首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
宋扬  周维博  李慧 《节水灌溉》2016,(9):124-128
基于泾惠渠灌区30a的气象资料,采用CROPWAT模型分析了泾惠渠灌区作物蒸发蒸腾量及灌溉需水量的变化,并运用SPSS软件,计算了灌区作物需水量与气象因子的相关系数。分析表明:玉米蒸发蒸腾量平均值为524.33mm,蒸发蒸腾量高峰期出现在7月中旬到8月下旬;棉花蒸发蒸腾量平均值为869.13mm,峰值出现时间与玉米一致;灌区玉米在抽雄-开花期灌溉需水量为130.12mm,籽粒形成-乳熟期灌溉需水量为359.32mm,9月下旬以后,灌溉需水量下降;棉花生育期需水量空间分布比较均匀,平均值为869 mm,整个灌区灌溉需水量平均值为453.6mm,棉花苗床期灌溉需水量开始增加,花铃期达到最大值,吐絮期灌溉需水量减小;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,与日照时数相关性较大。  相似文献   

2.
通过CROPWAT模型分析泾惠渠灌区冬小麦和玉米蒸发蒸腾量及灌溉需水量的变化,同时运用SPSS软件,计算灌区作物需水量与气象因子的相关系数,分析结果表明:冬小麦整个生育期蒸发蒸腾量平均值为634.04 mm,蒸发蒸腾量最高峰出现在4月中旬—5月中旬,灌区各分区蒸发蒸腾量趋势基本一致;玉米蒸发蒸腾量平均值为525.22 mm,蒸发蒸腾量高峰期出现在7月中旬—8月下旬,其中三原最大为535.97 mm,富平最小为514.68 mm;灌区冬小麦在播种—越冬期灌溉需水量最低,返青—拔节期需水量增加;灌区玉米在拔节—抽雄期需水量增加,灌溉平均需水量为133.04 mm;7月—8月为籽粒形成乳熟期,需水量为359.15 mm,至9月下旬,玉米灌溉需水量下降;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,气温、日照时数和相对湿度是影响作物需水量的主要因素.  相似文献   

3.
通过CROPWAT模型分析泾惠渠灌区冬小麦和玉米蒸发蒸腾量及灌溉需水量的变化,同时运用SPSS软件,计算灌区作物需水量与气象因子的相关系数,分析结果表明:冬小麦整个生育期蒸发蒸腾量平均值为634.04 mm,蒸发蒸腾量最高峰出现在4月中旬—5月中旬,灌区各分区蒸发蒸腾量趋势基本一致;玉米蒸发蒸腾量平均值为525.22 mm,蒸发蒸腾量高峰期出现在7月中旬—8月下旬,其中三原最大为535.97 mm,富平最小为514.68 mm;灌区冬小麦在播种—越冬期灌溉需水量最低,返青—拔节期需水量增加;灌区玉米在拔节—抽雄期需水量增加,灌溉平均需水量为133.04 mm;7月—8月为籽粒形成乳熟期,需水量为359.15 mm,至9月下旬,玉米灌溉需水量下降;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,气温、日照时数和相对湿度是影响作物需水量的主要因素.  相似文献   

4.
吴灏  王杰  黄英  王树鹏 《节水灌溉》2015,(2):50-53,57
基于CROPWAT模型,利用昆明地区气象数据、玉米生育期数据和土壤数据,模拟研究1980-2012年玉米生育期需水量和灌溉用水量年际变化特征及气象要素对其的影响。结果表明:1980-1999年玉米需水量和灌溉用水量呈现微弱下降的趋势(p=0.22,p=0.06);1999-2012年玉米需水量和灌溉用水量呈上升趋势为(p0.01),多年平均玉米需水量和灌溉用水量分别为354.5和64.0mm。玉米需水量与温度、风速和日照时数呈正相关而与降水量和相对湿度呈负相关;灌溉用水量与温度、风速和日照时数呈正相关而与降水量呈负相关。逐步回归分析表明气温、风速和日照时数的组合可以预测年尺度上玉米需水量的变化趋势;气温、风速和降水的组合可以预测年尺度上灌溉用水量的变化趋势。  相似文献   

5.
河南省主粮作物需水量变化趋势与成因分析   总被引:5,自引:0,他引:5  
河南省是我国粮食主产区,研究河南省主粮作物的灌溉需水变化规律可为水分高效管理和节水增粮提供实践参考。基于河南省18个气象站点1958—2013年逐日气象观测资料,根据FAO推荐的Penman-Monteith公式计算参考作物蒸发蒸腾量及冬小麦和夏玉米各生育期需水量,利用时间序列分析法和Arc GIS普通克里金插值法研究需水量时空变化特征,采用通径分析法研究作物需水量的变化成因。结果表明:河南省近56 a来年均参考作物蒸发蒸腾量为807.0 mm/a,日均蒸发蒸腾量为2.2 mm/d,呈波动减少趋势,其中西北和东南地区参考作物蒸发蒸腾量最大,豫西地区的参考作物蒸发蒸腾量跨度较大。冬小麦和夏玉米的净灌溉需水量分别为350~525 mm和243~368 mm,灌溉需求指数随经度和纬度的增加而增大,冬小麦生长对灌溉的依赖程度高于夏玉米。影响河南省主粮作物需水量的气象因子主要为气温、水汽压、日照、最高气温和风速。  相似文献   

6.
基于灌溉需求指数的滇中地区烤烟需水量时空变化分析   总被引:2,自引:0,他引:2  
基于云南省滇中地区4个国家气象站点逐日气象资料和烤烟不同生育期作物系数,根据FAO 56推荐的Penman-Monteith公式和单作物系数法,计算了滇中地区近58 a(1956—2013年)参考作物蒸发蒸腾量、烤烟净灌溉需水量及净灌溉需求指数,分析了滇中地区烤烟生育期净灌溉需水变异特征;利用GIS普通克里金法,对滇中地区烤烟需水量、净灌溉需水量和净灌溉需求指数进行空间分布分析;采用通径分析法研究灌溉需求指数变化成因。研究结果表明,滇中地区烤烟净灌溉需求指数随生育期变化逐渐减少,即伸根期、旺长期、成熟期;其中,净灌溉需求指数大于零的年数占54%,表明烤烟区在平水年条件下需人工灌溉补给;影响净灌溉需水量最主要的气象因子为降水量。  相似文献   

7.
利用河南省17个站点1961—2012年的气象资料,分析了降雨和潜在蒸散对冬小麦和夏玉米灌溉需水量的影响效应。结果表明,河南省冬小麦多年平均灌溉需水量为59.8~334.3 mm,夏玉米多年平均灌溉需水量为14.5~131.2mm,自南向北逐渐增大;各站点冬小麦和夏玉米灌溉需水量普遍呈下降趋势,其主要原因是生育期潜在蒸散减少和降雨量增加。降雨是影响作物灌溉需水量的首要因素,降雨在雨量和时间分布上均对灌溉需水量产生显著影响;而潜在蒸散的影响小于降雨,但不容忽视。在降雨和潜在蒸散共同影响下,冬小麦和夏玉米灌溉需水量在年际间呈现出更大的波动趋势。  相似文献   

8.
基于CROPWAT模型的昆明市水稻需水量及灌溉用水量研究   总被引:2,自引:1,他引:1  
利用昆明市日气象数据、水稻生育期数据和土壤数据,通过CROPWAT模型模拟研究1980—2012年水稻生育期内需水量和灌溉用水量年际变化特征及气象要素对其的影响。结果表明,1980—1999年,水稻需水量和灌溉用水量呈微弱下降趋势(p=0.08,p=0.8);1999―2012年,水稻需水量和灌溉用水量呈上升趋势(p0.01);近33a平均水稻需水量和灌溉用水量分别为603.6mm和638.8mm。作物需水量与温度、风速和日照时数正相关,与相对湿度负相关;灌溉用水量与降水量负相关,与日照时数正相关。气温、风速、湿度和日照时数的组合可以预测年尺度上作物需水量的变化趋势;降水和日照时数的组合可以预测年尺度上灌溉用水量的变化趋势。  相似文献   

9.
为研究黑龙江省中部地区玉米生育期内需水量、水分盈亏指数(CWSDI)、干旱等级变化和不同水文年灌溉制度,基于哈尔滨市1955-2014年气象数据、土壤数据和玉米作物参数,利用CROPWAT模型计算玉米生育期内需水量、有效降雨量和灌溉需水量,计算水分盈亏指数并划分干旱等级,采用Mann-Kendall趋势检验分析以上因素变化趋势,针对不同典型水文年制定灌溉制度。结果表明,该地区1955-2014年生育期内玉米需水量以9.41 mm/10 a的速率下降;丰水年、平水年,枯水年和特枯水年需水量分别为407.80、423.80、452.00和485.60 mm;多年平均CWSDI没有明显变化,生育期内每月CWSDI变化较为明显,干旱等级分析表明在玉米生长初期和生长后期较干旱;不同水文年干旱情况不同,除丰水年外,有效降雨量均难以满足玉米生育期内需水量,不同典型水文年应建立不同的灌溉制度。特枯水年、枯水年和平水年的灌水净定额分别为151.30、117.10和39.70 mm。  相似文献   

10.
为探明河南省冬小麦不同生育阶段缺水量情况,将其冬小麦生育阶段划分为生育前期(播种—三叶期)、分蘖—越冬期、返青—成熟期,根据河南省20个基准气象站点1951—2013年旬值气象资料,利用CROPWAT模型计算了冬小麦不同生育阶段有效降水量,用P-M公式计算了冬小麦需水量,进而得到了冬小麦缺水量;利用Arc GIS10.0绘制了有效降水量、需水量、缺水量空间分布图,并分析了其空间变异性;利用Mann-Kendall非参数秩次相关检验法分析了冬小麦各生育阶段降水量时间序列变化趋势。结果表明,(1)不同生育阶段有效降水量整体呈由东南向西北递减趋势,部分地区略高于周边地区;不同生育阶段冬小麦需水量整体呈由西北向东南递减趋势,分蘖—越冬期降水量分布无明显规律;不同生育阶段缺水量整体呈由西北向东南递减趋势,部分地区略低于周边地区;(2)冬小麦全生育期、生育前期、分蘖—越冬期、返青—成熟期多年平均有效降水量分别为201.80、25.04、45.91、130.85 mm,多年平均需水量分别为432.52、39.23、104.22、289.07 mm,多年分别平均缺水量分别为230.72、14.19、58.31、158.22 mm;(3)Mann-Kendall检验结果表明,冬小麦全生育期降水量随时间整体呈降低趋势;而生育前期降水量则整体呈升高趋势;分蘖—越冬期降水量整体呈降低趋势;返青—成熟期降水量整体呈降低趋势,期间各生育阶段降水量亦随UF曲线变化而变化。故河南省冬小麦返青—成熟期缺水量较多,西北部安阳、新乡等地缺水量严重,南部驻马店、信阳等地水分充足;除生育前期外,各生育期降水量随时间整体呈下降趋势。  相似文献   

11.
基于Budyko假设,采用傅抱璞模型对1980—2010年岷江流域实际蒸散进行模拟,将Mann-Kendall检验法、Pettitt突变检测法、反距离权重插值法用于分析实际蒸散的时空变化特征,以灵敏度及Pearson相关系数为指标分析了岷江流域实际蒸散的主要影响因子。结果表明,基于Budyko假设的傅抱璞模型对岷江流域实际蒸散的模拟效果较好。岷江流域多年平均实际蒸散在空间上呈自东南向西北逐渐减少的分布特征;在研究时段内,流域的多年平均实际蒸散呈显著下降趋势(通过99%置信度检验),并于1991年发生显著性突变(通过90%置信度检验)。岷江流域实际蒸散的变化是多种因素共同影响的结果,其中降雨是主要的气候影响因素。  相似文献   

12.
北部湾经济区径流、降雨分配特点及其变化分析   总被引:1,自引:0,他引:1  
基于1970-2008年南流江常乐水文站、钦江陆屋水文站月均实测径流、降雨资料,采用年内分配不均匀系数、变差系数、绝对变化比率、年际不均匀系数、距平百分率等指标分析北部湾经济区径流、降雨的年内分配、年际变化特点,采用线性趋势线法、双累积曲线法分析径流、降雨的变化趋势.结果表明,南流江、钦江实测径流量与降雨量年内分配呈单峰型,径流、降雨年内分配不均系数呈上升趋势,径流的多年变化大于降雨,径流量的年际变化均匀度较差.降雨旱涝等级变化波动小,而径流丰枯等级变化波动频繁.实测径流系数呈下降趋势,降雨径流关系存在减小的规律.  相似文献   

13.
本研究以地面样方调查结合2000-2013年MODIS—NDVI数据,建立样方生物量和遥感数据的关系模型,反演锡林河流域产草量的时空分布。研究结果表明:建立的植被指数模型相关系数达到0.6以上,模型精度为80%,线性模型作为遥感估测应用可行;锡林河流域年平均产草量鲜重为1001kg/hm2,空间分布呈现东南高-西北低的空间分布规律;2000-2013年,产草量年际间变化大,变异系数为51.6%,产草量总体呈波动上升趋势。锡林河流域草原产草量的时空变化与主要气候因素(气温、降水)关系密切,特别是受降水量的时空变化影响更为显著。本研究结论可以为有效地保护和利用草地资源、合理配置载畜量和恢复草原生态环境提供有效的技术支持和保障。  相似文献   

14.
蔡娅娅  谭伟 《农业工程》2019,9(3):30-38
引起植被覆盖变化的气候因子占据主导地位。研究探讨了贵州省近15年来植被指数长时间序列的变化特征、基于标准化降水蒸散指数(SPEI)的干旱时空变化特征及两者之间的相关关系,可为区域植被覆盖保护与恢复提供一定的理论依据。选择2001—2015年MODIS NDVI(1 km)及19个气象站点气温、降水数据,采用一元线性回归的方法探究贵州省近15年来植被覆盖NDVI在年、月尺度下时空演变特征,及其与气温、降水和标准化降水蒸散指数(SPEI)的相关关系。结果表明:贵州西北至东南地区多年平均NDVI呈低中高分布格局,p<0.01上的生长速率为0.051/(10 a),呈显著增加的趋势;多年平均气温、降水量的空间分布从西北到南方向呈现出低-中-高的特征,其易发生干旱的地区主要集中在贵州的西北地区,干旱在区域内的空间差异较大,黔西北、黔西南地区为易旱集中区;年均NDVI与年均SPEI、年均气温和年均降雨量的相关系数均为正值,表示NDVI与其响应因子具有一定的相关性,但与SPEI的相关性不显著,与气温和降水的相关性在p<0.01上呈显著性的正相关,且相关系数均大于0.5以上,相关程度较高;1—6月大致(p<0.01显著)呈现不显著的负相关,7—9月和11月表现为除9月(p<0.01显著)外均呈现不显著的正相关。   相似文献   

15.
蒸散发是黑河流域中游地区农业绿洲水分消耗的主要途径,准确估算该地区的实际蒸散发量并对其变化规律进行分析对于科学指导当地农业灌溉、优化水资源配置等具有重要意义.基于Budyko理论及其改进的傅抱璞经验模型估算黑河流域中游地区2006-2015年的实际蒸散发量,利用Mann-Kendall方法分析实际蒸散发序列的趋势特征和...  相似文献   

16.
为提高旱区作物蒸发蒸腾量估算精度,以石羊河流域春玉米为研究对象,分析灌水量对FAO-56估算作物蒸发蒸腾量精度的影响,并对估算误差进行讨论,提出使用部分根区含水量平均值用于土壤水分胁迫系数计算.结果表明:FAO-56对不同灌水处理下作物蒸发蒸腾量的估算精度存在较大差异,可较精确地估算低灌水处理下作物蒸发蒸腾量;随着灌水量增大,其估算精度有所降低,对高灌水处理下作物蒸发蒸腾量的估算误差达-14.13%;根区上部土层含水量与土壤水分胁迫状况关系紧密,以缓变层及以上土层含水量平均值代替整个根区含水量平均值用于土壤水分胁迫系数计算,可有效改善高灌水处理下旱区作物蒸发蒸腾量计算精度,亦可较为精确地估算低灌水处理下作物蒸发蒸腾量.  相似文献   

17.
为研究江西省锦江流域的多年降水特征,以流域的9个雨量站1957-2013年逐日降水资料为基础,对锦江流域不同地区的降水序列分别采用线性趋势、5 a滑动平均、Mann-Kendall趋势检验法,Pettitt突变检验法,累积距平,Morlet小波分析等分析方法进行研究。结果表明:①流域面上多年平均年降水量为1617.5 mm,空间分布为从上游到下游递减的特征,且每10 a以9.59 mm的趋势上升,其上升趋势主要受到中、下游的影响;20世纪90年代是锦江流域降水较多的年代,年降水量在统计年限内呈现出“偏少-偏多-偏少”的变化趋势。②季节降水量的空间分布与年降水量相同,各区域的降水量主要集中在春季,其次是夏季、冬季,秋季降水量最小;夏、秋、冬3个季节的降水量呈现上升趋势,春季降水呈现下降趋势,其中上游流域的春季、中游流域的春、夏两季的降水量的趋势变化均具有显著性,逐月降水量主要集中在4-6月,占年降水量的45.72%左右,6月降水量最大,而9-12月的降水量所占比例较小,各地区各月份所占降水百分比与流域面上相差不大。③在Pettitt检验中,各区域的春季、夏季、秋季的突变较为一致,分别为春季(1984年)、夏季(1991年)、秋季(1980年),其中中游流域的夏季突变还通过0.1显著性水平。年降水量及冬季降水量在不同区域的突变值较为分散;而从累积距平分析,年降水量其各区域较为明显的同一突变点为1991年,冬季降水为1986年。④锦江流域不同地区的年降水量主周期较为明显,均为31 a;次周期在13 a左右,但不明显。  相似文献   

18.
土地利用方式变化对水循环过程响应机制研究   总被引:2,自引:0,他引:2  
以挠力河流域为研究区,利用1990年和2013年土地利用类型,结合基于格子玻尔兹曼方法(LBM)的TOPMODEL模型定量评价了土地利用方式变化对水循环时空变化过程的影响。结果表明:基于LBM法的TOPMODEL模型可以很好模拟挠力河流域降雨径流水循环过程,对研究区具有较高的适用性;研究区林地、草地和建设用地面积变化不大,对于土地结构变化贡献比较小,而未利用地和旱田部分转为水田对土地结构变化贡献大;由于种植水田,导致5月到10月间的流域总蒸散发量增加、根系区缺水量减少、非饱和带缺水量减少、地表水量减少、地下水量增加;蒸散发增幅达8.9%,根系区缺水量降幅达10.5%,地表水量减少达43%;水田对水文情势影响的差异主要体现在水稻生育期的差异上,分蘖期对蒸散发量、根系区缺水量和非饱和带缺水量影响较大;水田灌溉对水循环过程的影响按变化幅度从大到小的顺序为非饱和带缺水量、根系缺水量、蒸散发量、入根系区水量、出根系区水量和地下径流量,其中入根系区水量差值和出根系区水量差值接近。  相似文献   

19.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

20.
Recent droughts in the humid southeastern United States have focused attention on the need for and use of supplemental irrigation. Total annual rainfall amounts are sufficient for most crops in the region. However, erratic distribution of rainfall and the low water-holding capacities of most soils in the region cause frequent drought stresses in many crops. An on-farm study was conducted in southeastern Alabama to evaluate the effects of farmers' irrigation scheduling decisions on soil moisture variations in peanut fields irrigated with center-pivot irrigation systems. The study showed that the way irrigation was practiced in this high rainfall area often caused soil moisture deficit (SMD) level higher than the desired SMD limit during over 20% of the 140-day growing season. This is partially due to farmers' tendency to delay irrigation in anticipation of rainfall which may or may not occur, as rainfall during the growing season is often erratic and local. In contrast SMD in non-irrigated fields was higher than the SMD limit for half of the growing season.Abbreviations SMD soil moisture deficit - ET evapotranspiration - Reff effective rainfall - WHC water holding capacity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号