首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Four pearl millet genotypes were tested for their potential as raw material for fuel ethanol production in this study. Ethanol fermentation was performed both in flasks on a rotary shaker and in a 5‐L bioreactor using Saccharomyces cerevisiae (ATCC 24860). For rotary‐shaker fermentation, the final ethanol yields were 8.7–16.8% (v/v) at dry mass concentrations of 20–35%, and the ethanol fermentation efficiencies were 90.0–95.6%. Ethanol fermentation efficiency at 30% dry mass on a 5‐L bioreactor reached 94.2%, which was greater than that from fermentation in the rotary shaker (92.9%). Results showed that the fermentation efficiencies of pearl millets, on a starch basis, were comparable to those of corn and grain sorghum. Because pearl millets have greater protein and lipid contents, distillers dried grains with solubles (DDGS) from pearl millets also had greater protein content and energy levels than did DDGS from corn and grain sorghum. Therefore, pearl millets could be a potential feedstock for fuel ethanol production in areas too dry to grow corn and grain sorghum.  相似文献   

2.
To evaluate the ethanol production performance of waxy sorghum hybrids and the effects of location and harvest year on ethanol yield, samples of four waxy sorghum hybrids collected from two Nebraska locations (Mead and Lincoln) in both 2009 and 2010 were tested for ethanol production in a dry‐grind process. No significant difference (P = 0.216) in starch contents was observed among the four hybrids, but starch contents of the hybrids were significantly affected by growth location (P = 0.0001) and harvest year (P = 0.0258). Location, hybrid, and harvest year all had significant effects on ethanol fermentation efficiency in the dry‐grind process. Lincoln sorghum samples showed higher (P = 0.022) ethanol fermentation efficiency (90.4%) than did Mead sorghum samples (90.0%). Sorghums harvested in 2010 had higher (P < 0.001) ethanol fermentation efficiency (91.1%) than those harvested in 2009 (89.3%). The 2009 sorghum flours had more amylose‐lipid complexes than the 2010 samples did, and amylose‐lipid complexes as previously reported had adverse effects on ethanol fermentation. Residual starch contents in distillers dried grains with solubles (DDGS) were significantly affected by hybrid and harvest year (P < 0.0001), but we observed no difference in protein content in DDGS from the four hybrids.  相似文献   

3.
Aqueous dispersions (2 mg/mL) of debranched corn starches of different amylose contents (waxy, normal, and high‐amylose) were subjected to extensive autoclaving and boiling‐stirring, and then the changes in starch chain profile were examined using medium‐pressure, aqueous, size‐exclusion column chromatography. As autoclaving time increased from 15 to 60 min, weight‐average chain length (CLw) of waxy, normal, and high‐amylose corn starches determined using pullulan standards decreased from 46 to 41.2, from 122.1 to 96.3, and from 207.3 to 151.8, respectively. Number‐average chain length (CLn) measured by the Nelson‐Somogyi method also decreased from 23.0 to 18.4, from 26.4 to 21.8, and from 66.5 to 41.5, respectively, indicating that thermal degradation of starch chains occurred. The CLw/CLn ratio for normal corn starch was higher than that for waxy corn starch, indicating an increase in polydispersity of the amylose fraction. Thermal degradation was also observed when the debranched starch was subjected to the boiling‐stirring treatment (0–96 hr). During 96 hr, the CLw and relative proportion of B≥2 chains of amylopectin released by debranching waxy corn starch increased, whereas those of B1 chains decreased. This change may indicate physical aggregation of B1 chains. But branches from normal and high‐amylose corn starches showed increases in CLw and the proportion of both B1 and B≥2 chains, along with substantial decreases in those of amylose chains. Therefore, thermal degradation of amylose was greater than that of amylopectin.  相似文献   

4.
The objective of this research was to investigate the fermentation performance of waxy grain sorghum for ethanol production. Twenty‐five waxy grain sorghum varieties were evaluated with a laboratory dry‐grind procedure. Total starch and amylose contents were measured following colorimetric procedures. Total starch and amylose contents ranged from 65.4 to 76.3% and from 5.5 to 7.3%, respectively. Fermentation efficiencies were in the range of 86.0–92.2%, corresponding to ethanol yields of 2.61–3.03 gallons/bushel. The advantages of using waxy sorghums for ethanol production include easier gelatinization and low viscosity during liquefaction, higher starch and protein digestibility, higher free amino nitrogen (FAN) content, and shorter fermentation times. The results showed a strong linear relationship between FAN content and fermentation rate. Fermentation rate increased as FAN content increased, especially during the first 30 hr of fermentation (R2 = 0.90). Total starch content in distillers dried grains with solubles (DDGS) was less than 1% for all waxy varieties.  相似文献   

5.
Efficiently utilizing the nongrain portion of the corn plant as ruminant food and the grain for ethanol will allow the optimization of both food and fuel production. Corn and corn stover could be more effectively used if they were harvested earlier before dry down. Corn harvested at different moisture contents (MCs) may exhibit different processing characteristics for the ethanol industry, because of differences in physical and chemical properties. Therefore, the objective of this study was to investigate the effect of corn harvest MC on dry‐grind fermentation characteristics and dried distillers grains with solubles (DDGS) composition. Pioneer hybrid 32D78 was harvested at seven different dates from August 21 to November 23, 2009, with harvest MCs ranging from 73 to 21% (wb). The corn samples with different harvest MCs were evaluated by a conventional dry‐grind process. Final ethanol concentration from the corn with harvest MC of 54% (kernel dent stage) was 17.9% (v/v), which was significantly higher (0.5–1.2 percentage points) than the mature corn with lower harvest MCs (P < 0.05). Ethanol conversion efficiencies for the corn with harvest MCs of 73 and 54% (wb) were 98.5 and 93.2%, respectively, whereas ethanol conversion efficiencies for the corn with lower harvest MCs were significantly lower (P < 0.05), ranging between 83.2 and 88.3%. For DDGS composition, with corn harvest MC decreasing from 73 to 21% (wb), the residual starch concentration increased from 7.7 to 15.2%, the crude protein concentration decreased from 29.4 to 24.9%, and the neutral detergent fiber concentration decreased from 26.6 to 20.6%.  相似文献   

6.
Dent corn (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) sample sets representative of commonly grown hybrids and diverse physical attributes were analyzed for alkaline cooking performance. The influence of kernel characteristics including hardness, density, starch properties (thermal, pasting, and crystallinity), starch content, protein content, and prolamin content on alkaline cooking performance was also determined. Corn nixtamal moisture content was lower for hard, dense kernels with high protein contents; sorghum nixtamal moisture content was lower for kernels with low moisture contents and low starch relative crystallinities. Statistically significant (P < 0.05) regression equations showed that corn nixtamal moisture content was influenced by TADD (tangential abrasive dehulling device) index, kernel moisture content, starch content, and protein content; sorghum nixtamal moisture content was influenced by starch relative crystallinity, kernel moisture content, and abrasive hardness index. Pericarp removal was not strongly correlated with kernel characterization tests. Location (environmental) and hybrid (genetic) factors influenced most kernel characteristics and nixtamalization processing variables.  相似文献   

7.
Starch was isolated from 95 sorghum landraces from Zimbabwe using an alkali steep and wet‐milling procedure. The physicochemical properties of sorghum starch were examined for potential use in Southern Africa. All the landraces evaluated had a normal endosperm indicated by the amylose content of the starches. Starch properties were not correlated to most of the physical grain quality traits evaluated. Grain hardness was weakly correlated to starch gel adhesiveness (r = 0.36) and amylose content (r = 0.38) (P < 0.001). The mean peak viscosity (PV) of the sorghum starches was 324 Rapid Visco Analyser units (RVU) compared with 238 RVU in a commercial corn starch sample; PV was 244–377 RVU. Some landraces had low shear‐thinning starches, implying good paste stability under hot conditions. Pasting properties were highly correlated among the sorghum starches. The starch gel hardness showed considerable variation (44–71 g) among the landraces. Gelatinization peak temperatures were 66–70°C. The thermal properties of starches were not correlated with starch swelling and pasting properties. Genotype grouping by highest and lowest values in each category would allow selection of sorghums based on a specific attribute depending on the desired end use.  相似文献   

8.
Starch is often added to batters to improve the texture and appearance of fried food products. However, comparisons of commercially available starches in terms of batter characteristics are rare. In this study, various corn starches, native or modified, were mixed with wheat flour (20% dry solids basis), and the physical properties of the batters after deep-fat frying were examined. Native corn starches of different amylose contents (high-amylose, normal, and waxy) and chemically modified corn starches (oxidized and cross-linked) were tested. The batter was prepared by adding water to the starch-flour mixtures (42% solids) and deep-fat frying at 180°C for 30 sec. The texture of the fried batter was analyzed using a texture analyzer (TA) with a Kramer shear cell. The pasting viscosity profile of the starch-flour mixtures (7% solids in water) was also measured with a Rapid Visco Analyser. When the native corn starches of different amylose contents were compared, the crispness (peak number before breakage) and hardness (maximum peak force) measured using the instrument were positively correlated with the amylose content in starches but negatively correlated with the residual moisture content of the fried batters. The peak viscosity and breakdown in viscosity profiles of the starch-flour mixtures were also negatively correlated with crispness. The use of high-amylose corn starch was effective not only in increasing the crispness, but also in reducing the oil uptake. However, the fried batter containing high-amylose starch was denser and harder than the batter containing normal starch. Among the modified starches tested, oxidized (0.4% active Cl2) and cross-linked (4% 99:1 mixture of STMP and STPP) starches showed improvements in the overall properties of the fried batters. With excessive oxidizations (>0.4% Cl2), however, the crispness was reduced.  相似文献   

9.
This study aimed to characterize and compare the chemical structures, physical properties, and enzymatic hydrolysis rates of five sorghum starches (6B73, 6C21, 6C69, 7R34, and X789) with that of corn starch (B73). Sorghum kernels consisted of 68.7-70.6% starch, more than the B73 corn (67.4%). Sorghum starches displayed higher gelatinization temperatures (66.6-67.4 °C), greater gelatinization enthalpy changes (13.0-14.0 J/g), and greater percentages of retrogradation (60.7-69.1%), but slower enzymatic hydrolysis rates (83.8-87.8% at 48 h) than the B73 corn starch (61.7 °C, 10.1 J/g, 51.5%, and 88.5%, respectively). These differences could result from the sorghum amylopectins consisting of fewer short branch chains (DP 6-12) (12.8-14.0%) than the corn amylopectin (15.0%). The sorghum starches showed greater peak and breakdown viscosities but lower setback viscosities than the B73 corn starch, resulting from the lower amylose content of the sorghum starches. After 96 h of fermentation, most ground sorghums exhibited lower ethanol yields (30.5-31.8%) than the ground B73 corn (31.8%).  相似文献   

10.
Corn hybrids were compared to determine the fate of recombinant Bt protein (CRY1Ab from Bacillus thuringiensis) in coproducts from dry grind and wet‐milled corn during production of fuel ethanol. Two pairs of Bt and non‐Bt hybrids were wet milled, and each fraction was examined for the presence of the Bt protein. Bt protein was found in the germ, gluten, and fiber fractions of Bt hybrids. In addition, one set of Bt and non‐Bt hybrids were treated by the dry‐grind ethanol process and Bt protein was monitored during each step of the process. The Bt protein was not detected after liquefaction. Subsequent experiments determined that the Bt protein is rapidly denatured at liquefaction temperatures. Finally, five hybrids were compared for ethanol yield after dry grinding. Analysis of fermentation data with an F‐test revealed the percent of total starch available for conversion into ethanol varied significantly among the hybrids (P < 0.002), indicating ethanol yield is not exclusively dependent on starch content. No difference, however, was observed between Bt and non‐Bt corn hybrids for either ethanol productivity or yield.  相似文献   

11.
Effects of phytase addition, germ, and pericarp fiber recovery were evaluated for the E‐Mill dry grind corn process. In the E‐Mill process, corn was soaked in water followed by incubation with starch hydrolyzing enzymes. For each phytase treatment, an additional phytase incubation step was performed before incubation with starch hydrolyzing enzymes. Germ and pericarp fiber were recovered after incubation with starch hydrolyzing enzymes. Preliminary studies on phytase addition resulted in germ with higher oil (40.9%), protein (20.0%), and lower residual starch (12.2%) contents compared to oil (39.1%), protein (19.2%), and starch (18.1%) in germ from the E‐Mill process without phytase addition. Phytase treatment resulted in lower residual starch contents in pericarp fiber (19.9%) compared to pericarp fiber without phytase addition (27.4%). Results obtained led to further investigation of effects of phytase on final ethanol concentrations, germ, pericarp fiber, and DDGS recovery. Final ethanol concentrations were higher in E‐Mill processing with phytase addition (17.4% v/v) than without addition of phytase (16.6% v/v). Incubation with phytases resulted in germ with 4.3% higher oil and 2.5% lower residual starch content compared to control process. Phytase treatment also resulted in lower residual starch and higher protein contents (6.58 and 36.5%, respectively) in DDGS compared to DDGS without phytase incubations (8.14 and 34.2%, respectively). Phytase incubation in E‐Mill processing may assist in increasing coproduct values as well as lead to increased ethanol concentrations.  相似文献   

12.
Normal (25% amylose) and high-amylose (70% amylose) corn starches (CS and HA) were hydroxypropylated to 0.1 degree of molar substitution (MS) with propylene oxide in an alkaline-ethanol medium (70% ethanol). CS and hydroxypropylated corn starch (HPCS) were mixed on dry basis with water and glycerol at a weight ratio of 7:2:1, and HA and hydroxypropylated high amylose corn starch (HPHA) were mixed at 7:3:1. Stearic acid, glycerol monostearate, or lecithin (3%, based on starch) was added to each mixture to examine the effects on the physical properties of the extrudate. The starch mixtures were extruded at high shear (100 rpm) to nonexpanded strands using a corotating twin-screw extruder in a temperature range of 75–90°C. HA, alone and with all additives, showed lower die swelling in extrusion than did CS, whereas HPCS and HPHA showed higher die swelling than the corresponding unmodified starches. Water absorption of all HA extrudates was lower than those of all CS extrudates (22–35% and 68–97%, respectively, at 25°C). Hydroxypropylation increased the absorption for both starches. All extruded starches, regardless of additives, showed low solubility in water (0.1–1.0% for 2 hr at 25°C). Differential scanning calorimetry indicated that during extrusion, the lipid additives formed a helical complex with amylose in CS and HA, but weakly with HPCS and HPHA. The extruded strands of HA, alone and with additives, exhibited higher tensile and bending strengths (37.1–58.4 and 2.16–5.07 MPa, respectively), compared to the CS strands (12.5–59.3 and 1.06–4.10 MPa, respectively) at the same moisture content (7.5–8.5%). Both tensile strength and percent of elongation of the starch strands were reduced by the presence of a lipid additive. Hydroxypropylation increased elongation and flexibility of the extrudates. HPHA exhibited the greatest mechanical strength and flexibility among the tested starches.  相似文献   

13.
The structure and physicochemical properties of waxy, common, and high‐amylose corn starch phosphates prepared by oven heating were studied. Starch phosphates prepared by either slurry or dry‐mixing treatment before oven heating were also compared. The slurry treatment more efficiently incorporated phosphorus into starch relative to the dry‐mixing treatment under the reaction conditions studied. In general, the phosphorylated starch prepared by the slurry treatment exhibited a lower gelatinization temperature, a higher peak viscosity, a lesser degree of retrogradation, and improved freeze‐thaw stability compared with those prepared by the dry‐mixing treatment. Phosphorylation occurred probably in both amylose and amylopectin, and the amount and location of incorporated phosphate groups varied with starch types likely due to their different amylose and amylopectin contents. Waxy starch was more prone to phosphorylation, followed by common and high‐amylose starches, respectively.  相似文献   

14.
The objective of this research was to evaluate the effect of thermomechanical extrusion and particle size (PS) reduction on the bioconversion rate of corn fiber for ethanol production. Extrusion was conducted at a screw speed of 300 rpm, feed rate of 120 g/min, feed moisture content of 30%, melt temperature of 140°C, and die diameter of 3 mm. Raw and extruded corn fiber were separated into three different PSs (1 > PS ≥ 0.5, 0.5 > PS ≥ 0.3, and 0.3 > PS ≥ 0.15 mm) with a wire sieve. Extrusion pretreatment and PS reduction resulted in a significant (P < 0.05) difference in physical properties and color values of extruded corn fiber as a result of accelerated degradation of corn fiber structure. Significant increase in water solubility index of extruded corn fiber at 0.3 > PS ≥ 0.15 mm was an indication of high degradation of starch during extrusion for higher release of polysaccharides. Moreover, extruded corn fiber at PS reduction 0.3 > PS ≥ 0.15 mm also significantly increased (P < 0.05) ethanol yield (69.11 g/L) and conversion (68.18%) by increasing protein digestibility and free amino nitrogen, which are essential for higher fermentation efficiency.  相似文献   

15.
The morphology and microstructure of starch granules from two cultivars of triticale and from normal corn were characterized using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Compared to numerous pores distributed randomly on the surfaces of corn starch granules, markedly fewer pores were observed on the surfaces of starch granules isolated from Pronghorn triticale, and even fewer on the surfaces of starch granules isolated from Ultima triticale. CLSM with fluorescence staining revealed that starch‐associated protein was predominately distributed on the granule surface and in the internal channels of both triticale and corn starches. However, after triticale starch was treated with SDS or SO2, the radially oriented, protein‐filled internal channels of the granules were observed more frequently and extended to the central region of granules. Phospholipid was located mainly on the granule surface but also in channels and throughout granules in triticale starches, whereas in corn starch granules, it was mainly in the channels. The amount of protein and phospholipid in chemically and protease‐treated starches varied with starch source and treatment conditions. In treated triticale starches, the nitrogen content was positively correlated with the phosphorus content, indicating a close association between protein and phospholipid within starch granules. Starch‐associated protein and phospholipid may play an important role in maintaining the structural stability of both the granule surface and the internal channels.  相似文献   

16.
Nine grain sorghum cultivars with a broad range of ethanol fermentation efficiencies were selected to characterize the changes in sorghum protein in digestibility, solubility, and microstructure during mashing and to relate those changes to ethanol fermentation quality of sorghum. Mashing reduced in vitro protein digestibility considerably, and a large amount of polymers cross-linked by disulfide bonds were developed during mashing. As a marker of cross-linking, protein digestibility of the original samples was highly related to conversion efficiency. gamma-Kafirin (%) neither correlated to ethanol yield nor conversion efficiency significantly. Solubility of proteins in an alkaline borate buffer in conjunction with SDS decreased substantially after mashing. Solubility and the SE-HPLC area of proteins extracted from mashed samples were highly correlated with ethanol fermentation. Ethanol yield increased and conversion efficiency improved notably with the increase of extracted proteins from mashed samples. SE-HPLC total area could be used as an indicator to predict ethanol fermentation. CFLSM images proved that sorghum proteins tended to form highly extended, strong web-like microstructures during mashing. The degree of protein cross-linking differed among samples, and more open microstructures were observed in samples with higher conversion efficiencies. The web-like protein matrix was found to hold not only starch granules but also some oligosaccharides or polysaccharides inside. The formation of web-like microstructures because of cross-linking reduced conversion efficiency.  相似文献   

17.
Widespread epidemics of Stenocarpella ear rot (formerly Diplodia ear rot) have occurred throughout the central U.S. Corn Belt in recent years, but the influence of S. maydis infected grain on corn ethanol production is unknown. In this study, S. maydis infected ears of variety Heritage 4646 were hand‐harvested in 2010 from a production field in central Illinois and segregated into one of five levels of ear rot severity based upon visual symptoms. The concentration of ergosterol, a sterol produced by fungi but not plants, was observed to increase with the severity of ear rot (127–306.5 μg/g), and none was detected in the control corn. Corn test weight declined with progression of the disease and was 42.6% lower for the most severely rotted grain from ears infected early in their development. Accompanying changes in composition were also apparent. Crude fat and oil contents decreased (from 4.7 to 1.5%) and fiber increased (from 6.6 to 9.6%), but starch content remained largely invariant. Oil composition also varied among the infected samples. Control and infected corn samples were subjected to ethanol fermentation with a laboratory‐scale corn dry‐grind ethanol process. Ethanol yields for control and infected samples were similar on an equivalent weight basis (2.77–2.85 gal/bu). In comparison with the control, S. maydis infection altered the distillers dried grains with solubles (DDGS) properties, wherein the crude protein was significantly higher and oil significantly reduced, and ash, fiber, and yield per ton were not significantly different. Based upon these results, we conclude that Stenocarpella ear rot has the potential to affect DDGS composition but not ethanol yield on an equivalent weight basis.  相似文献   

18.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

19.
We studied the effect of sorghum decortication and protease treatment on starch hydrolysis before liquefaction with thermoresistant α-amylase and the generation of free amino nitrogen (FAN) in preparation for subsequent steps of ethanol production. A bifactorial experiment with a level of confidence of P < 0.05 was designed to study differences among maize, whole sorghum, and decorticated sorghum and the effectiveness of the protease treatment before starch liquefaction. Sorghum was decorticated 9.7% to remove most of the pericarp and part of the germ and increase starch concentration. Starch concentration increased in decorticated kernels, whereas total phenols, fiber, and fat decreased. The decorticated sorghum had significantly higher starch and protein hydrolysis compared with the whole kernel. Protease treatment before liquefaction improved the rate of starch hydrolysis, especially in mashes from whole and decorticated sorghums. Whole and decorticated sorghum hydrolyzates treated with protease contained ≈50% more reducing sugars than the untreated counterparts. Maize yielded hydrolyzates with the the highest amount of FAN, followed by decorticated and whole sorghums. The maize and both sorghum hydrolyzates treated with protease contained ≈60 and 30% more FAN compared with the untreated counterparts. Both sorghum decortication and protease treatments before hydrolysis with α-amylase are recommended to increase ethanol yields, save processing time (and therefore energy), and to produce mashes with higher FAN content, which is considered as an important yeast substrate.  相似文献   

20.
Nine sorghum cultivars (five inbred lines and four hybrids) were grown in 2006 in three locations (Mount Hope, KS, Halstead, KS, and Plainview, TX) under different irrigation conditions and were evaluated for composition and ethanol fermentation efficiency. The objective was to study, in one growing season, the effects of genotype, growing location, and irrigation on the physical and chemical properties and fermentation efficiencies of grain sorghum. Genotype had a significant effect on chemical composition, physical properties, and ethanol yield. The cultivars showed a large variation in starch (61.0–74.8%), protein (7.56–16.35%), crude fat (2.79–4.77%), crude fiber (0.58–2.57%), ash (1.25–2.26%), kernel weight (20.0–35.9 mg), kernel hardness (49.6–97.5), and kernel size (1.9–2.7 mm) and were the most important factors affecting ethanol fermentation efficiency (87.5–93.9%). Starch and protein contents were significantly affected by growing location but not by irrigation. Environment had a significant effect on ethanol yields. Unexpectedly, irrigation somewhat reduced fermentation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号