首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High cost and painstaking procedures associated with fatty acid analyses of maize kernel necessitate the use of alternative methods. NIR spectroscopy offers advantages in this respect for a variety of areas such as plant breeding, food and feed industries, and biofuel production, in which different forms of maize kernel (e.g., intact kernel, flour, or oil) are used as material. We investigated the possibility of estimating maize oil quality traits by using different samples (intact kernel, flour, and oil) and conventional regression methods (multiple linear regression [MLR] and partial least squares regression [PLSR]) applied to their NIR spectra. MLR and PLSR calibration models were developed for oleic acid, linoleic acid, oleic/linoleic acid ratios, total monounsaturated fatty acid, total polyunsaturated fatty acid (PUFA), and total saturated fatty acid by analyzing 120 maize samples. Robustness in terms of prediction accuracy of the models developed here was tested with a reserved set of samples (n = 30). The results suggested that fatty acids could be possibly estimated by calibrations developed from flour and oil samples with a high degree of accuracy, whereas intact samples did not offer satisfactory results. PLSR and MLR methods gave better results in flour and oil samples, respectively. PUFA was the trait that was most successfully estimated from both flour (for the PLSR model, standard error of the estimate [SEP] of 1.78%, relative performance to deviation [RPD] of 3.09, R2 = 0.93) and oil (for the MLR model, SEP of 0.85%, RPD of 6.52, R2 = 0.98) samples. We concluded that sample type and chemometric method should be handled as important factors in calibration development, and the effects of these factors may vary depending on the trait being analyzed.  相似文献   

2.
This study investigated the potential of visible/near‐infrared reflectance spectroscopy (Vis‐NIRS) to predict soil water repellency (SWR). The top 40 mm of soils (n = 288) across 48 sites under pastoral land‐use in the North Island of New Zealand, which represented 10 soil orders and covered five classes of drought proneness, were analysed by standard laboratory methods and Vis‐NIRS. Soil WR was measured by using the molarity of ethanol droplet (MED) and the water drop penetration time (WDPT) tests. Soil organic carbon content (%C) was also measured to examine a possible relationship with SWR. A partial least squares regression (PLSR) model was developed by using Vis‐NIRS spectral data and the reference laboratory data. In addition, we explored the power of discrimination based on WDPT classes using partial least squares discriminant analysis (PLS‐DA). The PLSR of the processed spectra produced moderately accurate prediction for MED (R2val = 0.61, RPDval = 1.60, RMSEval = 0.59) and good prediction for %C (R2val = 0.82, RPDval = 2.30, RMSEval = 2.72). When the data from the 10 soil orders were considered separately and based on soil order rather than being grouped, the prediction of MED was further improved except for the Allophanic, Brown, Organic and Ultic soil orders. The PLS‐DA was successful in classifying 60% of soil samples into the correct WDPT classes. Our results indicate clearly that Vis‐NIRS has the potential to predict SWR. Further improvement in the prediction accuracy of SWR is envisaged by increasing the understanding of the relationship between Vis‐NIRS and the SWR of all New Zealand soil orders as a function of their physical properties and chemical constituents such as hydrophobic compounds.  相似文献   

3.
Near-infrared reflectance spectroscopy (NIRS) was used to develop calibration curves for determining the fat acidity of whole-kernel and ground rough rice with 13% moisture content at 25°C. Partial-leastsquares regression (PLSR) uses the optimal calibration curve for wholekernel rough rice to measure the coefficient of determination (r2) of validation and standard error of prediction (SEP) of 0.87 and 0.83 mg of KOH/100 g of dry matter, respectively. However, the optimal calibration curve for ground rough rice has a higher r2 of validation and lower SEP of 0.94 and 0.73 mg of KOH/100 g of dry matter, respectively. From 10 to 40°C, the temperature effect causes an increase of 0.24 mg of KOH/100 g of dry matter/°C in the predicted fat acidity of whole-kernel rough rice.  相似文献   

4.
The chemometric calibration of near‐infrared Fourier‐transform Raman (NIR‐FT/Raman) spectroscopy was investigated for the purpose of providing a rigorous spectroscopic technique to analyze rice flour for protein and apparent amylose content. Ninety rice samples from a 1996 collection of short, medium, and long grain rice grown in four states of the United States, as well as Taiwan, Korea, and Australia were investigated. Milled rice flour samples were scanned in rotating cups with a 1,064 nm (NIR) excitation laser using 500 mW of power. Raman scatter was collected using a liquid N2 cooled Ge detector over the Raman shift range of 175–3,600 cm‐1. The spectral data was preprocessed using baseline correction with and without derivatives or with derivatives alone and normalization. Nearly equivalent results were obtained using all of the preprocessing methods with partial least squares (PLS) models. However, models using baseline correction and normalization of the entire spectrum, without derivatives, showed slightly better performance based on the criteria of highest r2 and the lowest SEP with low bias. Calibration samples (n = 57) and validation samples (n = 33) were chosen to have similar respective distributions for protein and apparent amylose. The best model for protein was obtained using six factors giving r2 = 0.992, SEP = 0.138%, and bias = ‐0.009%. The best model for apparent amylose was obtained using eight factors giving r2 = 0.985, SEP = 1.05%, and bias = ‐0.006%.  相似文献   

5.
Advances in laboratory instrumentation and chemometrics provide alternatives to traditional methods of conducting soil chemical analysis. One of these is infrared diffuse reflectance spectroscopy in the near-infrared spectral range (NIRS). Herein we report the results of a multinational study to develop useful calibrations associating NIRS spectra with laboratory-measured results for total soil carbon (C), total soil nitrogen (N), δ13C, and δ15N from a single soil site in Mexico subjected to zero- and conventional-tillage regimens with and without crop residues and crop rotations of maize and wheat across 16 years. Modified partial least squares regression (MPLS) was used to obtain useful NIR predictions for total soil C and N, with ratio performance deviation (RPD) values of 6.8 and 2.6, respectively. Corresponding multiple correlation coefficients (RSQs) for C and N were 0.98 and 0.85, with standard errors of prediction (SEPs) of ±0.45 g C kg–1 and ±0.09g Nkg–1, respectively. The generation of δ15N and δ13C models produced different NIR recordings in soils with and without crop residues. Application of discriminant partial least squares (DPLS) statistics to the NIR spectral data allowed us to discriminate soils with and without residues. The prediction confidence for stable isotopes was 90% (internal validation) and 94% (external validation). Modified partial least squares regression was used to estimate δ15N and δ13C. Ratio performance deviation, RSQ, and SEP values obtained for δ13C and δ15N were 2.44 and 3.57, 0.83 and 0.81, ±0.5‰ (parts per thousand) and ±0.45‰ in soils with residues and 2.5 and 3.8, 0.93 and 0.92, and ±0.2‰ and ±0.23‰ in soils without residues, respectively. Overall, results obtained with NIRS were comparable to those obtained using conventional analytical methods, a finding that has wide relevance to agricultural soils and environmental studies in tropical locations. However, further testing is necessary to confirm that the calibration models are neither site nor instrument specific.  相似文献   

6.
ABSTRACT

Evaluation of the relationship between soil properties and saffron yield estimation may contribute to agricultural planning in finding suitable lands for the growth of this valuable product. This study aimed to investigate the performance of artificial neural network (ANN), multiple linear regression (MLR), and adaptive neuro-fuzzy inference system (ANFIS) in terms of saffron yield estimation in some lands of Golestan province, Iran. To this end, 100 areas under saffron cultivation were selected. For rapid and low-cost saffron yield estimation, six different models were designed based on soil properties as inputs using MLR, ANN, and ANFIS methods. According to the results, ANN showed the highest accuracy (R2 = 0.58–0.89) in estimating saffron yield as compared to MLR (R2 = 0.41–0.47) and ANFIS (R2 = 0.41–0.69) models. A comparison of the results obtained from the six models defined in these three methods indicated that Model 4 (R2 Reg = 0.45, R2 ANFIS = 0.57, R2 ANN = 0.87), with the inputs, organic phosphorus, potassium, and calcium carbonate, was the best model in terms of accuracy and speed in estimating saffron yield phosphorus. The RI indexes for ANN in the model were 50% and 34% relative to MLR and ANFIS, respectively, demonstrating the higher accuracy of ANN in saffron yield estimation. The study results can be used to identify lands suitable for saffron cultivation in the study area using organic phosphorus and organic matter levels in the soil.  相似文献   

7.
ABSTRACT

Soil hydraulic parameters like moisture content at field capacity and permanent wilting point constitute significant input parameters of various biophysical models and agricultural practices (irrigation timing and amount of irrigation to be applied). In this study, the performance of three different methods (Multiple linear regression – MLR, Artificial Neural Network – ANN and Adaptive Neuro-Fuzzy Inference System – ANFIS) with different input parameters in prediction of field capacity and permanent wilting point from easily obtained soil characteristics were compared. Correlation analysis indicated that clay content, sand content, cation exchange capacity, CaCO3, and organic matter had significant correlations with FC and PWP (p < .01). Validation results revealed that the ANN model with the greatest R2 and the lowest MAE and RMSE value exhibited better performance for prediction of FC and PWP than the MLR and ANFIS models. ANN model had R2 = 0.83, MAE = 2.36% and RMSE = 3.30% for FC and R2 = 0.81, MAE = 2.15%, RMSE = 2.89% for PWP in training dataset; R2 = 0.80, MAE = 2.27%, RMSE = 3.12% for FC and R2 = 0.83, MAE = 1.84%, RMSE = 2.40% for PWP in testing dataset. Also, Bayesian Regularization (BR) algorithm exhibited better performance for both FC and PWP than the other training algorithms.  相似文献   

8.
A study was conducted to investigate methods of improving a near-infrared transmittance spectroscopy (NITS) amylose calibration that could serve as a rapid, nondestructive alternative to traditional methods for determining amylose content in corn. Calibrations were developed using a set of genotypes possessing endosperm mutations in single- and double-mutant combinations ranging in starch-amylose content (SAC) from -8.5 to 76%, relative to a standard curve. The influence of three factors were examined including comparing calibrations made against SAC versus grain amylose content (GAC), developing calibrations using partial least squares (PLS) analysis versus artificial neural networking (ANN), and using all samples in the calibrations set versus using progressively narrower ranges of SAC or GAC in the calibration set. Grain samples were divided into calibration and validation sets for PLS analysis while samples used in ANN were assigned to a training set, test set, and validation set. Performance statistics of the validation sets that were considered were the coefficient of determination (R), the standard error of prediction (SEP), and the ratio of the standard deviation of amylose values to the SEP (RPD), which were used to compare all NITS models. The study revealed an NITS prediction model for SAC (R = 0.96, SEP = 5.1%, RDP = 3.8) of similar precision to the best GAC model (R = 0.96, SEP = 2.7%, RPD = 3.5). Narrowing the amylose range of the calibration set generally did not improve performance statistics except for PLS models for SAC in which a decrease in SEP values was observed. In one model, the SEP improved while R and RPD remained constant (R = 0.94, SEP = 4.2%, RPD = 2.8) when samples with SAC values <20% were removed from the calibration set. Although the NITS amylose calibrations in this study are of limited precision, they may be useful when a rough screening method is needed for SAC. For example, NITS may be useful to detect severe contamination during transport and storage of specialty grains or to aid breeders when selecting for amylose content from large numbers of grain samples.  相似文献   

9.
Abstract

Fast screening methods are needed for plant breeding. The objective of this research was to evaluate the potential of near‐infrared reflectance spectroscopy (NIRS) for the simultaneous analysis of dry matter and protein contents in intact discs of fresh yam bean (Pachyrhizus spp.) tubers. Discs from 210 tubers were extracted with a punch few hours after harvesting and scanned by NIRS using a specially designed adapter. External validation revealed a close relationship between NIRS and reference methods for dry matter content (r2=0.94; standard error of performance, SEP=1.2%) and protein content (r2=0.87; SEP=1.94%). The calibration for protein content was compared with another one developed using dried‐ground tuber samples (r2=0.97; SEP=0.97%). These results suggested that NIRS can be used to determine dry matter and protein contents in fresh tuber samples of yam beans with acceptable accuracy. Further research will have to determine if additional traits can be incorporated into this scheme.  相似文献   

10.
In order to provide references for leaf nutrition diagnosis of fingered citron, the technique of near infrared reflectance spectroscopy (NIRS) was introduced to analyze nitrogen (N), phosphorus (P), potassium (K), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in the dry-leaf samples of fingered citron. The best calibration model for N was developed with high RSQCAL (0.90), SD/SECV (2.73) and low SEC (1.06 mg g?1), good calibration models were obtained for P, K, Fe and Mn, and no significant correlations were found between the spectra and the individual amounts of Zn and Cu. When tested using a validation set (n = 38), N was well predicted with low values of SEP (1.21 mg g?1) and high RPD (2.5). The values of SEP and RPD were also acceptable for the external validation of P, Fe and Mn. Near-infrared spectroscopy analysis technique shows potential of diagnosing minerals in fingered citron, particularly for N, P, Fe and Mn.  相似文献   

11.
SO_4~(2-)是盐渍土阴离子中的主要离子,但目前针对不同人为干扰区域土壤中SO_4~(2-)反演研究却鲜有报道。土壤高光谱与土壤某元素间的关系表现为非线性,传统线性偏最小二乘模型(PLSR)对土壤元素的反演精度有限。本文以新疆昌吉回族自治州境内不同人为干扰区域的盐渍化土壤为研究对象,以土壤的野外高光谱和SO_4~(2-)含量为数据源,对原始(R)和对数(LogR)变换后的高光谱分别进行0阶、一阶和二阶微分预处理,选择通过0.05显著性水平的波段为敏感波段,将敏感波段对应的高光谱反射率作为非线性BP神经网络模型的输入变量,并设定BP的隐藏节点为300,学习速率为0.01,最大迭代次数为1 000,训练函数为trainscg。从SO_4~(2-)的真实值与预测值的散点图、拟合效果图和BP训练过程3个方面,定量分析无人为干扰(A区)和有人为干扰(B区)土壤SO_4~(2-)含量,并与PLSR对比预测精度。仿真显示, A区二阶微分后的BP预测精度优于一阶微分,而B区一阶微分后的BP预测精度优于二阶微分。且不论在A区还是B区, LogR光谱变换的反演精度均优于R。最佳BP模型的相对预测性能(RPD)、决定系数(R2)、均方根误差(RMSE)和迭代次数,在A区分别为3.309、0.906、0.253和8次,在B区分别为2.234、0.844、0.786和45次,表明BP对A区SO_4~(2-)的预测能力非常强(RPD2.5),对B区SO_4~(2-)的预测能力较强(RPD为2.0~2.5)。而在A区和B区两种光谱变换的一阶和二阶微分中, PLSR的RPD值均在1.4与1.8之间,其预测性能一般;在B区的0阶微分中, PLSR的RPD值均小于1.0,其不能对SO_4~(2-)进行预测。因此, BP模型能对不同人为干扰区域的SO_4~(2-)进行有效的定量分析。  相似文献   

12.
The increasing demand for triticale as food, feed, and fuel has resulted in the availability of cultivars with different grain quality characteristics. Analyses of triticale composition can ensure that the most appropriate cultivars are obtained and used for the most suitable applications. Near‐infrared (NIR) spectroscopy is often used for rapid measurements during quality control and has consequently been investigated as a method for the measurement of protein, moisture, and ash contents, as well as kernel hardness (particle size index [PSI]) and sodium dodecyl sulfate (SDS) sedimentation from both whole grain and ground triticale samples. NIR spectroscopy prediction models calculated using ground samples were generally superior to whole grain models. Protein content was the most effectively modeled quality property; the best ground grain calibration had a ratio of the standard error of test set validation to the standard deviation of the reference data of the test set (RPDtest) of 4.81, standard error of prediction (SEP) of 0.52% (w/w), and r2 of 0.95. Whole grain protein calibrations were less accurate, with optimum RPDtest of 3.54, SEP of 0.67% (w/w), and r2 of 0.92. NIR spectroscopy calibrations based on direct chemical reference measurements (protein and moisture contents) were better than those based on indirect measurements (PSI, ash content, and SDS sedimentation). Calibrations based on indirect measurements would, however, still be useful to identify extreme samples.  相似文献   

13.
The development of accurate calibration models for selected soil properties is a crucial prerequisite for successful implementation of visible and near infrared (Vis‐NIR) spectroscopy for soil analysis. This paper compares the performance of calibration models developed for individual farms with that of general models valid for three farms in three European countries. Fresh soil samples collected from farms in the Czech Republic, Germany and Denmark were scanned with a fibre‐type Vis‐NIR spectrophotometer. After dividing spectra into calibration (70%) and validation (30%) sets, spectra in the calibration set were subjected to partial least squares regression (PLSR) with leave‐one‐out cross‐validation to establish calibration models of soil properties. Except for the Czech Republic farm, individual farm models provided successful calibration for total carbon (TC), total nitrogen (TN) and organic carbon (OC), with coefficients of determination (R2) of 0.85–0.93 and 0.74–0.96 and residual prediction deviations (RPD) of 2.61–3.96 and 2.00–4.95 for the cross‐validation and independent validation respectively. General calibration models gave improved prediction accuracies compared with models of farms in the Czech Republic and Germany, which was attributed to larger ranges in the variation of soil properties in general models compared with those in individual farm models. The results revealed that larger standard deviations (SDs) and wider variation ranges have resulted in larger R2 and RPD, but also larger root mean square errors of prediction (RMSEP). Therefore, a compromise solution, which also results in small RMSEP values, should be found when selecting soil samples for Vis‐NIR calibration to cover a wide variation range.  相似文献   

14.
This study investigated the potential for visible–near‐infrared (vis–NIR) spectroscopy to predict locally volumetric soil organic carbon (SOC) from spectra recorded from field‐moist soil cores. One hundred cores were collected from a 71‐ha arable field. The vis–NIR spectra were collected every centimetre along the side of the cores to a depth of 0.3 m. Cores were then divided into 0.1‐m increments for laboratory analysis. Reference SOC measurements were used to calibrate three partial least‐squares regression (PLSR) models for bulk density (ρb), gravimetric SOC (SOCg) and volumetric SOC (SOCv). Accurate predictions were obtained from averages of spectra from those 0.1‐m increments for SOCg (ratio of performance to inter‐quartile (RPIQ) = 5.15; root mean square error (RMSE) = 0.38%) and SOCv (RPIQ = 5.25; RMSE = 4.33 kg m?3). The PLSR model for ρb performed least well, but still produced accurate results (RPIQ = 3.76; RMSE = 0.11 Mg m?3). Predictions for ρb and SOCg were combined to compare indirect and direct predictions of SOCv. No statistical difference in accuracy between these approaches was detected, suggesting that the direct prediction of SOCv is possible. The PLSR models calibrated on the 10‐cm depth intervals were also applied to the spectra originally recorded on a 1‐cm depth increment. While a bigger bias was observed for 1‐cm than for 10‐cm predictions (1.13 and 0.19 kg m?3, respectively), the two populations of estimates were not distinguishable statistically. The study showed the potential for using vis–NIR spectroscopy on field‐moist soil cores to predict SOC at high depth resolutions (1 cm) with locally derived calibrations.  相似文献   

15.
16.
The purpose of this study was to develop highly accurate regression models with texture parameters of cooked milled rice grains for predicting pasting properties in terms of quality index of rice flour. Two methods were adopted as the texture measurement to acquire predictors for the models. In the calibration set, all the multiple regression models by a single‐grain method exhibited a higher R2 than those by a three‐grain method. Each of the former models also showed a lower SEP and a higher RPD in the validation set. The prediction performance was best for consistency (RPD = 2.4). The single‐grain method was more advantageous for the pasting prediction. These results suggest that the models based on grain texture could predict rice flour quality.  相似文献   

17.
Visible–near infrared (vis–NIR) spectroscopy can be used to estimate soil properties effectively using spectroscopic calibrations derived from data contained in spectroscopic databases. However, these calibrations cannot be used with proximally sensed (field) spectra because the spectra in these databases are recorded in the laboratory and are different to field spectra. Environmental factors, such as the amount of water in the soil, ambient light, temperature and the condition of the soil surface, cause the differences. Here, we investigated the use of direct standardization (DS) to remove those environmental factors from field spectra. We selected 104 sensing (sampling) sites from nine paddy fields in Zhejiang province, China. At each site, vis–NIR spectra were recorded with a portable spectrometer. The soils were also sampled to record their spectra under laboratory conditions and to measure their soil organic matter (SOM) content. The resulting data were divided into training and validation sets. A subset of the corresponding field and laboratory spectra in the training set (the transfer set) was used to derive the DS transfer matrix, which characterizes the differences between the field and laboratory spectra. Using DS, we transferred the field spectra of the validation samples so that they acquired the characteristics of spectra that were measured in the laboratory. A partial least squares regression (PLSR) of SOM on the laboratory spectra of the training set was then used to predict both the original field spectra and the DS‐transferred field spectra. The assessment statistics of the predictions were improved from R2 = 0.25 and RPD = 0.35 to R2 = 0.69 and RPD = 1.61. We also performed independent predictions of SOM on the DS‐transferred field spectra with a PLSR derived using the Chinese soil spectroscopic database (CSSD), which was developed in the laboratory. The R2 and RPD values of these predictions were 0.70 and 1.79, respectively. Predictions of SOM with the DS‐transferred field spectra were more accurate than those treated with external parameter orthogonalisation (EPO), and more accurate than predictions made by spiking. Our results show that DS can effectively account for the effects of water and environmental factors on field spectra and improve predictions of SOM. DS is conceptually straightforward and allows the use of calibrations made with laboratory‐measured spectra to predict soil properties from proximally sensed (field) spectra, without needing to recalibrate the models.  相似文献   

18.
Three types of spectroscopy were used to examine rice quality: near infrared (NIR), Raman, and proton nuclear magnetic resonance (1H NMR). Samples from 96 rice cultivars were tested. Protein, amylose, transparency, alkali spreading values, whiteness, and degree of milling were measured by standard techniques and the values were regressed against NIR and Raman spectra data. The NMR spectra were used for a qualitative or semiquantitative assessment of the amylose/amylopectin ratio by determining the 1–4 to 1–6 ratio for glucans. Protein can be measured by almost any instrument in any configuration because of the strong relationship between the spectral response and the precision of the reference method. Amylose has an equally strong relationship to the vibrational spectra, but its determination by any reference method is far less precise, resulting in a 10× increase in the standard error of cross‐validation (SECv) or standard error of performance (SEP) with R 2 values equal to that of the protein measurement.  相似文献   

19.
Breeding of high‐quality rice requires quick methods to evaluate the quality characteristics such as milling, grain appearance, nutritional, eating, and cooking qualities. Because routine measurements of these quality traits are time consuming and expensive, a rapid predictive method based on near‐infrared spectroscopy (NIRS) can be applied to measure these quality parameters. In this study, calibration models for measurement of grain quality were developed using a total of 570 brown and milled rice samples. The results indicated that the models developed from the spectra of brown rice for all the quality traits had the coefficient of determination for external validation (R2) larger than 0.64 except for gel consistency. The best model was developed for the protein content, with R2 of 0.94 for external validation. The model for the total score of physicochemical characteristics (TSPC), a comprehensive index reflecting all other traits, had R2 of 0.70 and SD/SEP of 1.70, which indicates that high or low TSPC for a given rice could be discriminated by NIRS. The models developed from brown rice were as accurate as those from milled rice. Results suggest that NIRS‐based predictions for rice quality traits may be used as indicator traits to improve rice quality in breeding programs.  相似文献   

20.
A rapid predictive method based on near-infrared spectroscopy (NIRS) was developed to measure acid detergent fiber (ADF), neutral detergent fiber (NDF), and acid detergent lignin (ADL) of rice stem materials. A total of 207 samples were divided into two subsets, one subset (approximately 136 samples) for calibration and cross-validation and the other subset for independent external validation to evaluate the calibration equations. Different mathematical treatments were applied to obtain the best calibration and validation results. The highest coefficient of determination for calibration (R2) and coefficient of determination for cross-validation (1-VR) were 0.968 and 0.949 for ADF, 0.846 and 0.812 for NDF, and 0.897 and 0.843 for ADL, respectively. Independent external validation still gave a high coefficient of determination for external validation (r2) and a low standard error of performance (SEP) for the three parameters; the best validation results were SEP = 0.933 and r2 = 0.959 for ADF, SEP = 2.228 and r2 = 0.775 for NDF, and SEP = 0.616 and r2 = 0.847 for ADL, indicating that NIR gave a sufficiently accurate prediction of ADF and ADL content of rice material but a less satisfactory prediction for NDF. This study suggested that routine screening for these forage quality parameters with large numbers of samples is possible with NIRS in early-generation selection in rice-breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号