首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The impact of dietary fiber (DF) mixtures on dough thermal properties needs to be investigated when designing high‐fiber wheat bread. Effects of flour replacement at different levels (6–34%) by soluble (inuline [FN]), partially soluble (sugar beet [FX], pea cell wall [SW]), and insoluble (pea hull [EX]) DF on wheat dough thermal profiles have been investigated by simulating baking, cooling, and storage in differential scanning calorimetry (DSC) pans. In general, DF incorporation into water‐flour systems delayed endothermic transition temperatures for both gelatinization and retrogradation phenomena except for the peak temperature (Tp) of retrogradation. With some exception, the pattern of the enthalpy of amylopectin retrogradation was lower and slower (lower constant of proportion, k) over 10 days of storage in gelatinized hydrated flour‐fiber blends when compared with control without DF. FX, a partially soluble fiber, provided major effects on gelatinization (Tp decrease and ΔH increase) and retrogradation kinetics (the Avrami exponent, n, increase). Single presence of EX allowed a significant reduction in the Avrami exponent n leading to slower kinetics for amylopectin retrogradation when included in the blends.  相似文献   

2.
The pasting behavior of flour from several Australian rice (Oryza sativa L.) cultivars, differing in amylose content and grown in three different locations and three seasons, were determined using the Rapid Visco Analyser. Genotype, growth season, and growth location all affected the pasting behavior of rice flour. The amylose content of the same cultivar was significantly higher in the coolest growing season, resulting in RVA traces with lower peak viscosity and higher setback than samples with lower amylose content. When the same cultivar of rice was grown in different locations in the same season, there were no significant differences in the total starch, protein, lipid, and amylose content of the flour, but there were significant differences in the pasting behavior. This indicates that environmental as well as genetic factors influence the pasting behavior of rice flour. Flour from parboiled and quick‐cooking rice did not paste and had low viscosities compared with unprocessed rice. Results from this study showed that the pasting behavior of rice flour was related to genotype and was influenced by environmental factors that brought about subtle changes in the grains that were not picked up by chemical analyses.  相似文献   

3.
不同品种小麦粉的粉质特性对速冻熟制面条品质的影响   总被引:2,自引:3,他引:2  
为研究不同品种小麦粉与速冻熟制面条质构特性之间的关系,选取30种小麦制粉,用FOSS定氮仪、快速黏度仪、粉质仪和拉伸仪等测定面粉品质指标,制作速冻熟制面条,用质构仪测定质构特性。采用描述性统计、主成分和聚类分析方法对30种小麦面粉和速冻熟制面条的质构关系进行了分析。结果表明:不同品种小麦粉的湿面筋、糊化温度、弱化度、粉质质量指数与硬度呈极显著相关(P0.01);蛋白质、湿面筋、总淀粉含量、最终黏度、回生值、糊化温度、粉质吸水率、粉质曲线稳定时间、面团形成时间、弱化度、粉质质量指数、拉伸曲线面积、拉伸阻力、最大拉伸阻力与剪切力呈极显著相关(P0.01);小麦粉的粉质特性,除衰减值、峰值时间和延伸度外,均与拉伸力呈极显著相关(P0.01)。根据方差贡献率提取出可以反映原变量84.023%信息的5个因子,因子1主要反映面粉的粉质拉伸特性,因子2反映小麦粉糊化特性,因子3反映蛋白质特性,因子4和因子5共同反映小麦粉的淀粉特性。这些性状在小麦粉的评价方面起着重要作用,在加工中要注重对它们的选择。聚类分析将30种小麦粉分为4类,结果表明,不能仅凭小麦粉的指标数据和质构数据来选择制作速冻熟制面条的原料,还需考虑到感官评价的影响。该结论可为小麦粉在速冻熟制面条加工应用方面提供一定的理论参考。  相似文献   

4.
The objective was to study the influence of jet‐cooked Prowashonupana barley flour on total phenolic contents, antioxidant activities, water‐holding capacities, and viscoelastic properties. Barley flour was jet‐cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxidant activity decreased after jet‐cooking, while the bound phenolic content and antioxidant significantly increased regardless of pH. Detectable levels of gallic acid, caffeic acid, ferulic acid, and p‐coumaroyl‐pentose in the jet‐cooked barley flour hydrolysates along with vitexin were found among 21 phenolics by LC‐ESI‐Q‐TOF‐MS analysis. Jet‐cooking at an elevated pH resulted in increased pasting viscosities. The oil content was decreased after jet‐cooking and continued to decrease with increased pH values. Jet cooking dramatically increased water holding capacity from 179% for unprocessed flour to 643% for jet‐cooked flour without pH adjustment, and water‐holding capacity was greatly increased to 914% by jet‐cooking at pH 11. The combination of jet‐cooking and pH adjustment had tremendous influence on water‐holding and pasting properties. This increase in functionality should contribute to food applications such as bakery and frozen products because of the release of the bound phenolic content, antioxidant activities, and improved water‐holding and pasting abilities.  相似文献   

5.
《Cereal Chemistry》2017,94(5):881-886
In this study, the impact of characteristics (physicochemical, rheological, and pasting properties) of different wheat flours on the quality of frozen cooked noodles was investigated. In this sample set, results showed the cooking loss of noodles related negatively to flour swelling power. The water absorption of noodles related negatively to the dough stability time, the area, and the resistance to extension. The wheat flour with higher dough development time resulted in frozen cooked noodles with higher hardness, chewiness, and adhesiveness. Springiness of noodles correlated negatively to degree of softening. The tensile properties of frozen cooked noodles were influenced by rheological and pasting properties of wheat flours. The present study indicated high quality of frozen cooked noodles demanded wheat flours with high dough gluten strength, peak viscosity, and final viscosity and with low pasting temperature.  相似文献   

6.
为了提高米粉的营养价值,本研究将不同粒径的豌豆粉添加到米粉中,分析不同粒径及添加量(0%、7.5%、15%、30%)对大米粉粉质特性及米粉蒸煮、质构和感官特性的影响。结果表明,添加豌豆粉可以增加米粉中蛋白质的含量,添加30%豌豆粉后米粉的蛋白质含量为原米粉的1.73倍。豌豆粉的添加降低了米粉的峰值黏度、最终黏度和回生值,提高了米粉冷糊稳定性,使米粉不易老化。随着豌豆粉添加量的增加,米粉的硬度与蒸煮损失逐渐增大,感官品质降低。豌豆粉的粒度对米粉品质影响较大,当豌豆粉添加量相同时,添加200目豌豆粉的米粉蒸煮损失比添加80目豌豆粉降低9.08%~20.73%;感官评价总分提高1.35%~10.43%。综上,通过降低豌豆粉的粒度可以制备出豌豆粉添加量为30%的品质较好的米粉。本研究结果为营养健康型米粉的开发提供了一定的理论基础。  相似文献   

7.
Wheat landraces possess a wide diversity in starch physical properties that could be useful in breeding for improved quality of specific products, such as various types of Asian noodles. The pasting properties (using a Rapid Visco-Analyser [RVA]) and flour swelling volume (FSV, using silver nitrate to inactivate α-amylase activity) of wholemeal, were measured for 242 hexaploid accessions of Iranian landrace wheat. FSV values and the peak viscosities were positively correlated (r = 0.73***). FSV values in the landraces ranged from 8.3 to 15.9 mL/g and peak viscosities ranged from 139 to 305 RVA units (RVU). In comparison, FSV of cvs. Eradu and Klasic were 18.6 and 15.0 mL/g, and peak viscosities were 355 and 303 RVU, respectively. Of the landraces, Iranian Wheat Accession (IWA) 8602488 had the highest peak viscosity (305 RVU) and exceptionally high hot- and cool-paste viscosities. Two accessions, IWA 8602430 and 8600544, displayed pasting characteristics considered desirable for high-quality Japanese white-salted noodles. Four landraces were identified that had starch with unusually high resistance to shearthinning. Texture profile analysis was done on the wholemeal gels formed in the RVA canister. The variation in parameters such as hardness, chewiness, and adhesiveness in the landraces greatly exceeded that in the cultivars. The hot-paste viscosity, breakdown, setback, and final viscosity values, but not the peak viscosity or FSV, were highly significantly correlated with the hardness, chewiness, and adhesiveness of the gel. The Iranian landraces appear to present useful genetic variation for developing wheats for special uses.  相似文献   

8.
Pasting profiles of selected starches were compared by using a Micro Visco‐Amylo‐Graph (MVA) and a Rapid Visco Analyser (RVA). Effects of cooking (heating/cooling) rate and stirring speed on starch pasting properties were examined. The pasting viscosity of a starch suspension (8%, w/w, dsb) was measured at a fast (6°C/min) and slow (1.5°C/min) cooking rate while being stirred at either 75 rpm or 160 rpm. The pasting temperatures (PT) of all starches were higher when measured at the fast cooking rate than those at the slow cooking rate, except for wheat measured by using the RVA. PT was also higher when measured at the slow stirring speed (75 rpm) than at the fast stirring speed (160 rpm) in both RVA and MVA. When stirring speed increased from 75 rpm to 160 rpm, peak viscosity of all starch pastes except potato decreased measured by using the RVA, but increased by using the MVA. In general, amylograms of these starches obtained by using the MVA showed less breakdown, but greater setback viscosity than did that obtained by using the RVA. Differences in starch pasting properties between MVA and RVA, measured at the same cooking and stirring rates, were attributed mainly to the difference in spindle structure.  相似文献   

9.
This study evaluated the blending of flours made from an Ontario hard red winter wheat (HWF) and an Ontario soft red winter wheat (SWF) and compared it with a commercial standard noodle flour (control) made from Canadian Western Hard Red Spring wheat to assess the impact on white salted noodle‐making performance and texture of cooked noodles. Flour characteristics, gluten aggregation, and starch pasting properties were assessed with a farinograph, GlutoPeak tester, and Rapid Visco Analyzer, respectively. The machinability of dough was evaluated with an SMS/Kieffer rig attached to a TA.XT Plus texture analyzer. Tensile and bite tests of cooked noodles were also conducted. Blending HWF with standard noodle flour decreased gluten strength and dough extensibility linearly proportional to the blend ratio, whereas a curvilinear response from blending SWF with standard noodle flour was observed. HWF demonstrated more favorable pasting properties except for lower peak viscosity for noodle making than standard noodle flour. Below a 20% blend ratio with HWF, no significant changes were seen on dough extensibility, cooking loss, tensile properties, and bite testing parameters of cooked noodles. It can be concluded that blending HWF up to a 20% level caused no significant change in the processing properties of dough and cooked noodle quality. The results also showed that the GlutoPeak tester is a sensitive tool for evaluating gluten strength in wheat flour.  相似文献   

10.
The effects of ferulic acid and catechin on starch pasting properties were studied as part of an investigation into the structure and functionality of phenolics in starch‐based products. Commercial maize starch, starches from sorghum cultivars (SV2, Chirimaugute, and DC‐75), and the phenolic compounds ferulic acid and catechin were used in the investigation. Pasting properties were measured using rapid viscosity analysis. Ferulic acid and catechin (up to 100 mg each) were added to maize or sorghum starch (3 g, 14% mb) in suspensions containing 10.32% dry solid content. Addition of catechin resulted in pink‐colored pastes, whereas ferulic acid had no effect on paste color. Ferulic acid and catechin decreased hot paste viscosity (HPV), final viscosity, and setback viscosity of maize and sorghum starch pastes, but had no influence on the peak viscosity (PV) of the former. Both phenolics increased breakdown viscosity. Ferulic acid had greater influence on HPV, final viscosity, breakdown, and setback than catechin. Addition of catechin under acidic conditions (pH 3) decreased HPV, final viscosity, and setback of maize starch, but alkaline conditions (pH 11) slightly increased setback. Both acidic and alkaline conditions resulted in increased breakdown. Investigations on model‐system interactions between ferulic acid or catechin and starch demonstrated that phenolic type and pH level both significantly influence starch pasting properties, with ferulic acid producing a more pronounced effect than catechin. The significance of these interactions is important, especially in food matrices where phenolics are to be added as functional food ingredients.  相似文献   

11.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

12.
Pasting, rheological, and water‐holding properties of buckwheat (Fagopyrum esculentum) flour obtained from whole achenes separated into three particle sizes, and three commercial flours (Fancy, Supreme, and Farinetta) were measured with or without jet‐cooking. Fancy had instantaneous paste viscosity (measured using RVA) after jet‐cooking that was not observed for Supreme or Farinetta, and paste viscosity was lower for the latter two flours. Supreme jet‐cooked flour exhibited higher peak viscosity than flour without jet‐cooking, and paste exhibited high shear‐thinning. Fancy exhibited strongest viscoelastic properties (measured using a rheometer). Jet‐cooking damaged buckwheat flour structure, thereby reducing viscoelasticity. Buckwheat flour pastes experienced shear‐thinning over a wide range of shear rates. Jet‐cooking greatly enhanced water‐holding capacity. Buckwheat flour particle size did not greatly influence paste viscosity. Study showed buckwheat flours have unique pasting and rheological characteristics that have different food applications, which could especially be useful for people with celiac disease as buckwheat is gluten‐free.  相似文献   

13.
Brown rice was blasted with rice flour rather than sand in a sand blaster to make microperforations so that water could easily penetrate the brown rice endosperm and cook the rice in a shorter time. The flour‐blasted American Basmati brown rice, long‐grain brown rice, and parboiled long‐grain brown rice samples were stored in Ziploc storage bags under atmospheric conditions and in vacuum‐packed bags. They were periodically tested for over 10 months for changes in water absorption, free fatty acid (FFA), peroxide value (POV), viscosity changes of flour using the Rapid ViscoAnalyser (RVA), and texture of whole cooked kernel using a texture analyzer during cooking. Flour‐blasted brown rice absorbed less water but needed less cooking time than its counterpart that was not flour‐blasted. There was an increase in FFA, POV, peak viscosity (PV), final viscosity (FV), breakdown viscosity (BD), and setback viscosity (SB) during storage of flour‐blasted brown rice for 300 days, but no change was observed in texture (hardness, gumminess) and water absorption. The combined coefficient of correlation (including all types of rice) between FFA and FV is r = 0.86 and between FFA and SB is r = 0.90 at P < 0.0001.  相似文献   

14.
Whole grain oats are widely regarded as conferring significant health benefits. Composite flour of whole grain oat flour, wheat flour, and tapioca starch in the ratio 1:1:0.16 was formulated to make oat noodles with the addition of gluten at various levels. The influence of gluten on pasting and gelling properties of composite flour, and on cooking, textural, and sensory properties of salted oat noodles was evaluated. Addition of gluten decreased the paste viscosity, reduced hardness and springiness of gel, reduced cooking yield, cooking loss, and broken ratio during cooking, and increased the tensile strength and firmness of cooked noodles. Scanning electron microscopy showed that gluten tightened the network of protein in the noodles by forming oriented fibrils. Addition of gluten had little effect on the color of raw and cooked oat noodles, which were somewhat yellow. Sensory evaluation indicated that addition of gluten could enhance the overall acceptability of cooked oat noodles. This study may stimulate further interest in using functional whole grain cereal ingredients in developing healthy staple foods.  相似文献   

15.
Milling method and particle size affect some properties of rice flour. To prepare ultra‐fine rice flour of <30 μm, hammer and dry jet grinding methods were examined and the effect of particle size on starch damage and pasting properties of the flour were elucidated. A jet mill could make finer flour (<10 μm mean size) with a narrower particle size distribution than a hammer mill could. Starch damage increased dramatically at a mean size of <10 μm. Particles of a similar size (<60 μm) had different levels of starch damage between mills. Not only the particle size, but also the milling method affected the level of damaged starch. Flour samples of ≥45 μm mean size had similar viscosity curves, but samples of <20 μm had different curves. Peak viscosity and final viscosity decreased sharply at <10 μm. Setback viscosity for particles of 3 μm from both brown rice and white rice were higher than the peak viscosity. Stability to heat and shearing stress were decreased for <20 μm flours as the breakdown viscosities decreased. Starch damage and pasting properties of flour ground from the nonwaxy japonica cultivar Koshihikari changed dramatically at a mean size of <10 μm.  相似文献   

16.
We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy, and waxy endosperm, as well as hard wheat, were tested for amylose content, pasting properties, and SC baking quality. Starches isolated from wheat flours of normal, single‐null partial waxy, double‐null partial waxy, and waxy endosperm were also tested for pasting properties and baked into SC. Double‐null partial waxy and waxy wheat flours produced SC with volume of 828–895 mL, whereas volume of SC baked from normal and single‐null partial waxy wheat flours ranged from 1,093 to 1,335 mL. The amylose content of soft white and club wheat flour was positively related to the volume of SC (r = 0.790, P < 0.001). Pasting temperature, peak viscosity, final viscosity, breakdown, and setback also showed significant relationships with SC volume. Normal and waxy starch blends having amylose contents of 25, 20, 15, and 10% produced SCs with volume of 1,570, 1,435, 1,385, and 1,185 mL, respectively. At least 70 g of starch or at least 75% starch in 100 g of starch–gluten blend in replacement of 100 g of wheat flour in the SC baking formula was needed to produce SC having the maximum volume potential. Starch properties including amylose content and pasting properties as well as proportion of starch evidently play significant roles in SC baking quality of wheat flour.  相似文献   

17.
谢新华  李晓方  肖昕 《核农学报》2009,23(1):114-117
在6个不同品种的稻米粉中添加二硫苏糖醇以打破米粉中蛋白质的二硫键,用快速粘度分析仪测定淀粉的黏滞谱,研究稻米中蛋白质二硫键对稻米黏滞性的影响。结果显示,样品中添加DTT(二硫苏糖醇)后,糊化温度降低,糯稻的峰值粘度下降,其他样品的峰值粘度上升,而消减值极显著降低。蛋白质影响米饭的蒸煮食味品质,可能是二硫键结合形成的蛋白质网络的变化引起稻米吸水性改变而起作用。  相似文献   

18.
The role of proteins in the pasting and cooking properties of non‐parboiled (npb) and parboiled (pb) rice was tested by means of a reducing agent dithiothreitol (DTT) and a protease (trypsin). DTT increased the swelling power and carbohydrate leaching of flour from npb rice flour but decreased its amylose leaching. Although DTT slightly increased the Rapid Visco Analyser (RVA) viscosity at the initial stages of the pasting process, it decreased RVA viscosity in the further phases of the experiment. Preincubation of flour with a trypsin decreased RVA viscosity along the whole temperature profile. Addition of DTT to the cooking water decreased water absorption and rice hardness and increased leaching of solids during cooking and stickiness of the cooked npb rice. Addition of DTT to the cooking water of flour from pb rice increased swelling power, carbohydrate leaching, and amylose leaching. Addition of DTT also increased RVA viscosity. Preincubation with trypsin had a similar effect but the changes were less pronounced. Addition of DTT increased stickiness of cooked pb rice and increased water absorption and leaching of solids during cooking. Taken together, the results provide evidence for the existence of a protein barrier affecting starch swelling, rheological, and cooking properties of both npb and pb rice.  相似文献   

19.
The effects of moisture, screw speed, and barrel temperature on pasting behavior of refabricated rice grains were investigated in a corotating twin‐screw extruder with response surface methodology. The rice flour obtained from broken rice (≤1/8 of actual kernel size) of PR‐116 variety was used in the study. The screw speed was set at five levels between 49 and 150 rpm, barrel temperature between 59 and 110°C, and feed moisture between 31 and 45%. All pasting properties of refabricated grains evaluated—peak viscosity, hold viscosity, breakdown viscosity, final viscosity, and setback viscosity—were significantly (P < 0.01) affected by the three process variables. Barrel temperature was the most significant variable, with quadratic effect on all viscosity parameters. Response surface regression models were established to correlate the viscosity profile of refabricated rice grains to the process variables. The optimum moisture content, screw speed, and barrel temperature estimated by a response surface of desirability function for the production of refabricated rice were 36%, 130 rpm, and 89.5°C, respectively. Scanning electron microscopy also revealed that intermediate moisture and temperature along with high screw speed during extrusion could create a more realistic appearance of refabricated rice with less rupture of starch granules.  相似文献   

20.
The objective of this study was to compare the structure and properties of flours and starches from whole, broken, and yellowed rice kernels that were broken or discolored in the laboratory. Physicochemical properties including pasting, gelling, thermal properties, and X‐ray diffraction patterns were determined. Structure was elucidated using high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). The yellowed rice kernels contained a slightly higher protein content and produced a significantly lower starch yield than did the whole or broken rice kernels. Flour from the yellowed rice kernels had a significantly higher pasting temperature, higher Brabender viscosities, increased damaged starch content, reduced amylose content, and increased gelatinization temperature and enthalpy compared with flours from the whole or the broken rice kernels. However, all starches showed similar pasting, gelling, thermal properties, and X‐ray diffraction patterns, and no structural differences could be detected among different starches by HPSEC and HPAEC‐PAD. α‐Amylase may be responsible for the decreased amylopectin fraction, decreased apparent amylose content, and increased amounts of low molecular weight saccharides in the yellowed rice flour. The increased amount of reducing sugars from starch hydrolysis promoted the interaction between starch and protein. The alkaline‐soluble fraction during starch isolation is presumed to contribute to the difference in pasting, gelling, and thermal properties among whole, broken, and yellowed rice flours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号