首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Darab  J. Csillag  I. Pinter 《Geoderma》1980,23(2):95-111
Solutions of sodium carbonate and sodium bicarbonate and saturation extracts of carbonate—solonchak, carbonate solonchak—solonetz and sulphate-containing solonetz soils were analysed to evaluate the applicability of the ion-pair formation model and to characterize the electrochemical behaviour of mixed salt solutions.The method of iteration published by Adams was modified and applied for the computation of ionic concentration, ion-pair concentration and ion activities in saturation extracts.The degree of ion-pair formation depends on the valences, sizes and concentrations of the ions. Ion-pairs were found to have been formed as follows: 15–75% of magnesium ions, 15–65% of calcium ions, and 1–6% of sodium ions formed ion-pairs.The different degrees of ion-pair formation of sodium, calcium and magnesium ions increase the SAR value in the soil solution. The increase in SAR value due to the ion-pair formation appears parallel with the increase of ionic concentration in the soil solution and it shifts the ratio of exchangeable cations to favour sodium.In sodium carbonate solonchak and sodium carbonate solonchak—solonetz soils the activity ratio of the exchangeable sodium to the exchangeable alkali earth metals is a function of the hydrogen—sodium potentials and the ionic concentrations of saturation extracts of soils.  相似文献   

2.
Studies were carried out in the glass house using sand culture to find out the specific ion effect on the accumulation of abscisic acid in wheat. Seeds were sown in sixteen different solutions of chloride, sulphate, nitrate, carbonate salts of sodium, potassium, calcium and magnesium used each at ‐2 bar osmotic potential. The leaf samples taken after 25 days of sowing indicated that osmotic as well as salt stress increased significantly the accumulation of abscisic acid. The accumulation of abscisic acid was significantly less under potassium and calcium salt ions as compared to that under sodium and magnesium salts ions. Overall effect of anions showed that accumulation of abscisic acid was more under PEG (osmotic stress and chloride salts but it was less under sulphate and nitrate salts and was the least under carbonate salts. The accumulation of abscisic acid was exceptionally high under potassium dihydrogen phosphate. In general, the accumulation of abscisic acid‐a growth inhibitor varied not only with the type of the cation but also depended on the accompanying anion indicating differential growth response of plants under different types of saline conditions having dominance of different salt ion(s).  相似文献   

3.
Germination, seedling growth, concentrations of photosynthetic pigments and nutrient uptake inTriticum vulgare L. (Var. W-H-147) were studied in response to sugarmill effluent application (10% concentration) in aqueous Vs. soil medium. The effluent rich in various nutrients showed particularly high concentration of sodium. Germination was not affected by the effluent treatment. Seedling growth was reduced significantly by the effluent in aqueous medium, but not in soil. The effluent treatment increased the concentrations of various pigments, however, the pigment ratios got changed in the aqueous medium only. The uptake of nitrogen, magnesium and carbon by the seedlings decreased while that of calcium, sodium and phosphorus increased in effluent treated plants, the changes being more marked in aqueous medium except for phosphorus. In the effluent treated plants, uptake of potassium and chloride increased in aqueous medium, hut decreased sharply in soil.  相似文献   

4.
为明确贵州省铜仁市植烟土壤中交换性钙和镁的状况,以铜仁2019年植烟耕层土壤交换性钙镁为研究对象,利用多元统计学和地统计学方法分析了土壤交换性钙镁空间变异特征及其影响因素。结果表明,铜仁植烟土壤交换性钙、镁含量整体丰富,平均值分别为1.72、0.27 g·kg-1,但仍有19.31%的交换性钙和27.59%地区的交换性镁含量处于低与极低水平。植烟土壤中钙镁比处于适宜范围的比例仅占29.70%,说明钙镁比失调较严重。土壤交换性镁含量总体呈现由西北向东南逐渐增加的趋势,土壤钙镁比总体呈现由中部向东南和西北逐渐减小的趋势,思南中部钙镁比处于最高值,江口南部与松桃南部钙镁比处于最低值。植烟土壤交换性钙、镁含量及其比值的空间变异是由结构性因素和随机性因素共同作用的结果。pH对交换性钙、镁空间变异的影响最大,分别能够独立解释其变量的41.6%、55.7%,且与交换性钙、镁分别呈现幂函数和三次函数关系,随着pH值升高,土壤中交换性钙和镁含量升高。综上,贵州铜仁植烟土壤空间分布不均匀、差异性较大,钙镁比失调比较严重,pH值对交换性钙、镁空间变异的影响最大,并与其呈极显著正相关。因此,铜仁烟区在指导钙镁施肥时要注意其空间差异性、做到分类指导,可以通过调控钙镁肥料施用量或含钙镁的改良剂调节土壤pH值来达到平衡土壤养分的目的。本研究可为铜仁市烟田钙镁养分管理提供科学依据。  相似文献   

5.
Grain amaranth (Amaranthus spp.) is a widely adaptable C4 pseudo-cereal crop that has interesting nutritional characteristics including high protein and calcium concentrations and a lack of gluten. To date, no antinutrient has been found at problematic levels in grain amaranth; however, oxalate has not been thoroughly studied. Dietary oxalate is a potential risk factor for kidney stone development, and its presence in food lowers calcium and magnesium availability. Oxalate concentration and forms and calcium and magnesium concentrations were determined in 30 field-grown grain amaranth genotypes from the species A. cruentus, A. hybrid, and A. hypochondriacus. The effects of seeding date and fertilization with calcium ammonium nitrate were evaluated in field experiments conducted in multiple environments; the effects of cooking were also evaluated. Mean total oxalate concentration in the 30 genotypes analyzed was 229 mg/100 g, with values ranging between 178 and 278 mg/100 g, the greatest proportion being insoluble (average of 80%). Calcium concentration averaged 186 mg/100 g and ranged between 134 and 370 mg/100 g, whereas magnesium averaged 280 mg/100 g and ranged between 230 and 387 mg/100 g. Fertilization only marginally increased total oxalate concentration and had no effects on other variables. Seeding date had no effects on any of the variables studied. Boiling increased the proportion of soluble oxalate but did not affect total oxalate concentration. Grain amaranth can be considered a high oxalate source, however, as most is in insoluble form, and due to its high calcium and magnesium concentrations, oxalate absorbability could be low. This should be confirmed by bioavailability studies.  相似文献   

6.
Abstract

Tomato cultivars were grown in a saline nutrient culture system to investigate growth and fruiting responses in relation to the application of 3 mM potassium (K), 1.5 mM phosphorus (P), and 10 mM calcium (Ca). The deleterious effects of salinity on tomato stem growth and fruit yield were ameliorated following the addition of K, P, and Ca to the nutrient solution. Potassium levels in tomato leaves were increased 4‐fold compared to control plants in the presence of applied K. The use of K resulted in an increase in Na content, however, a comparatively low level of sodium (Na) was obtained in treatments receiving K, Ca, and P. Calcium content was greater than sufficiency levels in all treatments, whereas magnesium (Mg) declined with the increase in salinity. The amount of P in tomato leaves was increased 4–5 fold when the nutrient solution was supplemented with 1.5 mM P. Correlation of vegetative parameters, such as stem height and leaf growth to salinity, revealed no significant responses, however commercial parameters such as total soluble solids and fruit weight correlated significantly with the saline nutrient treatments.  相似文献   

7.
Poor quality of irrigation water (high salinity) has reduced the yields of pistachio over recent years, especially in Kerman. The effects of four salinity levels [0, 30, 60, and 90 mM sodium chloride (NaCl)] and three calcium (Ca) levels [0, 0.5, and 1 mM Ca as calcium nitrate (Ca(NO3)2.4H2O)] on growth and chemical composition of pistachio seedlings cv. ‘Badami’ were studied in sand culture under greenhouse conditions in completely randomized design (CRD) with four replications. After 170 days, leaf area, leaf number, shoot and root dry weights were determined. Also shoot and root sodium (Na), potassium (K), Ca, and magnesium (Mg) concentrations were measured. Results showed salinity decreased all growth parameters. Ca application increased shoot and root Ca concentrations and root K concentration, while Ca application decreased shoot K concentration and shoot and root Mg concentrations. Salinity decreased shoot Ca, root K, and root Mg concentrations, while salinity increased shoot and root total sodium uptake, and shoot and root Cl concentrations.  相似文献   

8.
I.D.L. Foster 《CATENA》1979,6(2):145-155
Monthly mean concentrations of potassium, calcium, sodium, magnesium chloride and nitrate-nitrogen were determined from samples of bulk precipitation, throughfall, soil water and streamflow collected weekly between April 1975 and September 1977 in a small catchment in Devon, England. Soil water concentrations are compared with the analysis of exchange capacity in composite soil samples. Rain contributed much sodium and chloride to total catchment output, and potassium was selectively enriched in throughfall. Calcium and magnesium concentrations were high in soil water samples and on the soil exchange complex.  相似文献   

9.
Liming materials, calcium carbonate versus calcium magnesium silicate, were compared for effects on native white grub (Coleoptera: Scarabaeidae) populations in a New Jersey lawn. A silt loam soil near Princeton, N.J., of mixed cool-season turf with an initial pH of 5.0 received applications of either liming material in January 2007 for a target pH of 6.5. Control plots received no lime application. Grub numbers were reduced by more than 50% in plots amended with either calcium magnesium silicate or calcium carbonate when compared with the controls. Both calcium magnesium silicate and calcium carbonate were similarly effective in achieving this benefit.  相似文献   

10.
The high degree of base saturation and high cation exchange capacity with an appreciable dominance of calcium are related to the high carbonate content in parent rocks, high content of humus in chernozems, and abundant fine material in their profiles. These are characteristic features of prevalent soils in the Kamennaya Steppe. Almost all soils of monitoring and experimental plots have an appreciable spatial variation in exchangeable bases. The obtained data indicate that the content of adsorbed calcium in the exchangeable complex of the soil decreases with increasing shares of adsorbed magnesium and partially sodium.  相似文献   

11.
The effects of cations on desorption of phosphate previously added to soil were studied by mixing phosphated soil with solutions of chloride salts at a range of solutionitoil ratios and for periods which ranged from 1 to 96 h. Phosphate desorbed was then related to the experimental variables by a pair of simultaneous equations. In calcium chloride, the rate of desorption of phosphate was inversely proportional to the calcium concentration. Desorption was faster in 0.01 M magnesium chloride than in 0:01 M calcium chloride, and faster in 0.03 M sodium chloride than in either magnesium or calcium chloride. Addition of a further supply of the cation on an exchange resin increased the rate for both sodium and magnesium but decreased it for calcium. A range of monovalent cations formed a sequence from fastest to slowest of: Li+ > Na+ > NH4?> K +, Rb + > Cs +. The identity and concentration of the cations had a large effect on the concentration of phosphate when the solution: soil ratio was small. There were also large effects in the amount of phosphate desorbed when the solution: soil ratio was large and the concentration of phosphate approached zero. This suggested that the escaping tendency of the phosphate was decreased when the cations which balanced the negative charge on the adsorbed phosphate were close to the surface.  相似文献   

12.
Modelling the effects of pH on phosphate sorption by soils   总被引:4,自引:0,他引:4  
Samples of six soils were incubated at 60°C for 24 h with several levels of either calcium carbonate or hydrochloric acid. Phosphate sorption was then measured on sub-samples of the treated soils over 24 h at 25°C. In one set of measurements on all soils, 0.01 M calcium chloride was used as the background electrolyte. In another set, on two soils, 0.01 M sodium chloride was used. An interpolation method was used to give points on the three-dimensional surface relating the final pH of the suspensions to sorption of phosphate at specified solution concentrations of phosphate. The effects of pH on phosphate sorption differed between soils. For unfertilized soils, increases in pH up to about pH 5.5 decreased sorption. Further increases in pH decreased sorption further in one soil and increased it in three others. For fertilized soils, measured sorption increased with pH. When sodium chloride was used instead of calcium chloride, there was a more marked trend for sorption to decrease as pH increased. Differences between the soils were ascribed to differences in two soil properties. One was the rate at which the electrostatic potential in the plane of adsorption decreased as pH increased. Only small differences in the rate of change of potential were needed to reproduce the observed differences between soils. The electrostatic potential would decrease more quickly in solutions of a sodium salt than in solutions of a calcium salt and this explains the observed differences between these media. The other soil property that affected observed sorption was the release of phosphate from the soil. The amount released was largest at low pH. Consequently, for fertilized soils, measured sorption increased with pH.  相似文献   

13.
New slow-releasing molybdenum fertilizer   总被引:1,自引:0,他引:1  
This paper describes a new water-insoluble molybdenum compound that has been developed as a slow-release fertilizer. The compound is an inorganic polymer formed by inclusion of molybdenum within a long-chain polyphosphate structure. It was designed by a process of "reverse engineering" of the molecule. Synthesis involved reaction of phosphoric acid with magnesium oxide, molybdenum trioxide, and sodium carbonate at 275 degrees C. Kinetics of reaction revealed complex multistage processes. X-ray diffraction patterns showed a crystalline nature with short-range as well as long-range ordering. The magnesium sodium polymolybdophosphate had ideal slow-release characteristics; it had low water solubility and high citrate solubility and was powdery, free flowing, and nonhygroscopic. Field testing showed an 80% increase in yield of green gram at a low dose of 0.04 kg/ha Mo. Nodulation increased by over 161%, and N content of gram increased by 20%. The slow-release fertilizer would provide an effective, low-cost, and environmentaly friendly alternative to Mo fertilization.  相似文献   

14.
Five tall fescue (Festuca arundinacea Schreb.) clonal lines with diverse root and xylem diameters were grown in nutrient solutions with magnesium (Mg) concentrations of 42, 125 and 250 μM and potassium K concentrations of 133 and 333 μM. Leaf Mg concentrations increased with increasing Mg rates at both low and high K concentrations. The tall fescue line with the largest root and xylem diameters had low leaf Mg concentrations, indicating a possible increased Mg tetany potential when consumed by cattle. The response of the K/(Mg+Ca) ratio in the plant, an indicator of tetany potential, to varying solution Mg at low and high K was determined for each of the five lines. No Mg effects or interactions were significant. Line, K, and line x K effects were all significant for the K/(Mg+Ca) ratios. The line with the largest root and xylem diameters had the highest tetany potential (highest cation ratio). Higher solution K gave higher K/(Mg+Ca) ratios.  相似文献   

15.
Enzymes extracted from soil microorganisms exhibited activity with a number of inorganic phosphate substrates. Maximum hydrolysis of sodium and ammonium polyphosphates took place at about pH 8.5 in the presence of magnesium or manganese. Optimum cation concentrations were 2 mM for magnesium and 0.8 mM for manganese. Calcium inhibited both magnesium and manganese activation and was itself a non-activator, but an increase in the amounts of magnesium and manganese beyond their optimum concentrations reduced the inhibitory effects of calcium. There was a decrease in the rate of enzymatic hydrolysis as chain length of the polyphosphates increased, but the substrate cation had no effect.  相似文献   

16.
Crop production in many parts of the world is increasingly affected by soil salinization, especially in the irrigated fields of arid and semi-arid regions. The effects of four magnesium levels [0, 0.5, 1, and 22 millliMolar (mM) magnesium as magnesium sulfate (MgSO4.5H2O)], and three salinity levels [0, 45 and 90 mM sodium chloride (NaCl)] on growth and the chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami-e-Zarand’ was studied in sand culture under greenhouse conditions. The experiment was set up as a completely randomized design (CRD) with four replications. After 28 weeks the growth parameters of biomass, leaf number, leaf area and stem height were measured. The results demonstrated that salinity decreased biomass, leaf area and stem height; the application of 2 mM magnesium (Mg) significantly reduced biomass, leaf number, leaf area and stem height; salinity stress increased concentrations of sodium (Na) and potassium (K) in shoot as well as Na concentration in root; however, it decreased Mg and calcium (Ca) concentrations in shoot, as well as Mg, Ca, and K concentrations in root. The application of 2 mM Mg reduced K and Ca concentrations in shoot and Na and K concentrations in root.  相似文献   

17.
Abstract

Grazing management in autumn can influence the botanical composition and productivity of a sward. Cycling of nutrients as a result of grazing livestock activity and variable canopy growth rates may influence mineral nutrient supply and demand in a dynamic canopy. An experiment was conducted to determine the influence of autumn grazing practices on the growth and composition, including minerals in terms of ruminant requirements, of a grass/legume sward. Paddocks were established and three replicates grazed by growing lambs for 30‐, 60‐, or 90‐d intervals beginning in late summer. Herbage samples were collected at the beginning of the grazing interval and at the end of each interval (closing date). Herbage mass, and nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur (S), as well as copper (Cu) and zinc (Zn) were examined in terms of the influence of sampling date, closing date, year, and the interaction of these factors from stockpiled and grazed canopies. Soil mineral composition was determined as well. Concentrations of all minerals declined with increasing soil depth and P, Na, Mg, and Ca increased in soil over the course of the experiment. Soil N concentration was reflected in the pattern of herbage growth in autumn. In general, closing date had no influence on herbage mineral composition and concentrations were within the recommended levels for a range of livestock. Phosphorus was the exception and concentrations in herbage were low in terms of requirements for high producing livestock such as lactating dairy cattle. Uptake or mineral reallocation within the plant remained constant during the autumn growth interval, since mineral yields were stable as growth rates declined in 1991 and increased when growth rates were stable in 1992. Mineral related nutritional problems in grazed mixed‐species pasture, would most likely be a function of mineral bioavailability or interactions, rather than low concentrations in the herbage.  相似文献   

18.
Abstract

The effect of irrigation and crop load of apple (Malus domestica Borkh cv. Pacific Rose) on the fruit growth and mineral element accumulation was investigated. Fruit growth and changes in the concentration and contents of nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K) in the flesh of Pacific Rose? apple fruit were recorded over a growing season at the Massey University Fruit Crops Units orchard in the 1998–99 crop season. Fresh mass showed a linear growth while fruit diameter followed a curvilinear growth pattern during the growing season. Low crop load significantly increased fruit size, particularly during the final expansion phase, whereas irrigation had little effect on this attribute. Both low crop load and frequent irrigation treatments increased fruit growth rate, but the effect of the irrigation treatments fluctuated considerably during the season. The incidence of frait splitting was detected at about 20 WAFB when the fruit attained an asymmetrical growth in shape (L/D). The concentrations of N, P, Ca, Mg, and K declined throughout the sampling period. There was however, an increase in concentrations of P and K at the last harvest. The quantity of individual nutrient elements accumulated by the fruit showed an increasing trend during the season. Nitrogen accumulation however, reached maximum at 16 WAFB after which it declined until the last harvest. Fruit mineral element analysis of sound and split fruit revealed that split fruit had higher concentrations and contents of Mg and K and lower contents of Ca and P. As a result, the ratios of Ca: Mg and Ca: K were lower in split fruit as compared with sound fruit.  相似文献   

19.
《Journal of plant nutrition》2013,36(10):1609-1620
Orange (Citrus sinensis L. Osb. cv. ‘Newhall’) plants grafted on Citrange troyer rootstock were grown in nutrient solution with 0, 5, 10, or 20 μM iron (Fe), with and without calcium carbonate. Calcium carbonate was added in order to mimic the natural conditions in calcareous soils. Leaf chlorophyll concentration was estimated every 3–4 days using the portable instrument SPAD-502 meter. Chlorophyll fluorescence parameters, photosynthetic capacity estimated from oxygen evolution, leaf Fe concentrations, and root tip ferric chelate reductase activity were measured at the end of the experiment. Plants from the 0 and 5 μM Fe treatments showed leaf chlorosis and had decreased leaf chlorophyll concentrations. Leaves of plants grown in the absence of Fe in the solution had smaller rates of oxygen evolution both in the presence and absence of calcium carbonate, compared with plants grown in the presence of 10 μM Fe. In the absence of calcium carbonate the photosystem II efficiency, estimated from fluorescence parameters, was similar in all treatments. A slight decrease in photosystem II efficiency was observed in plants grown without Fe and in the presence of calcium carbonate. A 2.5-fold increase in root tip ferric chelate reductase activity over the control values was found only when plants were grown with low levels of Fe and in the presence of calcium carbonate.  相似文献   

20.
An antagonistic reaction between calcium (Ca) and magnesium (Mg) and potassium (K) may lead to low absorption of K and Mg by plants from soils with high Ca contents even when levels of K and Mg should be adequate. Two separate field studies were carried out in 2009 and 2010 to determine the effects of potassium (0, 40, 80, 120 kg K2O ha?1; as potassium sulfate) and magnesium (0, 20, 40, 60 kg magnesium oxide (MgO)ha?1; as magnesium sulfate) applied to a soil with high lime content either separately or in combinations, on the grain yield and yield components of maize for grain in semi-arid Central Anatolia in Turkey. One dose of the K, Mg-fertilizers was applied during sowing in both years. According to the results, increasing the dosage of K increased yield components more than increases in Mg dosages. Combinations of K and Mg tended to maximize the yield components. Moreover, the greatest plant heights, first ear lengths, grain weights per ear and protein ratios were obtained for the K80Mg40 dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号