首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In December 2005, equine influenza virus infection was confirmed as the cause of clinical respiratory disease in vaccinated horses in Apulia, Italy. The infected horses had been vaccinated with a vaccine that contained strains representatives from both the European (A/eq/Suffolk/89) and American (A/eq/Newmarket/1/93) H3N8 influenza virus lineages, and the H7N7 strain A/eq/Praga/56. Genetic characterization of the hemagglutinin (HA) and neuraminidase (NA) genes of the virus from the outbreak, indicated that the isolate (A/eq/Bari/2005) was an H3N8 strain closely related to recent representatives (Kentucky/5/02-like) of the American sub-lineage Florida, that was introduced in Italy through movement of infected horses from a large outbreak described in 2003 in United Kingdom. Strain A/eq/Bari/2005 displayed 9 amino acid changes in the HA1 subunit protein with respect to the reference American strain A/eq/Newmarket/1/93 contained in the vaccine. Four changes were localized in the antigenic regions C-D and likely accounted for the vaccine failure.  相似文献   

2.
In August 2007, an outbreak of equine influenza occurred among vaccinated racehorses with Japanese commercial equine influenza vaccine at Kanazawa Racecourse in Ishikawa prefecture in Japan. Apparent symptoms were pyrexia (38.2-41.0 degrees C) and nasal discharge with or without coughing, although approximately half of the infected horses were subclinical. All horses had been shot with a vaccine that contained two inactivated H3N8 influenza virus strains [A/equine/La Plata/93 (La Plata/93) of American lineage and A/equine/Avesta/93 (Avesta/93) of European lineage] and an H7N7 strain (A/equine/Newmarket/1/77). Influenza virus, A/equine/Kanazawa/1/2007 (H3N8) (Kanazawa/07), was isolated from one of the nasal swab samples of diseased horses. Phylogenetic analysis indicated that Kanazawa/07 was classified into the American sublineage Florida. In addition, four amino acid substitutions were found in the antigenic sites B and E in the HA1 subunit protein of Kanazawa/07 in comparison with that of La Plata/93. Hemagglutination-inhibition (HI) test using 16 serum samples from recovering horses revealed that 1.4- to 8-fold difference in titers between Kanazawa/07 and either of the vaccine strains. The present findings suggest that Japanese commercial inactivated vaccine contributed to reducing the morbidity rate and manifestation of the clinical signs of horses infected with Kanazawa/07 that may be antigenically different from the vaccine strains.  相似文献   

3.
Antigenic variation among equine H 3 N 8 influenza virus hemagglutinins   总被引:1,自引:0,他引:1  
To provide information on the antigenic variation of the hemagglutinins (HA) among equine H 3 influenza viruses, 26 strains isolated from horses in different areas in the world during the 1963-1996 period were analyzed using a panel of monoclonal antibodies recognizing at least 7 distinct epitopes on the H 3 HA molecule of the prototype strain A/equine/Miami/1/63 (H 3 N 8). The reactivity patterns of the virus strains with the panel indicate that antigenic drift of the HA has occurred with the year of isolation, but less extensively than that of human H 3 N 2 influenza virus isolates, and different antigenic variants co-circulate. To assess immunogenicity of the viruses, antisera from mice vaccinated with each of the 7 representative inactivated viruses were examined by neutralization and hemagglutination-inhibition tests. These results emphasize the importance of monitoring the antigenic drift in equine influenza virus strains and to introduce current isolates into vaccine. On the basis of the present results, equine influenza vaccine strain A/equine/Tokyo/2/71 (H 3 N 8) was replaced with A/equine/La Plata/1/93 (H 3 N 8) in 1996 in Japan. The present results of the antigenic analysis of the 26 strains supported the results of a phylogenetic analysis, that viruses belonging to each of the Eurasian and American equine influenza lineages have independently evolved. However, the current vaccine in Japan consists of two American H 3 N 8 strains; A/equine/Kentucky/1/81 and A/equine/La Plata/1/93. It is also therefore recommended that a representative Eurasian strain should be included as a replacement of A/equine/Kentucky/1/81.  相似文献   

4.
In the horse, conventional inactivated or subunit vaccines against equine influenza virus (EIV) induce a short-lived antibody-based immunity to infection. Alternative strategies of vaccination have been subsequently developed to mimic the long-term protection induced by natural infection with the virus. One of these approaches is the use of immune-stimulating complex (ISCOM)-based vaccines. ISCOM vaccines induce a strong antibody response and protection against influenza in horses, humans, and a mouse model. Cell-mediated immunity (CMI) has been demonstrated in humans and mice after ISCOM vaccination, but rarely investigated in the horse. The aim of this study was to evaluate EIV-specific immune responses after intra-muscular vaccination with an ISCOM-EIV vaccine (EQUIP F) containing both equine influenza H7N7 (A/eq/Newmarket/77) and H3N8 (A/eq/Borl?nge/91 and A/eq/Kentucky/98) strains. The antibody response was measured by single radial haemolysis (SRH) assay using different H3N8 EIV strains. Stimulation of type-1 immunity was evaluated with a recently developed method that measures EIV-specific IFNgamma synthesis by peripheral blood lymphocytes (PBL). The protective efficacy of this ISCOM-based vaccine against challenge infection with a recent equine influenza (H3N8; A/eq/South Africa/4/03) strain was also evaluated. Vaccinated ponies developed elevated levels of EIV-specific SRH antibody and increased percentage of EIV-specific IFNgamma(+) PBL, whereas these responses were only detected after challenge infection in unvaccinated control ponies. Vaccinates showed minimal signs of disease and did not shed virus when challenged shortly after the second immunisation. In conclusion, evidence of type-1 immunity induced by an ISCOM-based vaccine is described for the first time in horses.  相似文献   

5.
2008年从湖北省分离到1株H3N8亚型马流感病毒A/equine/Hubei/6/08。以2002年美国KENTUKY株为模板设计HA基因测序引物,进行RT-PCR,然后测定该分离株的HA基因核苷酸序列。经NCBI上Blast同源性比较发现,与A/equine/Newmarket/5/2003(H3N8)同源性较高为98.7%。HA蛋白遗传进化分析表明该毒株隶属于H3N8亚型马流感病毒中的美洲系福罗里达亚系。该株与OIE现在推荐的疫苗候选株A/equine/Kentuck-y/5/2002(H3N8)HA1蛋白氨基酸序列比对发现有3处氨基酸替换位点;与OIE以往推荐的疫苗候选株A/e-quine/Kentucky/1/1994(H3N8)比对发现有11处氨基酸替换位点。研究结果表明该分离株可作为中国研制马流感疫苗的候选株。  相似文献   

6.
REASONS FOR PERFORMING STUDY: Surveillance of equine influenza viruses has suggested that strains included in currently licensed vaccines are a poor match for those predominantly circulating in the field. OBJECTIVE: To assess the ability of Duvaxyn IE-T Plus to provide cross protection against the newly evolved South Africa/4/03 (H3N8) strain of equine influenza virus. METHODS: The vaccine efficacy was evaluated by challenge infection with influenza strain A/eq/South Africa/4/03 (H3N8) 2 weeks after a primary course of 2 vaccinations with Duvaxyn IE-T Plus given at a 4-week interval. The outcome of challenge in vaccinated ponies was compared with that in unvaccinated animals. RESULTS: At the time of challenge, all vaccinated ponies had high levels of antibody to Newmarket/1/93, Newmarket/2/93 and South Africa/4/03 strains measured by single radial haemolysis. After challenge infection, there were statistically significantly decreased clinical scores and virus shedding was significantly lower in the vaccinated ponies compared to unvaccinated controls. CONCLUSION: Two doses of Duvaxyn IE-T Plus provides good clinical and virological protection against challenge with a variant virus 2 weeks after the 2 doses of vaccine. POTENTIAL RELEVANCE: When variant strains of equine influenza virus first emerge, booster immunisations with currently available vaccines may limit infection provided sufficiently high antibody levels are achieved, suggesting that vaccination in the face of an outbreak may be beneficial.  相似文献   

7.
Reported here are the results of antigenic and genetic characterisation of equine influenza strains causing local outbreaks reported to the Equine Diagnostic Centre in Berlin, Germany. In 2000, equine influenza virus was detected in a nasal swab from a non-vaccinated horse using a rapid diagnostic kit, but was not successfully isolated. Partial direct sequencing of the haemagglutinin (HA1) gene, indicated that the virus was a European lineage H3N8 subtype strain representative of strains isolated in several European countries during 2000. In 2002, two equine influenza viruses were isolated from nasal swabs both taken from unvaccinated horses with acute respiratory symptoms housed at the same stables. Antigenic characterisation using a panel of ferret antisera suggested that these isolates also belonged to the European lineage of H3N8 viruses. Analysis of deduced HA1 amino acid sequences confirmed that the HA1 of both isolates were identical and belonged to the European lineage. However, from phylogenetic analysis, both strains appeared to be more closely related to viruses isolated between 1989 and 1995 than to viruses isolated more recently in Europe. These results suggested that viruses with fewer changes than those on the main evolutionary lineage may continue to circulate. The importance of expanding current equine influenza surveillance efforts is emphasised.  相似文献   

8.
The amino acid sequences of the HA(1) portion of the haemagglutinin of two equine A(H3N8) influenza viruses isolated in France in 1993 and 1998 were analysed to determine their evolutionary relationship with 51 other HA(1) amino acid sequences available in databanks. Our data show that the French strain isolated in 1993 belongs to a group of phylogenetically related viruses branched on the main trunk, illustrating the main lineage of evolution of the equine-2 H3 sequences before its split into two distinct lineages in the late 1980s. By contrast, the 1998 French isolate appears to belong to the more recent 'Eurasian' lineage. These data suggest that equine-2 strains antigenically related to old prototype viruses may cocirculate with the more recent 'Eurasian' and 'American' lineages. In conclusion, it may be necessary to include both strains representative of recent equine influenza variants and an older prototype strain in the current equine influenza vaccines.  相似文献   

9.
Influenza A viruses of the H3N8 subtype are a major cause of respiratory disease in horses. Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections contribute to the spread of the disease. Rapid diagnostic techniques are available for detection of virus antigen and can be used as an aid in control programmes. Improvements have been made to methods of standardising inactivated virus vaccines, and a direct relationship between vaccine potency measured by single radial diffusion and vaccine-induced antibody measured by single radial haemolysis has been demonstrated. Improved adjuvants and antigenic presentation systems extend the duration of immunity induced by inactivated virus vaccines, but high levels of antibody are required for protection against field infection. In addition to circulating antibody, infection with influenza virus stimulates mucosal and cellular immunity; unlike immunity to inactivated virus vaccines, infection-induced immunity is not dependent on the presence of circulating antibody to HA. Live attenuated or vectored equine influenza vaccines, which may better mimic the immunity generated by influenza infection than inactivated virus vaccines, are now available. Mathematical modelling based upon experimental and field data has been applied to examine issues relating to vaccine efficacy at the population level. A vaccine strain selection system has been implemented and a more global approach to the surveillance of equine influenza is being developed.  相似文献   

10.
11.
Between March and May 2003, equine influenza virus infection was confirmed as the cause of clinical respiratory disease among both vaccinated and unvaccinated horses of different breeds and types in at least 12 locations in the UK. In the largest outbreak, 21 thoroughbred training yards in Newmarket, with more than 1300 racehorses, were affected, with the horses showing signs of coughing and nasal discharge during a period of nine weeks. Many of the infected horses had been vaccinated during the previous three months with a vaccine that contained representatives from both the European (A/eq/Newmarket/2/93) and American (A/eq/Newmarket/1/93) H3NN8 influenza virus lineages. Antigenic and genetic characterisation of the viruses from Newmarket and elsewhere indicated that they were all closely related to representatives of a sublineage of American viruses, for example, Kentucky/5/02, the first time that this sublineage had been isolated in the uk. In the recently vaccinated racehorses in Newmarket the single radial haemolysis antibody levels in acute sera appeared to be adequate, and there did not appear to be significant antigenic differences between the infecting virus and A/eq/Newmarket/1/93, the representative of the American lineage virus present in the most widely used vaccine, to explain the vaccine failure. However, there was evidence for significantly fewer infections among two-year-old horses than older animals, despite their having similar high levels of antibody, consistent with a qualitative rather than a quantitative difference in the immunity conveyed by the vaccination.  相似文献   

12.
Reported here are the results of antigenic and genetic characterization of equine influenza strains causing local outbreaks reported in Morocco, respectively, in 1997 and 2004. The antigenic and genetic characterizations of the equine influenza virus H3N8 are reported here. The highest similarity between the HA1 nucleotide sequences of A/equine/Nador/1/1997 and those of A/equine/Rome/5/1991 and A/equine/Italy/1199/1992 demonstrate that A/equine/Nador/1/1997 belongs to the European lineage. On the other hand, A/equine/Essaouira/2/2004 and A/equine/Essaouira/3/2004 were classified in the predivergent lineage. The present work emphasizes the importance of a national influenza survey program, which requires a collaborative laboratory network to promote the collection and characterization (antigenic and genetic) of equine influenza viruses in real time.  相似文献   

13.
In 2010, the World Organisation for Animal Health recommended the inclusion of a Florida sublineage clade2 strain of equine influenza virus (H3N8), which is represented by A/equine/Richmond/1/07 (Richmond07), in equine influenza vaccines. Here, we evaluate the antigenic differences between Japanese vaccine strains and Richmond07 by performing hemagglutination inhibition (HI) assays. Ferret antiserum raised to A/equine/La Plata/93 (La Plata93), which is a Japanese vaccine strain, reacted with Richmond07 at a similar titer to La Plata93. Moreover, two hundred racehorses exhibited similar geometric mean HI antibody titers against La Plata93 and Richmond07 (73.1 and 80.8, respectively). Therefore, we can expect the antibody induced by the current Japanese vaccines to provide some protection against Richmond07-like viruses.  相似文献   

14.
Equine influenza type 2 infections occurred in the Newmarket areas in January 1976. The disease did not spread to any extent and while this may have been due to recent vaccination it was found that not all vaccinated horses were fully protected. The virus involved showed some antigenic drift from the prototype strain A/equine/Miami/1/63 (Heq 2 Neq 2).  相似文献   

15.
In horses, natural infection confers long lasting protective immunity characterised by mucosal IgA and humoral IgGa and IgGb responses. In order to investigate the potential of locally administered vaccine to induce a protective IgA response, responses generated by vaccination with an immunostimulating complex (ISCOM)-based vaccine for equine influenza (EQUIP F) containing A/eq/Newmarket/77 (H7N7), A/eq/Borl?nge/91 (H3N8) and A/eq/Kentucky/98 (H3N8) using a systemic prime/mucosal boost strategy were studied. Seven ponies in the vaccine group received EQUIP F vaccine intranasally 6 weeks after an initial intramuscular immunisation. Following intranasal boosting a transient increase in virus-specific IgA was detected in nasal wash secretions. Aerosol challenge with the A/eq/Newmarket/1/93 reference strain 4 weeks after the intranasal booster resulted in clinical signs of infection and viral shedding in seven of seven influenza-naive control animals whereas the seven vaccinated ponies had statistically significantly reduced clinical signs and duration of virus excretion. Furthermore, following this challenge, significantly enhanced levels of virus-specific IgA were detected in the nasal washes from vaccinated ponies compared with the unvaccinated control animals. These data indicate that the intranasal administration of EQUIP F vaccine primes the mucosal system for an enhanced IgA response following exposure to live influenza virus.  相似文献   

16.
In Italy epizootics of equine influenza often occur, but no virus isolation has been reported since 1971. This paper describes the antigenic and biochemical characterization of two equine influenza viruses isolated in Italy from 1985 to 1989. The virus isolates were shown to differ antigenically from earlier strains of the same subtype, A/equine/Miami/1/63 (H3N8). Monoclonal antibody analysis showed that the haemagglutinins of these strains were serologically indistinguishable from A/equine/Fontainebleau/1/79, a variant of A/equine/Miami, never isolated in Italy before. One of the two virus isolates was obtained from a horse immunized with a bivalent inactivated influenza vaccine, not containing A/equine/Fontainebleau/79 antigens.

The vaccine failure underlines the importance of antigenic relatedness between currently circulating viruses and vaccine strains. Therefore, to improve the protection afforded by equine immunization, the vaccine composition should be decided according to the results of a virological surveillance activity, systematically conducted among horses.  相似文献   


17.
Serum antibody (IgGab, IgM and IgA) responses to primary and secondary infection with influenza A/equine/Newmarket/79 (H3N8) by nebulised aerosol were compared with local (nasopharyngeal and tracheal) antibody responses in ponies. Circulating IgGab antibody was of long duration after primary infection, whereas IgM responses were short-lived after both primary and secondary infections. The antigenic stimulation of secondary infection with equine influenza was sufficient to induce elevations of serum IgM and IgA in the presence of high levels of circulating IgGab. These results support the potential of virus-specific IgM measurement for the detection of recent exposure to virus in horses which have high levels of circulating IgGab. Unlike serum IgGab, nasal and tracheal wash antibody of this isotype did not show long duration after primary infection, but local antibody memory was demonstrated by anamnestic responses on rechallenge. Nasopharyngeal IgA developed later than IgGab and IgM, and was more durable.  相似文献   

18.
A novel strain of equine influenza virus, influenza A/equine/Jilin (China)/1/89, has emerged which is genetically distinct from all earlier strains of equine influenza. It is therefore possible that the vaccines against equine influenza may be unable to protect horses against disease caused by this virus strain. In vitro serological assays established that there were low levels of immunological cross-reactivity between the new virus, the current vaccine strains and the strains of equine-2 influenza virus now in circulation.  相似文献   

19.
It has been recommended that modern equine influenza vaccines should contain an A/equi-1 strain and A/equi-2 strains of the American and European-like subtype. We describe here the efficacy of a modern updated inactivated equine influenza-herpesvirus combination vaccine against challenge with a recent American-like isolate of equine influenza (A/equine-2/Kentucky/95 (H3N8). The vaccine contains inactivated Influenza strains A-equine-1/Prague'56, A-equine-2/Newmarket-1/'93 (American lineage) and A-equine-2/ Newmarket-2/93 (Eurasian lineage) and inactivated EHV-1 strain RacH and EHV-4 strain V2252. It is adjuvanted with alhydrogel and an immunostim. Horses were vaccinated at the start of the study and 4 weeks later. Four, six and eight weeks after the first vaccination high anti-influenza antibody titres were found in vaccinated horses, whereas at the start of the study all horses were seronegative. After the challenge, carried out at 8 weeks after the first vaccination, nasal swabs were taken, rectal temperatures were measured and clinical signs were monitored for 14 days. In contrast to unvaccinated control horses, vaccinated animals shed hardly any virus after challenge, and the appearance of clinical signs of influenza such as nasal discharge, coughing and fever were reduced in the vaccinated animals. Based on these observations, it was concluded that the vaccine protected against clinical signs of influenza and, more importantly, against virus excretion induced by an American-like challenge virus strain. In a second experiment the duration of the immunity induced by this vaccine was assessed serologically. Horses were vaccinated at the start of the study and 6 and 32 weeks later. Anti-influenza antibody titres were determined in bloodsamples taken at the first vaccination, and 2, 6, 8, 14, 19, 28, 32, 37, 41, 45 and 58 weeks after the first vaccination. Vaccinated horses had high anti-influenza antibody titres, above the level for clinical protection against influenza, against all strains present in the vaccine until 26 weeks after the third vaccination.  相似文献   

20.
In this paper we describe the development of a nested RT-PCR assay for the rapid diagnosis and characterisation of influenza virus directly from clinical specimens. Viral RNA is extracted from nasal swabs by the guanidine thiocyanate extraction method, and subsequently reverse transcribed. The complementary DNA is then used as template in a nested PCR reaction. Primers designed for use in this assay are specific for three templates; (1) the nucleoprotein (NP) gene, (2) the haemagglutinin gene of the H7N7 equine influenza virus (A1), and (3) the haemagglutinin gene of the H3N8 equine influenza virus (A2). We show that the assays are specific for the target genes chosen, and display sensitivity similar to virus isolation. The NP assay detects a variety of different influenza subtypes, whereas A1 and A2 assays are specific for influenza subtypes H7N7 and H3N8, respectively. Sequencing of amplicons obtained in the A2 assay yields information on antigenic regions of the haemagglutinin molecule, and use of this procedure in the routine surveillance of equine influenza will enable tentative characterisation of circulating viruses despite difficulties in isolating field strains of the H3N8 subtype. The A1 assay will be useful in ascertaining whether viruses of the H7N7 subtype still circulate amongst horses, or whether these are extinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号