated soils to alleviate phytotoxicity of Cd.  相似文献   

8.
To evaluate phosphorus (P)–stress–induced relative growth responses, P-efficiency characteristics, P remobilization, and redesign in root architectural systems, Brassica cultivars were grown with sparingly soluble rock phosphate and calcium phosphate [Ca3(PO4)2] or with low/high P supply in solution and sand culture experiments. Tested cultivars showed considerable genetic diversity in biomass accumulation, concentration and contents of P, P-stress factor (PSF), and P-efficiency characteristics [P-utilization efficiency (PUE), P efficiency (PE), and P-efficiency ratio (PER)]. Statistically significant correlations were observed between P efficiency and growth parameters. Elongation rates of primary roots decreased but the length of lateral roots and branched zone elongation rates increased under P starvation. Cultivars remobilized P from metabolically inactive to active sites in P-stressed plants that may have helped low-P-tolerant cultivars to establish a better rooting system, which provided basis for enhanced P-use efficiency and tolerance against P stress. Cultivars depicting high P efficiency and low PSF values were more tolerant and are a better choice to grow under P-stress environments.  相似文献   

9.
《Journal of plant nutrition》2013,36(10-11):2295-2305
Abstract

Five dry bean cultivars (Coco blanc, Striker, ARA14, SVM29‐21, and BAT477) were evaluated for their resistance to iron deficiency on the basis of chlorosis symptoms, plant growth, capacity to acidify the external medium and the root‐associated Fe3+‐reduction activity. Plants were grown in nutrient solution supplied or not with iron, 45 µM Fe(III)EDTA. For all cultivars, plants subjected to iron starvation exhibited Fe‐chlorosis. These symptoms were more severe and more precocious in BAT477 and Coco blanc than in the others cultivars. An important acidification of the culture medium was observed between the 4th and the 8th days of iron starvation in Striker, SVM29‐21 and, particularly, ARA14 plants. However, all Fe‐sufficient plants increased the nutrient solution pH. This capacity of acidification appeared more clearly when protons extrusion was measured in 10 mM KCl + 1 mM CaCl2. The above genotypic differences were maintained: ARA14 showed the higher acidification followed by Coco blanc and BAT477. Iron deficiency led also to an increase of the root‐associated Fe(III)‐reductase activity in all lines. However, genotypic differences were observed: Striker shows the highest capacity of iron reduction under Fe deficiency condition.  相似文献   

10.
Abstract

Interactions of P and Zn in roots and shoots of maize were studied in greenhouse using three different type of Egyptian soils (one alluvial and two calcareous). No Zn deficiency symptoms were seen in maize. The concentration of Zn in shoots was reduced due to P application. Its concentration in roots was hardly influenced by added P. Added P increased its concentration in the shoots much more than in the roots. Added Zn increased its concentration in roots more than in shoots. These findings suggest that applied P had no effect on Zn absorption by the roots. The main effect was a physiological inhibition in the translocation of Zn from roots to shoots, probably due to the indirect effect on increasing salt concentration in the root medium added as CaH2PO4. This may have depolarized the xylem potential resulting in increasing the anion influx and decreasing that of the cation into the relatively less negatively charged xylem vessels. As the xylem potential appears to be in the stele at the interface between the xylem vessels and the pericycle cells. Results of the calcareous soils suggest that excess of CaCO3 influences P‐Zn relationship within the plant by decreasing the translocation of Zn and increasing that of P from roots to shoots.  相似文献   

11.
Five north Tunisian native rhizobia were tested in symbiosis with ‘Coco-blanc’ variety under two phosphorus (P) supplies [P-sufficient and insoluble P (IP)] at 250 μmol P plant?1. At flowering stage, responses against IP were assessed and indicated that inoculation with P.Ps.09 produced a high nodule biomass (0.12g). Similarly, P.Tb.09 produced 0.08 g nodule biomass under both P and P.Bj.09 that significantly increased nodule number under IP. Shoot biomass exhibited high dry weight with P.Tb.09 and CIAT899 (1.6 g plant?1). Inoculation with CIAT899 produced a high root biomass under both P. Analysis of a halo diameter of clear zone rounding each colony under IP indicated that P.Tb.09 has developed high halo Ø (1.7cm). These variations were associated under IP with a decrease of pH by P.Ar.09 and with increase in shoot phosphatase activity by P.Ar.09, P.Bj.09, P.OM.09 and P.Ps.09. The use of P-efficient rhizobia may constitute an adaptive mechanism against P-deficiency tolerance.  相似文献   

12.
Narrow-leafed lupin (Lupinus angustifolius L.) is widely planted in infertile acidic soils where phosphorus (P) deficiency is one of the major limiting factors for plant growth. A hydroponic experiment was conducted to examine the morphological and physiological responses of roots of narrow-leafed lupin in response to altered P supply at 0, 1, 10, 25 or 75 μ M P as monopotassium phosphate (KH2PO4). Low P (P0 and P1) significantly decreased the plant biomass, but the supply of 10 μ M P was sufficient to produce similar plant biomass as the maximal P supply (P75), indicating an efficient P acquisition by narrow-leafed lupin. Phosphorus deficiency did not enhance rates of carboxylate exudation and proton release by plant roots, indicating that carboxylate exudation and proton release are not the mechanisms for efficient P acquisition. In contrast, low P supply evidently modified the root morphology by increasing the primary root elongation, and developing a large number of cluster-like first-order lateral roots with dense root hairs, thus allowing efficient P acquisition by narrow-leafed lupin under low P supply.  相似文献   

13.
Abstract

The effect of additional iron (Fe) on arsenic (As) induced chlorosis in barley (Hordeum vulgare L. cv. Minorimugi) was investigated. The treatments were: (1) 0?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (control), (2) 33.5?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (As-treated) and (3) 33.5?μmol?L?1 As?+?50?μmol?L?1 Fe3+ (additional-Fe3+) for 14?days. Arsenic and Fe3+ were added as sodium-meta arsenite (NaAsO2) and ethylenediaminetetraacetic acid-Fe3+, respectively. Chlorosis in fully developed young leaves was observed in the As-treated plants. The chlorophyll index and the Fe concentration decreased in shoots of the As-treated plants compared with the control plants. Arsenic reduced the concentration of phosphorus, potassium, calcium, magnesium, manganese, zinc and copper. The additional-Fe3+ treatment increased the chlorophyll index in plants compared with the As-treated plants. Among the elements, Fe concentration and accumulation specifically increased in the shoots of additional-Fe3+ plants compared with As-treated plants, indicating that As-induced chlorosis was Fe-chlorosis. Arsenic and Fe were mostly concentrated in the roots of the As-treated plants. Despite inducing chlorosis in the As-treated plants, phytosiderophores (PS) accumulation in the roots and release from the roots did not increase, rather PS accumulation decreased, indicating that As toxicity hindered PS production in the roots. The PS accumulation in the roots was further reduced in the additional-Fe3+ treatment.  相似文献   

14.
Summary In three field trials conducted during the summer season of 1986, 1987 and 1989 in an alkaline soil, 17 accessions of annual Sesbania spp. were evaluated for nodulation, N2 fixation (acetylene reduction assay), dry weight of roots and shoots, woody biomass production, and nutrient uptake. At 50 days after sowing all the accessions were effectively nodulated (average 36.4 root nodules plant-1) with a high nodule score (3.4). There was a lot of variation in nodule volume and mass and in acetylene reduction activity but not in N content (5.2%). N uptake in shoots, roots and nodules averaged 639, 31, and 13 mg plant-1, respectively, and much of the fixed N remained in shoots. Accessions of S. cannabina complex performed better than others. S. rostrata had poor root nodulation but exhibited excellent stem nodulation (300 nodules plant-1) even though not inoculated with Azorhizobium sp. Average concentrations of N, P, K, S, Ca, and Mg in the shoots were high, at 3.2, 0.28, 1.5, 0.28, 1.5, and 0.4% respectively, and Na was low (0.15%), reflecting the usefulness of Sesbania spp. as an integrated biofertilizer source. Green matter production was 26.0 Mg ha-1 (5.9 Mg dry matter) and N uptake was 158 kg ha-1, 54 days after sowing. Average woody biomass of six accessions at maturity, 200 days after sowing, was high (19.9 Mg ha-1), showing its potential for shortterm firewood production. Total nutrient uptake for production of woody biomass (200 days of growth) was no more demanding than growing the plant to the green-manuring stage of 50–60 days' growth.  相似文献   

15.
Common bean (Phaseolus vulgaris L.) can supply all of the iron that humans require for metabolism. Also, it fixes atmospheric nitrogen (N2) in symbiosis with rhizobia. In order to analyze the relation between phosphorus (P) and iron (Fe) elements in nodules and their roles for the plant N2-dependent growth, six common bean recombinant inbred lines (RIL) of the cross of BAT477 and DOR364 were inoculated with Rhizobium tropici CIAT 899 (originating from International Center of Tropical Agriculture, Colombia) and grown with sufficiency versus deficiency P supply in hydroaeroponic culture. Under P deficiency, the Fe content in nodules decreased in all studied genotypes and was significantly the highest for RIL 34. The nodule contents of Fe and P were significantly correlated under P deficiency. It is concluded that the regressions of nodule Fe content as a function of P content in nodules, roots and shoots, depend upon P supply and genotype.  相似文献   

16.
Responses of proton release to phosphorus (P) availability by nodulated roots of common bean (Phaseolus vulgaris L.) were investigated for lines BAT 477 and CocoT, inoculated with Rhizobium tropici CIAT 899 in hydroaeroponic culture under glasshouse conditions. Phosphorus was supplied as KH2PO4 at 15 and 60 μmol plant–1 week–1 (15P and 60P). Proton release was higher for BAT 477 than for CocoT under both P supplies. However, it was higher for 60P than 15P, whatever the line. The ratio of proton release per unit biomass of nodulated root was higher for BAT 477 than for CocoT, independent of P deficiency. Proton release was correlated with the nodulated‐root respiration for both genotypes and with the nodule respiration linked with nitrogen fixation for CocoT. Thus, the nodulation was more limited by 15P than root and shoot growth and more in CocoT than in BAT 477. It is concluded that independent of symbiotic N2 fixation, proton release was higher in BAT 477 than in CocoT and that the nodulated legume releases a substantial amount of protons into its rhizosphere that is correlated with its nitrogen fixation that eventually depends upon the nodule permeability to O2 diffusion.  相似文献   

17.
Salt stress can affect alfalfa growth directly by adversely affecting metabolism, or indirectly by its effect on Rhizobium capacity for symbiotic N2 fixation. Growth and carbohydrate metabolism in leaves, roots and nodules of two alfalfa cultivars (Medicago sativa cv Apica and salt-tolerant cv Halo) in association with two rhizobial strains (A2 and salt-tolerant Rm1521) exposed to different levels of NaCl (0, 20, 40, 80 or 160 mM NaCl) were assessed under controlled conditions. For both cultivars, shoot and root biomasses and shoot to root ratio significantly declined with increasing NaCl concentrations. Under 80 mM NaCl, Halo plants yielded 20% more fresh shoot biomass than Apica while plants inoculated with Rm1521 allocated more biomass to the roots than to the shoots compared to A2. Halo plants maintained a steady shoot water content (about 80%) under the entire range of NaCl concentrations. Shoot water content was more variable in Apica. Apica in association with salt-tolerant strain Rm1521 maintained a better water status than with strain A2, as indicated by the higher shoot water content at 80 mM NaCl. Under salt stress, two major compatible sugars involved in plant osmoregulation, sucrose and pinitol, increased in leaves while a large accumulation of starch was observed in roots. In nodules, pinitol, sucrose and starch increased under salt stress and were much more abundant with strain Rm1521 than with A2. This suggests that there could be an active transport from the shoot to the nodules to help maintain nodule activity under NaCl stress and that strain Rm1521 increases the sink strength toward nodules. Our results show that combining cultivars and rhizobial strains with superior salt tolerance is an effective strategy to improve alfalfa productivity in salinity affected areas.  相似文献   

18.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

19.
Bean plants (Phaseolus vulgaris L.) were cultured for 10 or 18 days on phosphate sufficient (+P) or phosphate deficient (‐P) nutrient medium. Nitrate and phosphate distribution between shoot and root, nitrate uptake, and nitrate reductase activity (NR activity, in vivo and in vitro) in root and leaves was estimated. The decrease in Pi concentration in leaves and roots led to decreased rate of NO3 uptake and increased NO3 accumulation in roots, accompanied by alterations in NO3 distribution between shoot and roots. Nitrate reductase activity estimated in vitro was twice higher than estimated in vivo and both in +P and ‐P plants was lower in the roots than in the shoots. The decrease of NR activity in ‐P plants was more pronounced in the roots and after 2 weeks of phosphate starvation it was about 40% lower as compared with the control. The depression in nitrate uptake may be the result of feedback inhibition due to accumulation of nitrate in the roots. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoot.  相似文献   

20.

Background

The excessive use of inorganic P (Pi) in soils is alarming as it is causing numerous environmental problems and may lead to the depletion of rock phosphate reserves earlier than expected. Hence, to limit the over-dependence on Pi, there is the need to investigate organic phosphorus (Po), which is the dominant P form of soil P pool, as an alternate P source for plant growth.

Aim

The present study seeks to investigate organic P use efficiency of eight varieties of faba bean grown symbiotically.

Methods

The plants were grown in pots (6 kg soil) under greenhouse condition with three P source, namely, phytic acid (organic P, Po), KH2PO4 (inorganic P, Pi), and no-P. The P was applied at the rate of 1.79 g kg−1 soil.

Results

The plants grown with Po and Pi produced similar amounts of root, shoot, and total dry matters. Despite producing statistically similar dry matters, P uptake by Pi-fertilized plants was twofold higher than by Po-fertilized plants. Meanwhile, Pi differed significantly from Po in terms of nodulation characteristics such as nodule dry biomass and individual nodule dry biomass. However, Po varied significantly from Pi in P utilization and acquisition efficiencies. Principal component analysis of Pi and Po revealed no significant variation and close association, confirming the nonsignificant differences between the two P treatments. Among the varieties tested, Tiffany tended to accumulate more dry matter, coupled with highest organic P utilization efficiency (0.48 g mg−1) as well as the highest organic P beneficiary factor (80%).

Conclusion

These results provide a solid basis for further comparisons at physiological, biochemical, and molecular levels between Tiffany (Po-efficient) and Fuego (Po-inefficient) varieties, offering deep insights into and making it easier to understand the mechanisms that allow soil Po to be utilized under symbiotic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号