首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolate, (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P < 0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P < 0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.  相似文献   

2.
土壤有机碳活性组分沿中国长白山海拔坡度的分布情况   总被引:4,自引:0,他引:4  
Understanding the responses of soil organic carbon(SOC) fractions to altitudinal gradient variation is important for understanding changes in the carbon balance of forest ecosystems.In our study the SOC and its fractions of readily oxidizable carbon(ROC),water-soluble carbon(WSC) and microbial biomass carbon(MBC) in the soil organic and mineral horizons were investigated for four typical forest types,including mixed coniferous broad-leaved forest(MCB),dark coniferous spruce-fir forest(DCSF),dark coniferous spruce forest(DCS),and Ermans birch forest(EB),along an altitudinal gradient in the Changbai Mountain Nature Reserve in Northeast China.The results showed that there was no obvious altitudinal pattern in the SOC.Similar variation trends of SOC with altitude were observed between the organic and mineral horizons.Significant differences in the contents of SOC,WSC,MBC and ROC were found among the four forest types and between horizons.The contents of ROC in the mineral horizon,WSC in the organic horizon and MBC in both horizons in the MCB and EB forests were significantly greater than those in either DCSF or DCS forest.The proportion of soil WSC to SOC was the lowest among the three main fractions.The contents of WSC,MBC and ROC were significantly correlated(P < 0.05) with SOC content.It can be concluded that vegetation types and climate were crucial factors in regulating the distribution of soil organic carbon fractions in Changbai Mountain.  相似文献   

3.
Soil acid phosphomonoesterase activity(APA)plays a vital role in controlling phosphorus(P)cycling and reflecting the current degree of P limitation.Responses of soil APA to elevating nitrogen(N)deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soil APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine(Pinus massoniana)forest (MPF)-pioneer community,a coniferous and broad-leaved mixed forest(MF)-transition community and a monsoon evergreen broad-leaved forest(MEBF)-climax community.Four N treatments were designed for MEBF:control(without N added),low-N(50 kg N ha-1 year-1),and medium-N(100 kg N ha-1 year-1)and high-N(150 kg N ha-1 year-1),and only three N treatments(i.e.,control, low-N,medium-N)were established for MPF and MF.Results showed that soil APA was highest in MEBF,followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N treatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.  相似文献   

4.
中国亚热带耕作雏形土及强酸土的可蚀性与渗透性关系   总被引:8,自引:0,他引:8  
To evaluate the validity of different indices in estimating soil readily mineralizable N, soil microbial biomass (Nmic), soil active N (SAN), soluble organic N (SON), net N mineralization rate (NNR) and gross N mineralization rate (GNR) in mineral soils (0-10 cm) from six forest stands located in central Germany were determined and compared with two sampling times: April and November. Additionally, soil density fractionation was conducted for incubated soils (with addition of 15NH4-N and glucose, 40 days) to observe the sink of added 15N in different soil fractions. The study showed that Nmic and NNR in most stands differed significantly (P ≤ 0.05) between the two sampling times, but not GNR, SAN and SON. In November, no close relationships were found between GNR and other N indices, or between Nmic, SON, and SAN and forest type. However, in April, GNR was significantly correlated (P ≤ 0.05) with Nmic, SAN, and NNR along with Nmic under beech being significantly higher (P ≤ 0.05) than under conifers. Furthermore, density fractionation revealed that the light fraction (LF, 0.063-2 mm, > 1.7 g cm-3) was not correlated with the other N indices. In contrast, results from the incubation study proved that more 15N was incorporated into the heavy fraction (HF < 0.063 mm, > 1.7 g cm-3) than into LF, indicaing that more labile N existed in HF than in LF. These findings suggested that attention should be paid to the differences existing in N status between agricultural and forest soils.  相似文献   

5.
上海郊区园艺土壤氮素的生物形成动态变化   总被引:3,自引:0,他引:3  
Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Organic Vegetable and Fruit Farm, Shanghai, China, to investigate the dynamics of N speciation during 2 months of aerobic incubation, to compare the effects of different soils on the mineralization of 14C-labeled amino acids and peptides, and to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant blockage in soil N supply. The dynamics of N speciation was found to be significantly affected by mineralization and immobilization. DON, total free amino acids, and NH4+-N were maintained at very low levels and did not accumulate, whereas NO3--N gradually accumulated in these soils. The conversion of insoluble organic N to low-molecular-weight (LMW) DON represented a main constraint to N supply, while conversions of LMW DON to NH4+-N and NH4+-N to NO3--N did not. Free amino acids and peptides were rapidly mineralized in the soils by the microbial community and consequently did not accumulate in soil. Turnover rates of the additional amino acids and peptides were soil-dependent and generally followed the order of organic soil > transitional soil > conventional soil. The turnover of high-molecular-weight DON was very slow and represented the major DON loss. Further studies are needed to investigate the pathways and bottlenecks of organic N degradation.  相似文献   

6.
亚热带气候环境条件下不同森林类型的土壤CO2通量的研究   总被引:1,自引:0,他引:1  
The flux of carbon dioxide(CO2) from soil surface presents an important component of carbon(C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better understand characteristics of soil CO2 flux(FCO2) in subtropical forests,soil FCO2 rates were quantified in five adjacent forest types(camphor tree forest,Masson pine forest,mixed camphor tree and Masson pine forest,Chinese sweet gum forest,and slash pine forest) at the Tianjiling National Park in Changsha,Hunan Province,in subtropical China,from January to December 2010. The influences of soil temperature(Tsoil),volumetric soil water content(θsoil),soil pH,soil organic carbon(SOC) and soil C/nitrogen(N) ratio on soil FCO2 rates were also investigated. The annual mean soil FCO2 rate varied with the forest types. The soil FCO2 rate was the highest in the camphor tree forest(3.53 ± 0.51 μmol m-2s-1),followed by,in order,the mixed,Masson pine,Chinese sweet gum,and slash pine forests(1.53 ± 0.25 μmol m-2 s1). Soil FCO2 rates from the five forest types followed a similar seasonal pattern with the maximum values occurring in summer(July and August) and the minimum values during winter(December and January). Soil FCO2 rates were correlated to Tsoiland θsoil,but the relationships were only significant for Tsoil. No correlations were found between soil FCO2 rates and other selected soil properties,such as soil pH,SOC,and C/N ratio,in the examined forest types. Our results indicated that soil FCO2 rates were much higher in the evergreen broadleaved forest than coniferous forest under the same microclimatic environment in the study region.  相似文献   

7.
长白山地区不同植被下土壤酸度状况   总被引:3,自引:0,他引:3  
The acidity regimes of representative soils on the north slope of the Changbai Mountains were examined through determinations of pH and pCa of the soil paste as well as in-situ determinations,For soils under broad-leaf forest or broad-leaf-Korean pine forest,the pH decreased from the litte to lower layers gradually until it did not change or decreased further slightly .For soils under coniferous of Erans birch forest,ther was a minimum in pH at a depth of 3-6 cm where the content of humus was high,The pCa increased gradually from the soil surface downward to a constant value.The lime potential(pH-0.5pCa) showed a similar trend as the pH in its distribution.For a given soil,the measured pH value of the thick paste,ranging from 4.5 to 5.5,was lower by about 0.5 units than the value determined by the conventional method with a water to soil ratio of 5:1 ,The pH determined in situ was even lower.It was found that there was a firly close relationship between soil acidity and the type of vegetation.The pH showed a trend of decreasing from soils under broda-leaf forest through broad-leaf-conifer mixed rorest and coniferos forest to Ermans birch forest,and the pCa showed an opposite trend in variation.  相似文献   

8.
A long-term (21-year) field experiment was performed to study the responses of soil inorganic P fractions and P availability to annual fertilizer P application in a calcareous soil on the Loess Plateau of China. Soil Olsen-P contents increased by 3.7, 5.2, 11.2 and 20.6 mg P kg-1 after 21-year annual fertilizer P application at 20, 39, 59, and 79 kg P ha-1, respectively. Long-term fertilizer P addition also increased soil total P and inorganic P (Pi) contents significantly. The contents of inorganic P fractions were in the order of Ca10-P > Ca8-P > Fe-P > Al-P > occluded P > Ca2-P in the soil receiving annual fertilizer P application. Fertilizer P application increased Ca8-P, Al-P and Ca2-P contents as well as their percentages relative to Pi. Pi application increased Fe-P and occluded P contents but nor their percentages. Soil Ca10-P content remained unchanged after fertilizer P application while its percentage relative to Pi declined with increasing fertilizer P rate. All Pi fractions but Ca10-P were correlated with Olsen-P significantly. 90% of variations in Olsen-P could be explained by Pi fractions, and the direct contribution of Ca8-P was predominant. Long-term annual superphosphate application would facilitate the accumulation of soil Ca8-P, and thus improve soil P availability.  相似文献   

9.
The effects of simulated nitrogen (N)deposition on soil exchangeable cations were studied in three forest types of subtropical China. Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1), low N (50 kg N ha-1 year-1), medium N (100 kg N ha-1 year-1)and high N (150 kg N ha-1 year-1), and only three treatments (i.e., control, low N, medium N)were established for the pine and mixed forests. Nitrogen had been applied continuously for 26 months before the measurement. The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests, and exhibited some significant negative symptoms, e.g., soil acidification, Al mobilization and leaching of base cations from soil. The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations. Response of soil exchangeable cations to N deposition varied in the forests of subtropical China, depending on soil N status and land-use history.  相似文献   

10.
Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P 〈0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P 〈0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.  相似文献   

11.
The aim of this study was to compare the effects of silver birch (Betula pendula Roth) and Norway spruce (Picea abies (L.) Karst.) on soil C and N transformations and on the characteristics of organic matter. Soil samples were taken from the humus layer of a replicated 35-year-old birch-spruce field experiment growing on Vaccinium myrtillus site type in middle-eastern Finland. The soil was a podzol and humus type mor. Soil pH was higher under birch (4.7) than under spruce (4.1). The C-to-N ratio was lower under birch (17) than under spruce (23). Per unit organic matter, microbial biomass C and N, net N mineralization and net nitrification were all higher in birch soil than in spruce soil. The rate of C mineralization (CO2 production) was, however, the same regardless of tree species. Water-extracts were analyzed for the concentrations of dissolved organic C (DOC) and N (DON) and characterized according to molecular size distribution by ultrafiltration and according to chemical composition using a resin fractionation technique. The concentration of DON, in particular, was higher in birch soil than in spruce soil. The distribution of DOC and DON into different fractions based on molecular size or chemical composition was rather similar in both soils. The concentration of total phenolics, expressed as tannic acid equivalents, was higher in the humus layer under birch than in the humus layer under spruce, because the birch humus layer contained significantly more low-molecular weight (about <0.5 kD) phenolics than the spruce humus layer did. The concentration of proanthocyanidins (condensed tannins) was higher in spruce soil than in birch soil. The concentrations of the five most abundant phenolic acids showed that ferulic and p-coumaric acids were more abundant in spruce soil. Birch soil tended to contain slightly more nonvolatile sesquiterpenes than the spruce soil. The concentration of diterpenes was similar in both soils; but birch soil contained significantly more triterpenes, mainly sterols, than spruce soil did.  相似文献   

12.
The aim of this study was to examine the occurrence and concentrations of volatile organic compounds (VOCs), in particular, volatile monoterpenes, in soil atmosphere under silver birch (Betula pendula L.) and two conifers, Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), and to determine the effects of the most relevant monoterpenes on transformations of soil N. The study site was a 70-year-old tree species experiment in Kivalo, northern Finland. VOCs were collected using two methods, passive air samplers and a chamber method. In soil atmosphere under spruce and especially under pine, the concentrations of monoterpenes were high, α- and β-pinene, Δ-3-carene and myrcene being the most abundant compounds, whereas concentrations of monoterpenes in soil atmosphere under birch were negligible. Samples of humus layer from the birch stand incubated in vitro and exposed to vapors from monoterpenes typical of coniferous forest soil showed decreased rates of net N mineralization but simultaneously increased rates of C mineralization. The response of soil microbial biomass C and N to different monoterpenes varied, but some monoterpenes considerably decreased soil microbial biomass. Altogether these results suggest that these compounds have negative effects on soil N transformations, but may serve as carbon and energy source for part of soil microbes.  相似文献   

13.
有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮   总被引:27,自引:6,他引:27  
土壤微生物量碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的组分,是反应土壤被干扰程度的重要灵敏性指标,通过设置相同有机碳施用量下不同有机物料处理的田间试验,研究了有机物料添加下土壤微生物量碳(soil microbial biomass carbon,MBC)、氮(soil microbial biomass nitrogen,MBN)和可溶性有机碳(dissolved organic carbon,DOC)、氮(dissolved organic nitrogen,DON)的变化特征及相互关系。结果表明化肥和生物碳、玉米秸秆、鲜牛粪或松针配施下土壤微生物量碳、氮和可溶性有机碳、氮显著大于不施肥处理(no fertilization,CK)和单施化肥处理,分别比不施肥处理和单施化肥平均高23.52%和12.66%(MBC)、42.68%和24.02%(MBN)、14.70%和9.99%(DOC)、22.32%和21.79%(DON)。化肥和有机物料配施处理中,化肥+鲜牛粪处理的微生物量碳、氮和可溶性有机碳、氮最高,比CK高26.20%(MBC)、49.54%(MBN)、19.29%(DOC)和32.81%(DON),其次是化肥+生物碳或化肥+玉米秸秆处理,而化肥+松针处理最低。土壤可溶性有机碳质量分数(308.87 mg/kg)小于微生物量碳(474.71 mg/kg),而可溶性有机氮质量分数(53.07 mg/kg)要大于微生物量氮(34.79 mg/kg)。与不施肥处理相比,化肥和有机物料配施显著降低MBC/MBN和DOC/DON,降低率分别为24.57%和7.71%。MBC和DOC、MBN和DON随着土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)的增加呈显著线性增加。MBC、MBN、DOC、DON、DOC+MBC和DON+MBN之间呈极显著正相关(P<0.01)。从相关程度看,DOC+MBC和DON+MBN较MBC、DOC、MBN、DON更能反映土壤中活性有机碳和氮库的变化,成为评价土壤肥力及质量的更有效指标。结果可为提高洱海流域农田土壤肥力,增强土壤固氮效果,减少土壤中氮素流失,保护洱海水质安全提供科学依据。  相似文献   

14.
Afforestation is recognized as an important driving force for soil organic C(SOC) dynamics and soil element cycling.To evaluate the relationships between soil C:N:P stoichiometry and SOC fractions,soil C:N:P stoichiometry distributions at 0–200 cm soil depths were analyzed and the contents of SOC fractions were evaluated in 9 typical land-use systems on the Loess Plateau of China.The contents of light fraction organic C,particulate organic C(53,53–2 000,and2 000 μm),labile organic C,microbial biomass C,and dissolved organic C decreased with increasing soil depth and were higher in afforested soil than in slope cropland soil.Compared with the slope cropland,different vegetation types influenced soil C:N,C:P,and N:P ratios,especially when C:P and N:P ratios were significantly higher(P0.05).Moreover,SOC fractions at the 0–10 and 10–40 cm depths were particularly affected by soil C:P ratio,whereas those at the 40–100 and 100–200 cm soil depths were significantly affected(P0.05) by soil N:P ratio.These results indicate that changes in SOC fractions are largely driven by soil C:P and N:P ratios at different soil depths after afforestation.  相似文献   

15.
基于不同林分类型下土壤碳氮储量垂直分布   总被引:4,自引:1,他引:3  
以辽东大伙房水库周边防护林典型林分针阔混交林(落叶松-油松-刺槐混交林)、油松林、落叶松林、刺槐林为研究对象,对其土壤养分含量进行测定,研究了不同林分土壤剖面上有机碳、全氮、有机碳储量的分布规律。结果表明:随着土层深度的增大,4种林分的土壤有机碳、全氮含量均逐渐降低;4种林分土壤剖面有机碳含量大小顺序为落叶松林(24.16g/kg)刺槐林(23.07g/kg)针阔混交林(16.06g/kg)油松林(15.76g/kg);全氮含量大小顺序为刺槐林(5.23g/kg)落叶松林(4.57g/kg)油松林(3.45g/kg)针阔混交林(2.42g/kg);C/N平均值大小顺序为落叶松林(7.36)针阔混交林(6.51)油松林(4.67)刺槐林(4.57);4个林分0-40cm土层的有机碳储量大小为落叶松林(112.94t/hm~2)刺槐林(107.40t/hm~2)针阔混交林(105.42t/hm~2)油松林(89.89t/hm~2);4种林分土壤pH无明显差别,各土层土壤pH随土层深度增加而增大;4种林分土壤容重由高到低顺序依次为针阔混交林(1.73g/cm~3)油松(1.65g/cm~3)落叶松(1.64g/cm~3)刺槐(1.56g/cm~3)。4个林分土壤有机碳含量与土壤全氮含量互相间均存在极显著正相关关系,土壤有机碳、全氮含量与C/N之间则没有明显相关关系;在针阔混交林中,土壤容重、土壤全氮含量和土壤pH与土壤有机碳之间存在线性数量关系,而其他纯林则没有这种关系。  相似文献   

16.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

17.
中亚热带4种森林类型土壤有机碳氮贮量及分布特征   总被引:10,自引:0,他引:10  
对湖南省长沙县大山冲省级森林公园立地条件基本一致的4种森林土壤有机碳(SOC)、全氮(N)含量、贮量及土层分布进行研究。结果表明:不同森林、同一森林的不同土层SOC、N含量和贮量均存在显著差异(p<0.05)。各土层SOC含量的变化范围分别为杉木林8.66~22.96g/kg,马尾松林13.33~37.50g/kg,南酸枣林13.78~43.58g/kg,青冈林13.33~36.87g/kg。土壤全N含量的变化范围分别为杉木林1.37~2.29g/kg,马尾松林1.29~2.65g/kg,南酸枣林1.69~3.96g/kg,青冈林1.23~3.26g/kg。4种林地SOC和N含量均随土层深度增加而逐渐下降。4种森林土壤SOC贮量差异不显著(p=0.177 6),N贮量差异极显著(p=0.000 7)。4种森林土壤SOC含量与N含量存在极显著相关性(p<0.01),除青冈林外,其余3种森林土壤SOC与C/N存在极显著相关关系(p<0.01)。马尾松土壤N与C/N之间呈极显著相关(p<0.01),南酸枣林的存在显著关系(p<0.05),青冈林和杉木林的相关性不显著。  相似文献   

18.
外加碳、氮对黄绵土有机质矿化与激发效应的影响   总被引:5,自引:0,他引:5  
应用14C标记的葡萄糖和麦秸,15N标记的(NH4)2SO4和Ca(NO3)2对生黄绵土、菜园黄绵土土壤有机质的矿化与激发效应进行了研究。结果表明,外加有机质,特别是外加易分解的葡萄糖,和外加氮源,特别是外加(NH4)2SO4,对两种黄绵土土壤的有机质矿化与激发效应都有明显的促进作用,土壤有机质的矿化是高肥力菜园黄绵土高于低肥力生黄绵土,而有机质矿化的激发效应却是低肥力生黄绵土高于高肥力菜园黄绵土。外加有机质与外加N同时施入土壤时,外加N对外加有机质的矿化与激发效应同样有明显的促进作用,并发现外加有机质与外加N在促进土壤有机质矿化与激发效应过程中表现出正交互作用。激发效应对土壤肥力的更新和培养有积极作用。  相似文献   

19.
 The aims of this study were to characterize dissolved soil organic N (DON) and C (DOC) in a coniferous stand and an adjacent clear-cut, and to evaluate the importance of DON in N leaching. The study was carried out in a Norway spruce stand and a clear-cutting treatment in the same forest stand. Concentrations of DON in soil solution were monitored for 5 years after clear-cutting with gravity lysimeters. In the Norway spruce stand DON comprised 62–83% of the total N in soil solution over the 5-year period. The concentrations of DON in the clear-cut were higher than in the forest stand, but the proportion of total N was lower. To characterize dissolved organic matter, soil samples were aerobically incubated for 6 weeks in the laboratory, and the quantity, molecular size distribution and chemical nature of both DON and DOC were determined from water extracts made before and after the incubation. In the soil samples from the Norway spruce stand, C-rich compounds with a high C/N ratio and large molecular size were formed. In contrast, after the incubation the major carriers of DON in soil samples from the clear-cut were N-rich organic compounds with a low C/N ratio and a small molecular size. The distribution of different chemical fractions of DOC in soil did not differ much whether recovered from the Norway spruce stand or the clear-cut. It was (from highest to lowest concentration): hydrophobic acids>hydrophilic acids>phenols>hydrophilic neutrals. A major part of DON was also carried by these fractions. During incubation the concentration of N-containing hydrophilic acids increased, especially in the soil from the clearcut. In soil samples from the Norway spruce stand, the rate of net N mineralization was low and no NO3 was formed, whilst the rate of net N mineralization was high and net nitrification was intensive in soil from the clear-cut. Received: 12 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号