首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract

Canola (Brassica napus) is the primary oilseed crop in western Canada; however, it is often grown on sulfur (S)-deficient soils. Moreover, canola has a high S demand compared to cereals and, therefore, is particularly sensitive to S deficiency. This study examined the growth and nutrient uptake responses of a high-yielding canola hybrid cultivar to S fertilization when grown on three contrasting soils differing in S fertility, with and without the addition of fertilizer S. The soils were collected from three soil-climatic zones within Saskatchewan (Brown, Black, and Gray) and three different fertilizer S forms were used: ammonium sulfate (AS); ammonium thiosulfate (ATS); and a composite fertilizer containing nitrogen (N), phosphorus (P), and S (NPS; 50-50 blend of sulfate (SO4) salt and elemental S). Sulfur fertilization increased the canola biomass, along with plant uptake of N, P, and S on all three soils. Fertilizer S use efficiency (i.e. recovery) ranged from 11-75%. For all three soils, the general trend among fertilizer S forms for biomass, nutrient uptake, and fertilizer use efficiency was AS?>?ATS?>?NPS. The greatest differences were observed with the Gray soil, which had the poorest S fertility. Residual soil SO4 after harvest was greater for ATS and NPS; reflecting continued oxidation of thiosulfate and elemental S to SO4. Principal component analysis demonstrated the importance of tissue N:S ratio as a key diagnostic measurement related to canola growth and nutrient uptake in S-deficient soils.  相似文献   

2.
In order to improve the effectiveness of phosphate rock as phosphorus fertilizer, elemental sulfur and Thiobacillus have been evaluated as amendments. First, Thiobacillus was isolated from different soil samples. Then, a greenhouse pot experiment was conducted using a completely randomized factorial design with three factors included: elemental sulfur at four levels of 0, 1000, 2000, and 5000 mg kg?1; phosphate rock at three levels of 0, 1000 and 2000 mg kg?1; four Thiobacillus inoculums (T1, T2, T3, T4) and without inoculation (T0) in three replications. Results showed that all the four Thiobacillus inoculums increased significantly extractable soil-P. Combined application of phosphate rock and sulfur in equal proportion (1:1) along with inoculum Thiobacillus had a significant effect in improving phosphorus availability in soil. Combined application of sulfur (at rates of 1000 and 2000 mg kg–1) and Thiobacillus significantly increased phosphorus uptake by plants as compared to the control.  相似文献   

3.
Nitrate (NO3) accumulation by spinach was studied under increasing nitrogen (N) levels (60, 120 and 240 kg N ha?1) along with sulfur (45 kg S ha?1) and phosphorus (P; 90 kg P2O5 ha?1) application. Plants were harvested at 50 and 65 days after sowing. Plant samples were analyzed for NO3-N and total N, P, S, potassium (K), calcium (Ca), and magnesium (Mg). Radio assay of 35S was done to estimate percent sulfur derived from fertilizer and percent fertilizer sulfur utilization. Spinach maintained a very high level of NO3-N in its tissue throughout the growing period. NO3-N was increased with increasing nitrogen level and was reduced with phosphorus and sulfur application and also with advancement in growth. Total N, P, S, K, Ca and Mg uptake were increased with increasing nitrogen levels as well as with application of sulfur and phosphorus. Sulfur application caused increase in percent sulfur derived from fertilizer and percent utilization of fertilizer sulfur.  相似文献   

4.
A series of experiments on the effects of form and rate of seed row placed phosphorus (P) fertilizer were carried out under controlled environment conditions using flats of a P-deficient Brown Chernozemic soil from Saskatchewan, Canada. The experiments were conducted in the laboratory and growth chamber using rates of seed row placed granular P fertilizer up to 100 kg P2O5 ha?1. Two forms of monoammonium phosphate fertilizer were compared: 1) conventional MAP granules and 2) controlled release phosphorus (CRP) fertilizer granules (Agrium Inc, Denver, CO, USA.) made with a polymer coating to slow the release of phosphate to soil solution. Six crops were utilized in the study to provide a range of commonly grown cereal, oilseed, pulse and forage crops in Western Canada: wheat (Triticum aestivum), canola (Brassica napus), mustard (Brassica juncea), flax (Linum usitatissimum), yellow pea (Pisum sativum) and alfalfa (Medicago sativum). Parameters measured were percentage of planted seeds that had emerged after two weeks, plant biomass yield, and plant P uptake after four weeks. Most of the crops tested showed no negative impact on emergence with seed row placed conventional P fertilizer at rates up to ~20 to 30 kg P2O5 ha?1. Pea, flax and mustard tended to be most sensitive to injury from high rates of seed placed MAP while wheat was least sensitive. The controlled release phosphorus fertilizer (CRP) product greatly increased the tolerance of crops to high rates of seed row placed P, with rates of 80 kg P2O5 ha?1 placed in the seed row producing no significant injury for most crops. This effect is attributed to the coating reducing the harmful salt effect that occurs when high rates of fertilizer are placed in the seed row in close proximity to the seed. Generally, a rate of 30 kg P2O5 ha?1 was sufficient to produce maximum early season biomass yield and P uptake for both conventional MAP and CRP fertilizers. Large differences in early P availability were not evident between the conventional P and controlled released P fertilizer products.  相似文献   

5.
Field experiments were conducted during spring–rainy (kharif) seasons of 2005 and 2006 on a sunflower–mungbean cropping system at the research farm of the Division of Agronomy, Indian Agricultural Research Institute (IARI), New Delhi, India. The objectives of this study were to investigate the residual effect of nitrogen sources, sulfur and boron levels applied to sunflower on productivity, nutrient concentrations and their uptake by the succeeding mungbean crop in a sunflower–mungbean cropping system. The experiment with 19 treatments was laid out in factorial randomized block design for both sunflower and mungbean. The residual effects of nutrients applied to sunflower were significant on the succeeding mungbean crop in terms of biometric parameters, yield attributing characters, seed yield and soil nutrient status. The highest mungbean seed yield (961.2 kg ha?1) was produced with 50 kg ha?1 sulfur application to the preceding sunflower crop, which was significantly (p < 0.05) higher than with 0 and 25 kg sulfur ha?1. The concentrations and uptake of nitrogen, sulfur and boron were also greater in the succeeding mungbean crop due to the residual effects of nutrients applied to the preceding sunflower crop. The soil nutrient status before and after mungbean indicated that the available nitrogen and sulfur were higher due to application to the preceding crop, while available boron after mungbean was even higher than after sunflower due to its slow release and static nature in the soil.  相似文献   

6.
A field experiment was conducted to assess the effect of sulfur (S) fertilization on distribution of S in soil and use efficiency on blackgram in subtropical Inceptisol of acidic soil of Assam, India. Five levels of S were applied (0, 10, 20, 30 and 40 kg S ha?1) along with recommended dose of nitrogen, phosphorus and potassium. Available S content gradually decreased with the advancement of crop growth stages and lowest value was observed at 60 DAS. Different S fractions were found to increase with increasing levels of S application and 40 kg S ha?1 resulted the highest content for all S fractions. The grain and stover yield of blackgram increased significantly up to 20 kg S ha?1 which was 95.69% higher over control. Agronomic efficiency, apparent S recovery and recovery efficiency of S were higher at 10 kg S ha?1and found decreased with increase in level of S.  相似文献   

7.
Sulfur (S) is one of the severely limited nutrients in rainfed semi‐arid tropical Alfisols. Its application plays an important role in improving the yield and quality of oilseed crops. To identify the optimum level of sulfur for greater yield and oil content in the sunflower crop (MSFH‐8) through suitable sources, a field experiment involving varying levels of S through two sources (gypsum and elemental S) in combination with standard levels of nitrogen (N) and phosphorus (P) was conducted on a sandy loam soil (Typic Haplustalf) at Hayathnagar Research Farm of Central Research Institute for Dryland Agriculture, Hyderabad, situated at an altitude of 515 m above mean sea level and on 78° 36′ E longitude and 17° 18′ N latitude. The response to S application in sunflower crop in terms of growth parameters, yield components, nutrient uptake, and seed oil content was conspicuous. The application of graded levels of sulfur at rates of 20, 40, and 60 kg ha?1 applied through elemental S significantly increased the seed yield of the sunflower crop over the control by 5.4, 10.7, and 18.1% respectively, whereas the corresponding increases in case of gypsum (CaSO4·2H2O) were 25.1, 28.8, and 33.9% respectively. The greatest seed yield of sunflower (1175 kg ha?1) and percentage oil content (39.7%) was obtained with 60 kg S ha?1 through gypsum under rainfed conditions. Our study clearly indicated that the application of S at relatively high levels significantly increased the uptake of N, P, and S. The percentage oil content in seed recorded a positive and highly significant relationship with the uptake of N (r = 0.958**), P (r = 0.967**), and S (r = 0.951**), signifying the importance of balanced nutrition in influencing the oil content of seed in sunflower. The application of S through gypsum at rate of 60 kg S ha?1 along with 40 kg N and 30 kg P2O5 ha?1 was most superior in enhancing the seed yield and percentage oil content in seed.  相似文献   

8.
A field experiment conducted on rapeseed (Brassica juncea L.) during 2005–2006 in a typical lateritic soil (Alfisol) of West Bengal, India revealed that sources of sulfur viz. gypsum and magnesium sulfate and levels of sulfur (0, 20, 40, 60 kg S ha?1) have significant influence on grain yield, total biological yield, sulfur concentration in grain and stover, total sulfur uptake, oil content and oil yield and chlorophyll content. The maximum grain yield (18.28 q ha?1) and oil yield (8.59 q ha?1) was obtained with magnesium sulfate followed by gypsum yielded the grain yield of 17.99 q ha?1 and oil yield of 8.22 q ha?1 at 40 kg S ha?1. Overall, the best performance was recorded when sulfur was applied at 40 kg S ha?1 either as magnesium sulfate or gypsum. Results revealed that magnesium sulfate may be considered as the better source of sulfur than gypsum to raise the mustard crop in sulfur deficient acidic red and lateritic soils of West Bengal and if farmers apply either magnesium sulfate or gypsum to soils, the possible deficiency of sulfur and magnesium/calcium in soils and plants can be avoided.  相似文献   

9.
Abstract

Legumes have a unique ability to obtain a significant portion of atmospheric nitrogen (N2) through a symbiotic relationship with Rhizobia spp of bacteria but it takes time, thus, an early supply of N to the plant may positively influence growth and development. However, too much fertilizer in close proximity to the seed can damage the seedling. Therefore, this study was conducted to determine the maximum safe rates for starter seed-row fertilizer application under low seedbed utilization conditions (15%). Emergence, biomass yield and nitrogen (N), phosphorus (P) and sulfur (S) uptake responses to starter fertilizer products and blends applied at 0, 10, 20 and 30?kg?N?ha?1 in the seed-row were investigated for six different pulse crops: soybean, pea, faba bean, black bean, lentil and chickpea. The general sensitivity (injury potential) for starter N, P, S fertilizer was lentil?≥?pea?≥?chickpea?>?soybean?≥?black bean?>?faba bean. Lentil, pea and chickpea could generally only tolerate the 10?kg?N?ha?1 rates while soybean and black bean could tolerate 10–20?kg?N?ha?1. Faba bean emergence appeared relatively unaffected by all three rates of N and showed least sensitivity to seed row placed fertilizer. In terms of 30-day biomass response, soybean and black bean were most responsive to fertilization, while pea, faba bean, lentil and chickpea were least responsive to the starter fertilizer applications, with no benefit increasing above the 10?kg?N?ha?1 rate.  相似文献   

10.
Abstract

A growth chamber experiment was conducted to compare ammonium thiosulfate, gypsum and elemental sulfur in the form of Agrisul as sources of sulfur for rapeseed (Brassica napus var. Regent). Rapeseed supplied with ammonium thiosulfate or gypsum produced significantly higher yields than treatments supplied with elemental sulfur. Powdering and mixing of elemental sulfur, as opposed to banding granules, significantly increased dry matter yield of rapeseed. While not always significant, there was a trend towards higher dry matter yields where gypsum granules were mixed as opposed to banded and where ammonium thiosulfate was placed in a band as opposed to being mixed throughout the soil.  相似文献   

11.
Field experiments evaluated the effects of integrated nutrient management on symbiotic parameters, growth, nutrient accumulation, productivity and profitability of lentil (Lens culinaris Medikus). Application of recommended dose of nutrients (RDN, 12.5 kg N ha?1 + 40 kg P2O5 ha?1) + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers [Rhizobium + phosphate solubilizing bacteria (PSB) + plant growth promoting rhizobacteria (PGPR)] + 1.0 g ammonium molybdate kg?1 seed recorded the highest number & dry weight of nodules, leghaemoglobin content, root & shoot dry weight, plant height, number of pods plant?1 and 100-seed weight. The next best treatment was RDN + seed inoculation with biofertilizers + 1.0 g ammonium molybdate kg?1 seed. On the basis of mean of three-year data, the treatment of RDN + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers 1.0 g ammonium molybdate kg?1 seed proved the best in realizing the highest grain yield (34.0%), gross returns (34.0%) and net returns (54.8% higher over control). Nitrogen, phosphorus and potassium in the grains and straw were significantly improved where RDN was applied in combination with seed inoculation, basal application of ZnSO4 and seed treatment with 1 g ammonium molybdate than their single applications.  相似文献   

12.
In most soil ecosystems, soil biological activity and associated processes are concentrated in the rhizosphere soil and is influenced by the external application of plant nutrients. The impacts of boron and sulfur on soil biological properties were evaluated in an Aeric Haplaquept (pH 5.7) growing rapeseed (Brassica campestris L.) as a test crop. Application of boron (B) at 2 mg kg?1 in combination with sulfur (S) at 30 mg kg?1 (B2S30) resulted in highest available Boron and sulfur of 0.239 and 15.4 mg kg?1, respectively and registered 62.5% and 71.3% increase over control (B0S0) at 60 days of crop growth compared to individual applications. The microbial populations viz. phosphate solubilizing microorganisms (PSM) and nitrogen fixing bacteria (NFB) were the highest of 52.63 and 85.87 × 105 g?1 soil, respectively, CFU in B2S30 treatment at 60 days and adjudged as the best treatment combination for enhancement of soil biological indices and seed yield.  相似文献   

13.
The effect of cattle manure and sulfur fertilizer on seed yield and oil composition of pumpkin (Cucurbita pepo var. Styriaca) under inoculated with Thiobacillus thiooxidans was investigated in a factorial study based on a randomized complete block design. Experimental factors consisted of cattle manure (M) (M0: 0, M1: 10; and M2: 20 t ha?1), sulfur (S) (S0: 0, S1: 250; and S2: 500 kg ha?1) and T. thiooxidans (B): inoculated (B1) and non-inoculated (B0). Results demonstrated that the application of T. thiooxidans, cattle manure, and S fertilizer decreased the soil pH. The largest number of seed per fruit (367), highest fruit yield (70.57 t ha?1), seed iron (Fe) content (16.26 mg 100 g?1), and seed yield (111 kg ha?1) was obtained when 20 t ha?1 manure was applied in combination with 500 kg ha?1 S inoculated with T. thiooxidans. In this condition, the content of S, Fe, phosphorus (P), and nitrogen (N) in plant shoots was increased by 44.8%, 22.58%, 33.89%, and 10.38%, respectively, compared to the control. Moreover, the highest content of seed protein was observed in 10 t ha?1 manure and 500 kg ha?1 S fertilizer inoculated with T. thiooxidans. When 250 kg ha?1 S fertilizer was applied, 20 t ha?1 manure decreased seed P content sharply. At the rate of 500 kg ha?1 S fertilizer, the highest content of seed P was obtained from 20 t ha?1 manure. Totally, 20 t ha?1 cattle manure, along with 500 kg ha?1 S fertilizer as well as T. thiooxidans inoculation, improved oil and seed yield of medicinal pumpkin.  相似文献   

14.
A field experiment involving four levels of sulfur (S; 0, 15, 30, and 45 kg ha?1) and three sources [elemental S, gypsum, and ammonium sulfate] significantly increased contents of all the S fractions compared to no S application and which decreased with crop growth. Application of ammonium sulfate recorded greater values of S fractions compared to gypsum and elemental S. Lower values of S fractions were recorded in elemental S treatments. Significant decreases in water-soluble and available soil S between flowering and harvest contributed to the pool of plant-available S. Significant increases in residual S fractions were observed due to levels of applied S even after harvest. Correlations between the S fractions indicated significant positive relations. Greatest pod and haulm yields, oil content, and oil yield of the groundnut were recorded in the T10 treatment followed by gypsum and elemental S treatments.  相似文献   

15.
It is important to develop integrated fertilization strategies for various crops that enhance the competitive ability of the crop, maximize crop production and reduce the risk of nonpoint source pollution from fertilizers. In order to study the effects of mineral nitrogen fertilization and biofertilizer inoculation on yield and some physiological traits of rapeseed (Brassica napus L.) under different levels of sulfur fertilizer, field experiments in factorial scheme based on randomized complete block design were conducted with three replications in 2012 and 2013. Experimental factors were: (1) four levels of chemical nitrogen fertilizer (0, 100, 150 and 200 kg N ha?1), (2) two levels of biofertilizer (with and without inoculation) consisting Azotobacter sp. and Azospirillum sp. and (3) two levels of sulfur application (0 and 50 kg S ha?1). Rapeseed yield, oil content of grains and studied physiological traits had a strong association with the N fertilization, biofertilizer inoculation and sulfur (S) application. Higher rates of N fertilization, biofertilizer inoculation and S application increased the grain yield of rapeseed. In the case of physiological traits, the highest value of relative water content (RWC) was recorded in 100 kg N ha?1 that was statistically in par with 150 kg N ha?1 application, while usage of 150 kg N ha?1 showed the maximum cell membrane stability (CMS). Inoculation with biofertilizer and S fertilization resulted in higher RWC and CMS in rapeseed plants. The chlorophyll content showed its maximum values in the highest level of N fertilization, biofertilizer inoculation and S application. The usage of 200 kg N ha?1 significantly decreased the oil content of rapeseed grains, but the highest grain oil content was obtained from the application of 150 kg N ha?1, Azotobacter sp. and Azospirillum sp. inoculation and S fertilization. It seems that moderate N rate (about 150 kg N ha?1) and S application (about 50 kg S ha?1) can prove to be beneficial in improving growth, development and total yield of inoculated rapeseed plants.  相似文献   

16.
A field experiment was conducted on Indian mustard (Brassica juncea) with five levels of sulfur (S), 0, 15, 30, 45, and 60 kg S ha?1 in sub-tropical Inceptisol of Jammu, North India. The residual effect of S on rice crop was evaluated. The seed and stover yield of mustard increased in the linear order up to 60 kg S ha?1 but significant yield increase was obtained up to 30 S kg ha?1 which was 21.4 percent higher in comparison to the yield obtained in control. The uptake of S at maturity was significantly affected with all the levels of S application. The seed S uptake increased significantly up to 30 kg S ha?1 and stover 45 kg S ha?1. The residual effect of S was convincing in enhancing the rice yield to the tune of 5.3% over control, but was statistically non-significant. The S uptake was also favourably influenced by the residual S which was evidenced through increased S use efficiency. Agronomic and physiological efficiency as well as S recovery were all greatly influenced by direct and residual effect of S. Apparent S recovery was higher at 30 kg S ha?1 in mustard (12.06%).  相似文献   

17.
Abstract

A field experiment was conducted at Star City (legal location SW6‐45‐16‐W2); Saskatchewan, Canada from May 2000 to June 2000, to measure nitrogen (N) and phosphorus (P) supply rates from fertilizer bands to the seed‐row of canola crop. Ion exchange resin membrane probes (PRSTM) were used to measure N and P supply rates in four treatments [80 kg N ha?1 of urea as side‐row band, 80 kg N ha?1 of urea as mid‐row band, check/no N (side‐row)/P side‐row, check/no N (mid‐row)/seed placed P]. The treatments were arranged in a randomized complete block design with four replications. Two anion and cation exchange resin probes (PRSTM) were placed in each plot in the seed‐row immediately after seeding and fertilizing. The probes were allowed to remain in the field for 2 days and replaced with another set of probes every 4 days for a total of 14 days until canola emerged. Ammonium‐N, nitrate‐N and P supply rates were calculated based on the ion accumulated on the probes. Urea side‐row band treatments (fertilizer N 2.5 cm to side of every seed‐row) had significantly higher cumulative available N supply rates than mid‐row band placement in which fertilizer N was placed 10 cm from the seed‐row in between every second seed‐row. No significant differences were observed in P supply rates. The higher N rates (120 kg N ha?1) resulted in lower grain yield in side‐row banding than mid‐row banding possibly due to seedling damage. However, the earlier fluxes of N into the seed‐row observed with side‐row banding may be an advantage at lower N rates in N deficient soils.  相似文献   

18.
This study evaluated the petiole uptake of nitrogen, phosphorus, potassium, and sulfur (N, P, K, and S) by the potato from two seed meals, mint compost, and five commercially available organic fertilizers under an irrigated certified organic production system. Available soil nitrate (NO3-N) and ammonium (NH4-N) from each amendment averaged 115 kg N ha?1 at application and 25 kg N ha?1 30 d after planting through harvest, with minor differences between fertilizers. Petiole N declined from an average of 25,000 mg N kg?1, 4 wk after emergence to 3,000 mg N kg?1 prior to harvest. Petiole P and K concentrations were maintained above 4,000 mg P kg?1, 10,000 mg K kg?1, and 2,000 mg S kg?1 tissue, respectively, throughout the growing season in all treatments. Tuber yields were not different between fertilized treatments averaging 53 Mg ha?1. This study provides organic potato growers baseline information on the performance of a diverse array of organic fertilizers and amendments.  相似文献   

19.
Adequate sulfur (S) nutrition is critical for sustaining yields in crop rotation systems. Because of slow oxidation of elemental S (S°), research on S° fertilizers has emphasized improving the short‐term availability, while the long‐term effects of S° have been overlooked. The effectiveness of a dispersible granule S° fertilizer (SF: Sulfer95), consisting of S° particles smaller than any S° fertilizer reported in literature (< 44 μm in diameter), was compared to gypsum (CS: CaSO4) and ammonium sulfate [AS: (NH4)2SO4] in a three‐year experiment (1997—1999) on a moderately S deficient Black Chernozem soil (Typic Cryoboroll). The three S fertilizers were applied to canola (Brassica rapa L.) at 20, 40, and 80 kg S ha‐1, supplemented with corresponding rates of nitrogen (N) fertilizer in the first year. The control treatment (CT) received N only. Barley (Hordeum vulgare L.) and peas (Pisum sativum L.) were grown in the second and third years to test the availability of residual S. Although the yield of canola in SF fertilized treatments was only slightly higher than in CT, available S provided by SF produced a higher physiological S efficiency (PSE). Superior yields with residual SF were obtained in the second and third years by barley and peas at the rate of 80 kg S ha‐1 applied in the first year, indicating that slow oxidation of SF was beneficial to the crops subsequently grown. Over three years, the total crop S uptake was 21, 4.0, and 15% higher with SF than with CT, CS, and AS, respectively.  相似文献   

20.
A power plant that utilizes turkey manure as fuel to produce energy was built in Benson, Minnesota, and started full energy production in 2007. The plant was built to meet legislative requirements governing the use of renewable sources to generate energy in Minnesota. Although the use of turkey manure as biofuel generates energy, it also results in turkey manure ash (TMA) as a by‐product that contains phosphorus (P), potassium (K), sulfur (S), and zinc (Z) as well as other essential and nonessential elements. A 2‐year study was conducted to compare TMA with triple‐superphosphate and potassium chloride fertilizers as a source of nutrients for alfalfa (Medicago sativa) at three locations: Lamberton, Morris, and Appleton, Minnesota. The soils at Lamberton and Appleton were acidic with P and K concentrations ranging from medium‐high to very high, whereas the soil at Morris was alkaline with high concentrations of P and K. The experiment consisted of a control (0 P and 0 K) and annual and split applications of TMA and fertilizer. Annual TMA and fertilizer rates were 84 kg P2O5 ha?1, 118 kg K2O ha?1, and 34 kg S ha?1. Split rates were 42/42 kg P2O5 ha?1, 59/59 kg K2O ha?1, and 17/17 kg S ha?1. However, because of an overestimation of citrate‐soluble P in 2005 for the TMA, the total amount of available P applied with the TMA for the 2‐year study was 168 kg P2O5 ha?1 compared with 286 kg P2O5 ha?1 for the fertilizer. In the first year, fertilizer resulted in greater alfalfa biomass yield than TMA and the control, whereas in the second year, alfalfa yields with TMA and fertilizer were similar and both more than the control. In 2005, TMA resulted in more copper (Cu) and S tissue concentrations than the fertilizer. In 2006, application of both sources increased tissue P and S concentrations compared with the control. The TMA increased tissue Cu concentration and Zn plant uptake compared with fertilizer. Bray P1–extractable soil P concentrations were less with TMA and control treatments than with the fertilizer treatments. Ammonium acetate–extractable soil sodium (Na) concentrations were greater with TMA than with fertilizer and the control. By the second year, both ash and fertilizer treatments resulted in more K uptake than the untreated control with no difference in K uptake between the two sources or time of application. Both sources were effective in increasing P uptake compared with the untreated control. TMA was shown to be an effective source of nutrients for alfalfa production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号