首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
克百威降解菌CYW-44的分离及其酶促降解研究   总被引:1,自引:1,他引:1  
为了有效治理克百威农药污染,以克百威为唯一碳源,利用富集培养的方法从农药厂活性污泥中分离到一株克百威降解菌CYW-44,经生理生化、16S rDNA序列分析及API 50CHB鉴定试剂条分析,将菌株鉴定为枯草芽孢杆菌(Bacillus subtilis)。该菌在营养培养基中培养5 d时对100 mg.L-1的克百威降解率为97.72%,6 d能够完全降解克百威。通过液相色谱(HPLC)法检测,发现在降解过程中,克百威降解产物呋喃酚及其他代谢产物不产生累积;研究证实该菌株能分泌胞外降解酶和胞内降解酶高效降解克百威,对克百威的降解率分别达到99.1%和82.63%;通过SDS-PAGE验证了克百威对菌株降解酶活性的诱导作用。  相似文献   

2.
一株克百威降解菌的分离及其降解特性研究   总被引:1,自引:0,他引:1  
从杨凌某农药厂排污口处的污泥中分离得到1株能有效降解克百威的细菌,命名为KBW-1.根据其生理生化特征,将该菌株初步鉴定为假单胞菌属(Pseudomonas sp.).该菌株可以在108 h内完全降解200 mg/L的克百威.KBW-1降解克百威的最适pH为7.0,最适温度为30℃, 最适接种量为10%.克百威可作为KBW-1的唯一氮源和碳源,但当其作为氮源时,可以更好地被降解.  相似文献   

3.
阐述了克百威的使用和污染情况,指出微生物降解农药残留是1个比较快速有效的方法。综述了降解克百威的微生物种类、克百威的降解途径和克百威降解的分子生物学研究,提出了克百威微生物降解的发展方向。  相似文献   

4.
丁硫克百威在稻田环境中的降解与残留研究麦铭,陈平,尤玉珍,张宁波(湖北省农业科学院测试中心,武汉430064)THESTUDYABOUTDECOMPOSITIONANDRESIDUEOFCARBOSULFANONTHERICEFIELD¥MaiMin...  相似文献   

5.
从土壤中分离出两株几丁质降解能力较强的细菌,经初步鉴定,分别归于假单胞菌属和短杆菌属,命名为Pseudomonas sp. ww 和Brevibacterium sp. yy.对这两菌株进行的液体摇瓶发酵试验表明,在肉汤培养基中,yy菌株16 h进入稳定期,ww菌株20 h进入稳定期,而在几丁质培养基中两菌株要培养36 h才进入稳定期;在几丁质培养基中对酶活力的测定结果表明:yy菌株培养35 h酶活达最高,为8.3 U/mL,ww菌株培养30 h时酶活最高,达13.3 U/mL.用半量肉汤培养基摇瓶培养10 h后加入0.2%胶体几丁质的补料分批培养方式,可使酶活高峰时间提前5 h,且酶活力也有所增加.yy菌株在30 h酶活达最高,为8.4 U/mL,ww菌株在25 h酶活达最高,为15.6 U/mL,若加入的是2%的胶体几丁质,则对菌体,特别是对yy菌株的生长有抑制作用.实验还发现两菌株的几丁质培养物对金黄色葡萄球菌有明显的抑制作用,对大肠杆菌也有一定的抑制作用,而对黑曲霉和黑根霉几乎没有抑制作用.  相似文献   

6.
菲的微生物酶促降解研究   总被引:1,自引:0,他引:1  
微生物降解是环境中菲去除的重要途径.为有效开展菲污染的微生物酶学治理,采用室内模拟的方法,从菲污染土壤中分离到一株高效降解菌株,研究了其最适产酶条件.结果表明该菌株最适产酶条件为培养温度35℃,培养液起始pH7.0,培养时间60 h,而Hg2 对该菌株产酶有显著抑制作用.从该优势菌中提取的粗酶液在pH7.0和30℃时显示最大的降解活性,其米氏常数为50.30 nmol·mL-1最大降解速率为171.33 nmol·min-1·mg-1.  相似文献   

7.
Ochrobactrum sp. C7是一株高效硫丹降解菌。本试验对C7在土壤中降解硫丹的效果以及C7产生的硫丹水解酶(粗酶液)的性质进行了研究。结果表明,该菌在30天内能很好地降解土壤中的硫丹;降解酶在30~45℃、pH5.5~7.5的条件下活性较高;在pH7和40℃时显示最大的硫丹水解酶活性。初步判断水解酶的表达可能是组成型的,此粗酶液可用于果蔬表面农药残留的快速解毒和清除,从而为高效降解菌株的应用与环境中的生物修复提供了理论依据。  相似文献   

8.
机油降解菌的分离及其降解特性研究   总被引:2,自引:0,他引:2  
韩寒冰  刘杰凤 《安徽农业科学》2009,37(21):9883-9884
[目的]分离主要的机油降解菌,并研究其降解特性。[方法]从茂名炼油厂附近长期被石油污染的土壤中,分离机油降解菌株,并对其进行形态特征和生理生化特性的分析。同时进一步研究了该菌株对机油降解特性及影响因素。[结果]分离得到3株机油降解菌,其中1株初步鉴定为芽孢杆菌属。该菌株在温度为40℃、pH值为8.0、机油浓度为100mg/L、N源为NH4Cl的条件下生长旺盛,降解率达到47.2%。[结论]利用生物降解的方法可以更有效地治理石油污染。  相似文献   

9.
为解决新疆盐碱土壤中氨基甲酸酯类农药残留问题,从长期连作棉田中富集培养得到降解克百威的菌群。分析该菌群结构组成信息,利用多种培养基从中分离碱性条件下降解克百威的相关菌株,并从中筛选出能够耐受和高效降解克百威的菌株后,初步分类鉴定和测定这些菌株的降解能力。结果表明,克百威降解菌群在门分类水平上主要由Proteobacteria(88.24%)、Bacteroidetes(11.47%)组成;在属分类水平,丰度最大的依次为Pseudoxanthomonas(54.30%)、Hyphomicrobium(13.98%)、Hydrogenophaga(3.32%)、Aquamicrobium(3.13%)等,微生物网络构建结果也与此相同。从该降解菌群中共分离出细菌71株,其中菌株KJ71和KJ74能够耐受高浓度克百威,并在pH为8.0的基础无机盐培养基中,当接种量为1%,120r·min-1摇床培养72 h时具有较高降解能力;经16S rRNA基因序列分析,KJ71为Rhodococcus、KJ74为Paenibacillus;进一步研究表明,菌株KJ71和KJ74在72...  相似文献   

10.
郑青凤  邵姗珊  李颢  赵晓祥 《湖北农业科学》2011,50(11):2207-2209,2216
采用硫酸铵盐析浓缩、透析、Sephdex G-150凝胶过滤层析,对表皮葡萄球菌产生的多氯联苯(PCBs)降解酶进行分离纯化.粗酶经30%~80%饱和度硫酸铵沉淀法纯化后比酶活可提高到442.29 U/mg;经透析后的比酶活可提高到480.75 U/mg;最后经凝胶层析法纯化后的比酶活可提高到6 903.57 U/mg...  相似文献   

11.
阴沟肠杆菌w 10 j15经过纯培养、超声波破碎和高速离心,提取到氯氰菊酯降解酶。在实验条件下测定了降解酶对氯氰菊酯的降解特性。结果表明,降解酶在40℃、pH 7.5时对氯氰菊酯显示最大的降解活性,对氯氰菊酯的降解率为78%;它在30~50℃或pH 6.5~8.0稳定性良好。L inew eaver-Burg法做图分析表明,其酶蛋白最大降解速率Vm ax为63.69 nm o.lmL-1.m in-1,米氏常数(Km)为377.35 nm o l/mL。  相似文献   

12.
[目的]对产几丁质酶菌株发酵产酶活性工艺进行优化。[方法]将筛选得到的1株产几丁质酶菌株G-254进行驯化培养,通过单因素试验考察了不同碳源、氮源和无机盐对菌株产酶活的影响;进行响应面试验,以菌株发酵所产酶活为响应值,确定最佳的发酵产酶工艺条件。[结果]菌株G-254发酵产几丁质酶最佳发酵条件为,葡萄糖8%,牛肉膏料5%,硫酸镁0.07%,在此条件下获得的几丁质酶活为6.86 U。[结论]提高了菌株发酵产几丁质酶酶活,为后续工业化发酵生产奠定了基础。  相似文献   

13.
从霉变甘蔗叶中分离到1株纤维素降解菌,对其部分重要培养条件和酶学性质进行了研究,结果表明:该降解菌最适培养条件为碳源羧甲基纤维素钠(CMC-Na)、碳源浓度2.0%、氮源酵母粉、培养温度20℃、培养p H 6.5,培养时间96 h。该降解菌所产滤纸酶和CMC酶的酶活性最适温度为40℃,最适p H为5.5。  相似文献   

14.
从霉变甘蔗叶中分离到1株纤维素降解菌,对其部分重要培养条件和酶学性质进行了研究,结果表明:该降解菌最适培养条件为碳源羧甲基纤维素钠(CMC-Na)、碳源浓度2.0%、氮源酵母粉、培养温度20℃、培养p H 6.5,培养时间96 h。该降解菌所产滤纸酶和CMC酶的酶活性最适温度为40℃,最适p H为5.5。  相似文献   

15.
【目的】从土壤中分离筛选羽毛降解菌株,检测其产酶条件,研究其所产酶的酶学性质,以丰富角蛋白降解的菌株资源。【方法】从土壤样品中,以牛奶培养基和羽毛培养基筛选羽毛降解菌株,失重法测定羽毛降解率,并对筛选菌株进行形态观察、生理生化检测及16S rRNA序列鉴定。筛选菌株于37 ℃、180 r/min条件下,在以羽毛为唯一碳氮源的培养基中发酵,采用福林酚法测定其角蛋白酶活力,对培养时间(3,6,9,12,15,18,21和24 h)、接种量(体积分数1.5%,3.0%和6.0%)、发酵温度(22,27,32,37和42 ℃)及培养基初始pH(6.0,6.5,7.0,7.5和8.0)进行优化,并研究温度(30,40,50,60,70和80 ℃)、pH(6.0,7.0,8.0,9.0和10.0)、金属离子(K+,Mg2+,Ca2+,Fe3+,Zn2+,Mn2+,Cu2+和Ni2+)、化学试剂(二硫基苏糖醇(DTT)、乙二胺四乙酸(EDTA)、苯甲基磺酰氟(PMSF)、十二烷基硫酸钠(SDS)、β-巯基乙醇、异丙醇和二甲基亚砜(DMSO))和不同底物(酪蛋白、角蛋白、牛血清蛋白、牛血红蛋白、天青角蛋白和羽毛粉)对角蛋白酶活力的影响。【结果】从高温处理的土壤样品中筛选到1株羽毛降解菌DHW 06,形态观察、生理生化检测及16S rRNA序列分析初步鉴定为蜡样芽孢杆菌(Bacillus cereus)。在培养时间10 h、接种量为体积分数3.0%、发酵温度37 ℃和培养基初始pH 6.5的条件下发酵,最大酶活力达到129.47 U/mL。酶学特性结果表明,该酶的最适反应温度为60 ℃,最适反应pH为8.0,在30~50 ℃时具有较好的热稳定性。10 mmol/L的Mn2+使相对酶活力提高300%,10 mmol/L的Cu2+使相对酶活力提高120%;而1 mmol/L的Zn2+使相对酶活力丧失12%,1 mmol/L的Fe3+使相对酶活力丧失53%。体积分数为10%的β 巯基乙醇使相对酶活力提高1 658.95%,10 mmol/L的DTT使相对酶活力提高577.99%;而10 mmol/L的PMSF使相对酶活力丧失35.88%。该酶具有广泛的底物适应能力,对角蛋白的降解能力最强。【结论】筛选出1株可降解羽毛的菌株DHW-06,明确了其最优的产酶条件和酶学特性。  相似文献   

16.
试验选用使用量较大、毒性较强、不易自然降解的高效氯氰菊酯、溴氰菊酯和高效氯氟氰菊酯作为参试农药,对一株能高效降解拟除虫菊酯类农药的恶臭假单胞菌XP12进行深入的研究,以期了解该菌株在拟除虫菊酯类农药的生物降解体系中酶的分布特征、酶促降解的动力学特征.结果表明:对拟除虫菊酯类农药起催化作用的酶属于组成型胞内酶,反应pH值为6.5~8.0时,降解酶对高效氯氰菊酯、溴氰菊酯和高效氯氟氰菊酯的降解率都在70%左右,最适反应pH值为7.5:反应温度在25~40℃时,降解率在70%以上,最适反应温度为30℃.在最适反应pH和温度条件下,降解酶粗酶液对高效氯氰菊酯、溴氰菊酯和高效氯氟氰菊酯的Km分别为42,78、50.64和77.90 nmol/mL,Vmax分别为12.05、10.31和16.39 nmol/min.粗酶液在叶类蔬菜上拟除虫菊酯类农药的降解也有明显效果,对高效氯氰菊酯、溴氰菊酯和高效氯氟氰菊酯的降解率分别为93.3%、85.2%、83.5%.  相似文献   

17.
时杰  杨勋  刘平怀 《广东农业科学》2012,39(23):190-194
从海南热带海洋红树林土样中分离得到一株高产几丁质酶菌株HN12,经形态、生理生化和16S rDNA基因手段鉴定,其为一新种,命名为Chitiniphilus haikoumanggrovensis(GenBank No.HQ877498,type strain CGMCC No.5142)。单因素试验研究菌种酶学性质,结果显示:其最适酶反应温度为50℃,但在此温度下酶活力下降较快,综合酶的温度耐受性,酶促反应温度定为40℃;最适酶促反应pH值为7.0;在测试的9种金属离子中,未发现有金属离子能提高酶活力;酶解产物主要为几丁四糖;在优化后的酶解反应条件下测定酶活力达到2.1 U/mL。  相似文献   

18.
以涂布法和富集培养法筛选得到降解菌株HQ-C-01,该菌株在48 h时对50 mg/L克百威、甲萘威、茚虫威和仲丁威的降解率分别可达95.2%、99.O%、85.0%和67.5%.确定菌株HQ-C-01的C、N、P源化合物为葡萄糖、蛋白胨和磷酸氢二钾,采用中心组分设计法确定了菌株HQ-C-01的培养基最适C、N、P源配比为匍萄糖32.10 g/L、蛋白胨3.25 g/L、磷酸氢二钾1.50 g/L;在最佳培养基条件下,D590nm实测值为0.786 5,与期望值0.805 4接近,48 h时对50 mg/L克百威降解率为95.9%.  相似文献   

19.
[目的]对氟磺胺草醚降解菌提取的降解酶进行定位,探讨其最适的酶促反应条件。[方法]通过采用紫外分光光度法测定酶活力来对氟磺胺草醚降解菌株F12提取的降解酶进行定位,并研究其酶学性质。[结果]氟磺胺草醚降解菌株F12降解酶属于胞外酶,最适的酶促反应时间为30 min,最佳的酶浓度为1.0 ml,最适pH为7.5,最适反应温度为35℃,最适添加药浓度为150 mg/L。[结论]试验结果为规模化生产氟磺胺草醚降解酶制剂及治理污染土壤提供了理论依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号