首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Using the low-density lipoprotein (LDL), collagen, and thrombin models, we report here that the rosemary extracts (REs), either the aqueous (REw) or the acetonic (REA), all possessed many antiglycation-related features, and the effective concentrations required were as follows: 0.1 mg/mL for suppressing the relative electrophoretic mobility, 1.3 microg/mL for anticonjugated diene induction, 0.5 mg/mL for inhibition of thiobarbituric acid reactive substances production, 0.1 mg/mL for AGEs (advanced glycation end products) formation, 0.1 mg/mL to block glucose incorporation, and 0.05 mg/mL as an effective anti-antithrombin III. Using high-performance liquid chromatography/mass spectrometry, we identified five major constituents among eight major peaks, including rosmarinic acid, carnosol, 12-methoxycarnosic acid, carnosic acid, and methyl carnosate. In the LDL model, REA was proven to be more efficient than REw; yet, the reverse is true for the collagen and the thrombin III models, the reason of which was ascribed to the higher lipid-soluble antioxidant content (such as rosmarinic acid, carnosol, carnosic acid, 12-methoxycarnosic acid and methyl carnosate) in REA than in REw and the different surface lipid characteristics between LDL and collagen; although to act as anti-AGEs, both extracts were comparable. To assist the evidence, a larger 2,2-diphenyl-1-picrylhydrazyl radical scavenging capability with less total polyphenolic content was found in REA. We conclude that rosemary is an excellent multifunctional therapeutic herb; by looking at its potential potent antiglycative bioactivity, it may become a good adjuvant medicine for the prevention and treatment of diabetic, cardiovascular, and other neurodegenerative diseases.  相似文献   

2.
The distribution of six compounds with three different polyphenol skeletons have been studied in Rosmarinus officinalis: phenolic diterpenes (carnosic acid, carnosol, and 12-O-methylcarnosic acid), caffeoyl derivatives (rosmarinic acid), and flavones (isoscutellarein 7-O-glucoside and genkwanin), each showing a characteristic behavior and distribution during the vegetative cycle. Only in leaves were all six compounds present, and the highest accumulation rate was related with the young stages of development. Rosmarinic acid showed the highest concentrations of all the polyphenols in all organs. The distribution of this acid in leaves, flowers, and stems suggests that in the first stages of flower growth, levels were due to in situ biosynthesis, and in the last stages, the contribution of transport phenomena was increased. The antioxidant activity of six extracts with different polyphenolic composition was evaluated in aqueous and lipid systems. The results clearly suggest that rosemary extracts are excellent antioxidants in both aqueous and lipid systems.  相似文献   

3.
Two rosemary accessions were subjected to chilling temperatures in control environmental cabins analyzing their variations in rosmarinic and carnosic acids together with their adaptability to these stress conditions. Cold stressed plants of both accessions showed increases in caffeic acid and carnosic acid concentration levels, while other secondary metabolites such as rosmarinic acid, naringin, cirsimaritin, hispidulin, and carnosol showed different responses in both accessions. In addition, cold stressed plants exhibited significant reductions in chlorophylls, beta-carotene, and violaxanthin levels as well as the maximum quantum yield of PSII in both accessions. Hydrogen peroxide and lipid peroxidation levels showed similar responses in both accessions, which were positively and negatively correlated with rosmarinic and carnosic acids. From these results it is therefore suggested that carnosic acid biosynthesis in rosemary plants is induced by chilling periods. On the other hand, we demonstrate that not all rosemary accessions are equally well adapted to chilling temperatures. In fact, for (one) accession cold treated plants severe losses in chlorophyll, beta-carotene, and even xanthophylls (including zeaxanthin and antheraxanthin) were observed, despite no visual symptoms of leaf injury. More research is needed to understand rosmarinic acid variations in rosemary plants under stress conditions.  相似文献   

4.
The effects of 24 h supplementation of Caco-2 cells with carnosic acid and carnosol, and their activities against 5 microM oleic acid hydroperoxide (OAHPx)-mediated oxidative stress, were investigated. At 24 h of incubation, under nonstressed and stressed conditions, both compounds at 25, 50, and 100 microM supplement concentrations reduced catalase activity, whereas changes in glutathione peroxidase and superoxide dismutase activities varied depending upon the concentrations. Relative to control cultures, carnosic acid and carnosol reduced membrane damage by 40-50% when stressed by OAHPx. Carnosic acid and carnosol inhibited lipid peroxidation by 88-100% and 38-89%, respectively, under oxidative stress conditions. Both compounds significantly lowered DNA damage induced by OAHPx. Results of this study suggest that antioxidant activities of carnosic acid and carnosol could be partly due to their ability to increase or maintain glutathione peroxidase and superoxide dismutase activities.  相似文献   

5.
Antioxidant properties of marjoram (Origanum majorana L.) herb and extracts obtained with ethanol, n-hexane, and supercritical CO2 extraction are presented. Individual antioxidants, ursolic acid, carnosic acid, and carnosol, were quantified with high-performance liquid chromatography. The effects of different parameters (temperature and pressure) of high-pressure extraction on the yield of carnosol were studied. Furthermore, two marjoram herbs from Hungary and Egypt were compared measuring hydrogen-donating abilities with 1,1-diphenyl-2-picrylhydrazyl by spectrophotometric and the total scavenger capacities by chemiluminometric methods from the aqueous extracts of the herbs. The antioxidant activities of the solvent extracts were performed using the Rancimat method. The Egyptian herb and its extracts possessed better antioxidant activities than Hungarian ones. Applying supercritical CO2 extraction, the highest value of carnosol was obtained at 400 bar and 60 degrees C.  相似文献   

6.
A solution of carnosic acid quinone, which is a radical chain-termination product having no antioxidant activity in the antioxidant reaction of carnosic acid, recovers potent antioxidant activity upon standing. The HPLC analysis of an aged solution of carnosic acid quinone revealed that several antioxidants are produced in the solution. From the time-course and quantitative analyses of the formation of the products and their structural analysis, an antioxidant mechanism from carnosic acid quinone is proposed that includes a redox reaction of carnosic acid quinone in addition to the isomerization to lactone derivatives. In the first stage of antioxidation, carnosic acid, the reduction product from carnosic acid quinone, contributes to the potent antioxidant activity of the solution. This proposed mechanism can explain one of the reasons for the strong antioxidant activity of the extract of the popular herbs sage and rosemary.  相似文献   

7.
For the first time, the potent but unstable antioxidative diterpene carnosic acid could be enriched from an aqueous extract of rosemary (Rosmarinus officinalis L.) by isoelectric focused adsorptive bubble chromatography. Enrichment of carnosic acid in the foam was influenced by the pH value and the flow rate of the foam-forming gas. Efficiency was highest with diluted samples at pH 4. Under these conditions, the conversion of carnosic acid to carnosol was negligible. Transfer of carnosic acid to the foam from a standard solution in the presence of saponin as surfactive substance was similar to that from the aqueous rosemary extract.  相似文献   

8.
In this study, two unknown compounds in rosemary oil, containing 3% carnosic acid and 0.3% carnosol, were identified and characterized. After methanol extraction, purification, and analysis by reversed-phase HPLC and LC-MS, a recovery of 92% (+/-8%) of carnosic acid was obtained, but no carnosol was found. However, two unknown compounds with a molecular weight of 330.2 and 302.2 were consistently detected. From additional LC-MS-MS, (1)H NMR, and elemental analyses, it became clear that the first compound (M(w) = 330.2) could not be carnosol. It was hypothesized that it originated from the breakdown of the intramolecular bond of carnosol, followed by the addition of a water molecule. Possibly, an unsaturated double bond was formed after dehydration. Assuming that this compound was an intermediate in the conversion to rosmanol, the second unknown compound (M(w) = 302.2) may have resulted from the breakdown of the intramolecular bond of rosmanol. Similarly, an unsaturated double bond may have been formed. After splitting off carbon oxide, a detectable molecule with a molecular weight of 302.2 was observed.  相似文献   

9.
Polyphenols have recently attracted much attention as potent antioxidants and related bioactive substances. These potent antioxidative polyphenols are very oxidizable due to their chemical properties, and their oxidation products must accumulate in the oxidizing foods when they are contained as the active ingredients. In this investigation, 30 polyphenols and related phenolics were oxidized with oxygen in the presence of a catalytic amount of Fe ions. Piceatannol, catechin, epicatechin, hydroxytyrosol, carnosol, and carnosic acid were oxidized very quickly. Sinapic acid, caffeic acid, chlorogenic acid, rosmarinic acid, gallic acid, propyl gallate, α-tocopherol, quercetin, and nordihydroguaiaretic acid were moderately oxidized. Protocatechuic acid, syringic acid, taxifolin, resveratrol, gentisic acid, secoisolariciresinol, and ellagic acid were oxidized for 19-20 days; however, their oxidation was very slow and did not complete. The other phenolics were not oxidized. The obtained oxidation products were next subjected to a lipoxygenase inhibition assay and the results compared to those of the corresponding phenols. Very interestingly, the oxidation product from resveratrol showed a high inhibitory activity, whereas resveratrol itself had no activity and its oxidation efficiency was low. To clarify the inhibition principle of the oxidation product, an LC-MS analysis was carried out on the oxidation product. The analytical results showed that they are the oligomeric and degraded compounds of resveratrol. Among them, the structures of three dimeric compounds were successfully identified, and their activity data clarified that the closed ring dimers were potent lipoxygenase inhibitors, whereas the opened ring dimer was not. It should be noted that resveratrol had almost no lipoxygenase inhibitory activity, contrary to some researchers' findings.  相似文献   

10.
The radioprotective effects of carnosic acid (CA), carnosol (COL), and rosmarinic acid (RO) against chromosomal damage induced by gamma-rays, compared with those of L-ascorbic acid (AA) and the S-containing compound dimethyl sulfoxide (DMSO), were determined by use of the micronucleus test for antimutagenic activity, evaluating the reduction in the frequency of micronuclei (MN) in cytokinesis-blocked cells of human lymphocytes before and after gamma-ray irradiation. With treatment before gamma-irradiation, the most effective compounds were, in order, CA > RO > or = COL > AA > DMSO. The radioprotective effects (antimutagenic) with treatment after gamma-irradiation were lower, and the most effective compounds were CA and COL. RO and AA presented small radioprotective activity, and the sulfur-containing compound DMSO lacked gamma-ray radioprotection capacity. Therefore, CA and COL are the only compounds that showed a significant antimutagenic activity both before and after gamma-irradiation treatments. These results are closely related to those reported by other authors on the antioxidant activity of the same compounds, and the degree of effectiveness depends on their structure. Furthermore, the results for treatments before and after gamma-ray irradiation suggest the existence of different radioprotective mechanisms in each case.  相似文献   

11.
The aim of the present work is to study whether the introduction of rosemary plant byproduct, from plant steam distillation, in daily Segurena sheep feeding allows the transfer of active antioxidant components to lamb meat, without detriment to the animal productivity. For this, 36 Segurena ewes were assigned randomly to three homogeneous groups. One group was fed a basal diet as a control and the diet of the other two groups was modified by substituting 10 or 20% of the control diet (respectively) with distilled rosemary leaves. Chromatographic analysis allowed the identification of 11 polyphenolic components previously identified in the rosemary and basal diet pellets, respectively. Among them, rosmarinic acid, carnosol, and carnosic acid were the phenolic components that had a significantly increased presence ( P < 0.05) in the lamb meat from sheep mothers fed this aromatic herb, when compared to the control group. The incorporation of this byproduct into the animal diet favored the antioxidant capacity of these lamb meat samples. Fresh meat produced on rosemary had higher total ferric reducing antioxidant power (FRAP) ( P < 0.05), greater ability to reduce ABTS*+, and lower IC50 (DPPH*) ( P < 0.05) values when compared to the control group. Because no statistically significant differences were detected among the results obtained from the lamb meat belonging to the different ewe groups fed rosemary leaf extract (10 or 20%), it can be concluded that the incorporation of distilled rosemary leaves at a rate of 10% of the ewes' diet should be enough to improve the lamb meat antioxidant status.  相似文献   

12.
Rosemary (Rosmarinus officinalis) leaves possess a variety of bioactivities. Previous studies have shown that the extract of rosemary leaves from supercritical fluid extraction inhibits the expression of inflammatory mediators with apparent dose-dependent responses. In this study, three different extraction conditions (5000 psi at 40, 60, and 80 °C) of supercritical carbon dioxide (SC-CO(2)) toward the extraction of antioxidants from rosemary were investigated. Furthermore, simultaneous comparison of the anti-inflammatory properties between rosemary extract prepared from SC-CO(2) under optimal conditions (5,000 psi and 80 °C) and its purified carnosic acid (CA) using lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophage cells was also presented. Results showed that the yield of 3.92% and total phenolics of 213.5 mg/g extract obtained from the most effective extraction conditions showed a high inhibitory effect on lipid peroxidation (IC(50) 33.4 μg/mL). Both the SC-CO(2) extract and CA markedly suppressed the LPS-induced production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated inhibitor-kappaB (P-IκB), and nuclear factor-kappaB (NF-κB)/p65 in a dose-dependent manner. The five major compounds of verbenone, cirsimaritin, salvigenin, carnosol, and CA existing in the SC-CO(2) extract were isolated by semipreparative HPLC and identified by HPLC-MS/MS analysis. CA was the most abundant recorded compound and the most important photochemical with an anti-inflammatory effect with an IC(50) of 22.5 μM or 7.47 μg/mL presented to the best inhibitory activity on NO production better than that of the 14.50 μg/mL dosage prepared from the SC-CO(2) extract. Nevertheless, the effective inhibition of LPS-induced NF-κB signaling in RAW 264.7 cells from the SC-CO(2) extract extends the potential application of nutraceutical formulation for the prevention of inflammatory diseases.  相似文献   

13.
The activity of alpha-tocopherol, Trolox, propyl gallate, gallic acid, methyl carnosoate, and carnosic acid was studied in two oil-in-water (o/w) emulsions, in two water-in-oil (w/o) emulsions, and in bulk oil with and without added emulsifiers. All antioxidants had either moderate or higher activity in bulk oil than in the emulsions. In most emulsions, the most polar antioxidants, propyl gallate and gallic acid, exhibited either prooxidant activity or no antioxidant activity. Methyl carnosoate was the most active antioxidant in w/o emulsions but was less active than Trolox in o/w emulsions. alpha-Tocopherol was less active in bulk oil than in emulsions, but its activity in bulk oil was markedly enhanced by the addition of o/w emulsifiers. Partitioning of antioxidants, hydrogen bonding, interphase transport, surface accessibility, and interaction of emulsifier with antioxidants are considered to be important parameters that determine antioxidant activity in lipid-containing systems.  相似文献   

14.
To determine the antioxidant mechanism of food phenolics against the oxidation of food components, the reaction of carnosic acid, an antioxidative constituent of the popular herbs sage and rosemary, was investigated in the presence of ethyl linoleate and the radical oxidation initiator 2,2'-azobis(2,4-dimethylvaleronitrile). During this process, carnosic acid was oxidized to an o-quinone and a hydroxy p-quinone, the chemical structures of which were confirmed by physical and chemical techniques. From a quantitative time course analysis of the production of these quinones, an antioxidant mechanism of carnosic acid is proposed, consisting of the oxidative coupling reaction with the peroxyl radical at the 12- or 14-position of carnosic acid and subsequent degradation reactions.  相似文献   

15.
Carnosol is one of the main antioxidants in sage and rosemary. Although carnosol quinone is the antioxidation product of carnosol and has a very weak antioxidant activity, its treatment in water-containing solvent restored its strong antioxidant activity. HPLC analysis of the water-stimulated recovery reaction of the antioxidant activity revealed that the strong activity was due to the reproduced carnosol. The analysis also showed that an almost equal amount of quinone derivatives of rosmanol (rosmanol quinone) was produced in the reaction along with the carnosol. The rosmanol was formed by the addition of 1 equiv of water and the following isomerization from carnosol quinone in the water-containing solvent. The formed rosmanol was also found to be oxidized by the remaining carnosol quinone to produce rosmanol quinone. At the same time, carnosol quinone was reduced to afford carnosol. This redox phenomenon is an important part of the mechanism for the recovery of the antioxidant activity from carnosol quinone under the water-containing conditions.  相似文献   

16.
Subcritical water extraction of antioxidant compounds from rosemary plants   总被引:7,自引:0,他引:7  
Subcritical water extraction at several temperatures ranging from 25 to 200 degrees C has been studied to selectively extract antioxidant compounds from rosemary leaves. An exhaustive characterization of the fractions obtained using subcritical water at different temperatures has been carried out by LC-MS, and the antioxidant activities of the extracts have been measured by a free radical method (DPPH). Results indicate high selectivity of the subcritical water toward the most active compounds of rosemary such as carnosol, rosmanol, carnosic acid, methyl carnosate, and some flavonoids such as cirsimaritin and genkwanin. The antioxidant activity of the fractions obtained by extraction at different water temperatures was very high, with values around 11.3 microg/mL, comparable to those achieved by SFE of rosemary leaves. A study of the effect of the temperature on the extraction efficiency of the most typical rosemary antioxidant compounds has been performed.  相似文献   

17.
Tef, Eragrostis tef (Zucc.) Trotter, is a cereal crop originated and diversified in Ethiopia, where it is used to produce a range of food products. This study aimed to profile and quantify the phenolic composition and antioxidant potential of seven tef grain varieties. Soluble and bound phenolics ranged from 37 to 71 and from 226 to 376 mg of gallic acid equivalent/100 g dry basis (db), and soluble and bound flavonoid contents varied between 36 and 64 and between 113 and 258 mg of catechin equivalent/100 g db, respectively. Protocatechuic, vanillic, syringic, p‐coumaric, sinapic, ferulic, and rosmarinic acids, catechin, and naringenin were detected at least in three of the varieties studied. The dominant phenolic compounds were catechin, rosmarinic acid, and ferulic acid in the soluble extracts, whereas ferulic, rosmarinic, and p‐coumaric acids were the dominant ones in the bound extract. Gallic, caffeic, and salicylic acids were not detected in any of the varieties studied. The majority (>84%) of tef grain phenolics were found in bound form, contributing >84% of total 2,2‐diphenyl‐1‐picrylhydrazyl antioxidative capacity and >80% of total ferric reducing antioxidant power. These results clearly demonstrated the differences in phenolic profile among tef grain varieties. These results are relevant for developing healthy and nutritious tef‐based food products.  相似文献   

18.
Several bioactive botanicals including St. John's wort (SJW; Hypericum perforatum L.) have been used to formulate functional foods and beverages. This study aimed to investigate the stability of SJW components in aqueous solutions and fruit-flavored drinks. Changes of active marker components (hypericin, pseudohypericin, hyperforin, and adhyperforin) as affected by pH and light exposure were determined by HPLC, and the degradation of hyperforin was analyzed by LC-MS/MS and NMR. SJW components were found to be unstable in acidic aqueous solutions. More changes occurred under light exposure, with hyperforin and adhyperforin decreasing the most. Less severe changes were observed in the drink sample as compared to the pH 2.65 solution. Major degradation products of hyperforin in acidic aqueous solutions were identified as furohyperforin, furohyperforin hydroperoxide, and furohyperforin isomer a. The latter was also found in the drink product containing SJW as an ingredient. Biological activities and potential quality and safety implications of these chemical changes are yet to be evaluated.  相似文献   

19.
A new abietane diterpenoid, 12-O-methyl carnosol (2), was isolated from the leaves of sage (Salvia officinalis L.), together with 11 abietane diterpenoids, 3 apianane terpenoids, 1 anthraquinone, and 8 flavonoids. Antioxidant activity of these compounds along with 4 flavonoids isolated from thyme (Thymus vulgaris L.) was evaluated by the oil stability index method using a model substrate oil including methyl linoleate in silicone oil at 90 degrees C. Carnosol, rosmanol, epirosmanol, isorosmanol, galdosol, and carnosic acid exhibited remarkably strong activity, which was comparable to that of alpha-tocopherol. The activity of miltirone, atuntzensin A, luteolin, 7-O-methyl luteolin, and eupafolin was comparable to that of butylated hydroxytoluene. The activity of these compounds was mainly due to the presence of ortho-dihydroxy groups. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of these compounds showed the similar result.  相似文献   

20.
The effects of carnosic acid (CA) of different concentrations (0.05, 0.1, and 0.2 mg/g) and two common antioxidants (butylated hydroxytoluene and α-tocopherol) on oxidative stability in pine nut oil at different accelerated conditions (heating and ultraviolet radiation) were compared. The investigation focused on the increase in peroxide and conjugated diene values, as well as free fatty acid and thiobarbituric acid-reactive substances. The changes in trans fatty acid and aldehyde compound contents were investigated by Fourier transform infrared spectroscopy, while the changes in pinolenic acid content were monitored by gas chromatography-mass spectrometry. The results show that CA was more effective in restraining pine nut oil oxidation under heating, UV-A and UV-B radiation, in which a dose-response relationship was observed. The antioxidant activity of CA was stronger than that of α-tocopherol and butylated hydroxytoluene. Pine nut oil supplemented with 0.2 mg/g CA exhibited favorable antioxidant effects and is preferable for effectively avoiding oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号