首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
利用39对SSR引物对海南114份普通野生稻、146份疣粒野生稻和81份药用野生稻进行扩增,从多态位点比率、平均等位基因数、香农指数等多个指标比较了3种野生稻遗传多样性的差异。结果表明,普通野生稻的遗传多样性最高,疣粒野生稻次之;在所检测的53个位点中,药用野生稻和疣粒野生稻的多态位点数分别为普通野生稻的1/7和2/7,等位基因数分别为普通野生稻的37%和39%;平均每个位点的实际杂合度,以普通野生稻杂合度最高(60%),分别是疣粒野生稻和药用野生稻的4.6倍和6.6倍。Wright-统计量和聚类分析结果表明,普通野生稻群体的遗传多样性主要来自群间,当遗传一致度I等于0.53时,3个居群分别属于不同类群,因此建议将3个普通野生稻居群都纳入原生境保护点建设范围。同时,药用野生稻和疣粒野生稻无论居群间还是居群内遗传变异都很小,各居群个体间出现部分交叉,只有当I大于0.9时才分别聚为不同的类群,因此,在进行原生境保护时只需保护遗传多样性水平高的居群即可。  相似文献   

2.
普通野生稻抗旱性初探   总被引:1,自引:0,他引:1  
摘要:以普通野生稻六个居群(海南琼海居群,万宁居群,儋州居群,文昌居群,乐东居群,长雄野生稻)为材料,在干旱胁迫条件下分别测定其叶片相对含水量、叶绿素含量、叶片游离脯氨酸含量三个生理指标,结果表明,各居群叶片相对含水量均呈下降趋势,且下降幅度不同;叶绿素含量呈“先升后降”趋势;脯氨酸含量呈不同程度的上升。综合三项生理指标及干旱条件下对各居群的实际观察情况,初步认为它们的抗旱性大小顺序如下:琼海居群>长雄野生稻>万宁居群>儋州居群>乐东居群>文昌居群。  相似文献   

3.
野生稻居群异位保护首要解决的关键问题是如何取样才能使采集的样本遗传多样性能够代表居群总遗传多样性。为了确定普通野生稻居群异位保护最佳取样数量,笔者应用SSR分子标记技术,以海南文昌东路普通野生稻居群为试验材料,研究普通野生稻异位保护最佳取样数量。结果表明:以采集的样本遗传多样性占居群总遗传多样性的90%为临界值,则最佳取样数量为26株;若采集的样本遗传多样性达到居群总遗传多样性的95%,最佳取样数量应增加至31株。  相似文献   

4.
孙希平  杨庆文 《作物学报》2009,35(4):679-684
利用24对SSR引物,对来自中国10个代表性居群和越南、老挝、柬埔寨的5个居群共计282份普通野生稻材料进行遗传多样性比较研究。结果表明,(1)24个微卫星位点共检测到等位基因289个,平均等位基因数(A)为12,有效等位基因数(Ae)为7;期望杂合度(He)平均为0.812,观察杂合度(Ho)平均为0.543,香农指数(I)平均为1.99;(2)4个国家中,中国普通野生稻的遗传多样性最丰富,老挝次之,越南和柬埔寨最低,香农指数(I)分别为1.92、1.69、1.47和1.45;(3)采用UPGMA方法对供试15个居群进行聚类分析。老挝和柬埔寨2个居群的亲缘关系最近,二者与越南居群有着较近的亲缘关系;(4)在中国所有参试居群中,广西武宣和贺州居群与东南亚3国亲缘关系最近。  相似文献   

5.
为了从分子水平分析山西省高粱地方品种的遗传多样性和遗传结构,本研究从140对SSR引物中筛选到22对条带清晰且多态性稳定的引物,对来自于山西省11个地区66个县市的158份高粱材料进行了遗传多样性分析,结果共检测到147个等位基因的位点变异,平均等位基因数为6.68。每个SSR位点的多态性信息含量(PIC)平均为0.635,变异范围为0.168~0.870,表明山西高粱的地方品种具有较丰富的多态性。针对11个不同地理居群的遗传多样性分析表明,不同的地理居群间遗传分化水平差异较大,地理居群间存在不同程度的基因交流。无论从等位基因数、有效等位基因数还是Shannon's信息指数上,都可以看出忻州居群的遗传多样性最高,而阳泉居群的最低。针对不同地理居群间遗传距离的分析结果表明,忻州居群和晋中居群的遗传距离最小,两个群体的亲缘关系较近,基因交流比较频繁。而阳泉居群和其他居群间的遗传距离都较大,显示阳泉居群与其他居群之间的基因交流阻隔,进一步显示了阳泉居群的独特性。基于模型的遗传结构分析和基于遗传距离的N-J聚类分析都将种质材料划分为2个类群,不同地区高粱资源居群间的遗传关系远近与其地理信息并没有明显的相关性。本研究旨在为高粱种质资源的收集、鉴定与创新提供理论依据。  相似文献   

6.
为了明确我国已建立的普通野生稻原生境保护居群的遗传多样性状况及其代表性,利用24对SSR引物对15个原生境保护居群的427份普通野生稻材料和在我国野生稻分布区内按照纬度划分后随机挑选的15个未保护居群的357份普通野生稻材料进行遗传多样性分析。结果表明,保护居群24个位点的平均有效等位基因数(Ae)为5.98,平均香农指数(I)为1.90,均大于未保护居群在24个位点的平均Ae(5.85)和I(1.86)值,但保护居群在24个位点的平均预期杂合度(He)为0.79,小于未保护居群He值(0.80)。显著性检验结果显示,保护居群和随机挑选的未保护居群在24个位点上及居群水平上的Ae、I和He值差异不显著,表明保护居群可以代表我国普通野生稻的遗传多样性状况。保护居群的特有等位变异数(Sa)为40,远大于未保护居群的20,说明保护居群保护了更多的特殊基因,具有较高的保护价值。根据前人的研究结果,对应普通野生稻保护居群的地理信息,发现15个保护居群涵盖了我国普通野生稻分布区内所有已知的典型地理类型,表明我国普通野生稻原生境保护居群具有典型性。由此可以看出,我国已建立的15个普通野生稻原生境保护点的选择是科学合理的。根据对我国普通野生稻遗传结构的分析,建议下一步开展的普通野生稻原生境保护点建设应以广西南部及广东为主。  相似文献   

7.
中国普通野生稻遗传多样性研究进展   总被引:4,自引:0,他引:4  
杨庆文  黄娟 《作物学报》2013,39(4):580-588
普通野生稻是亚洲栽培稻的祖先,中国作为亚洲栽培稻的起源地之一,蕴藏着丰富的普通野生稻资源。为了揭示中国普通野生稻的遗传多样性分布状况,探索普通野生稻的遗传变异规律、居群遗传结构以及演化途径等,为亚洲栽培稻的起源进化研究、品种改良和普通野生稻保护提供科学依据,国内外学者对中国普通野生稻开展了大量的遗传多样性研究,获得了丰富的研究结果。本文分别从遗传多样性研究方法、普通野生稻与亚洲栽培稻遗传多样性的比较、普通野生稻遗传多样性与地理分布和生态环境的关系、保护措施和栽培稻基因渗入对遗传多样性的影响等几个方面的研究结果进行了综述,总结了中国普通野生稻遗传多样性的主要特征,提出了未来我国普通野生稻遗传多样性的研究方向。  相似文献   

8.
濒危植物望天树的遗传多样性和居群遗传结构   总被引:8,自引:0,他引:8  
龙脑香科(Dipterocarpaceae)濒危植物望天树(Parashorea chinensis)目前仅局限分布于热带亚洲北部边缘,目前已受到特别的保护,但有关其遗传特性的研究很少。在本研究中,使用随机扩增多态性DNA(RAPD)技术对望天树7个天然居群进行了遗传多样性和群体遗传结构的研究。望天树7个天然居群(194个个体)用20个随机引物进行了扩增,48.22%的RAPD位点为多态位点,平均每个居群的多态位点百分比为20.84%。居群内的平均基因多样度为0.7870(用Shannon表型多样性指数来测量),整个物种的基因多样度为1.4100,居群内的基因多样度为55.82%,居群间的基因多样度为44.18%。GsT平均值为0.4448。AMOVA分析表明37.67%的遗传变异存在于地区间,11.40%存在于地区内的居群间,而50.93%则存在于居群内。结果揭示了望天树低水平的遗传多样性和很强的地区居群分化,这可能是由于望天树在其进化历史上,居群不断的减小及再扩张所引起的居群瓶颈所造成的。相关分析没有检测到居群大小和遗传多样性大小的正相关,而居群间的遗传距离和地理空间距离检测到了显著的正相关。所得结果对该物种保护策略的制定有指导作用。  相似文献   

9.
不同生态区扁蓿豆野生居群种子产量性状遗传多样性分析   总被引:1,自引:0,他引:1  
采用形态标记和SSR分子标记相结合的方法,对13个野生扁蓿豆居群的单位面积分枝数、花序花朵数、单枝花序数、花序结荚数、花序种子数、单荚种子数和种子千粒重等种子产量性状的遗传变异进行了研究。结果表明,扁蓿豆野生居群间种子产量性状的变异为19.97%~109%,种子产量变异最大,变幅为0.08~11.208 kg/hm2(P0.05);种子千粒重的变异最小,差异不显著(P0.05),而其他性状差异均显著,根据形态性状聚类结果显示:13个野生居群可分成4大类群;SSR分子标记分析表明:各居群的遗传距离变异范围为1.00~0.11,可见扁蓿豆野生居群间的种子产量性状具有丰富的遗传多样性,经UPGMA方法建立的树状图,可将13个野生居群划分为4大类群。两种标记结果部分一致。  相似文献   

10.
为明确云南草果遗传多样性水平,本研究以草果主产地红河州4个居群48份草果为实验材料,利用SRAP分子标记分析草果遗传多样性。结果表明:12对SRAP引物共扩增181个条带,多态性条带比率(PPB)为99.45%,平均多态信息含量(PIC)为0.276。在群体水平上,PPB从72.93%到77.35%,平均为75.55%;Nei's基因多样性指数(H)从0.197到0.234,平均为0.216;Shannon信息指数(I)为0.312到0.357,平均值为0.334。草果总遗传多样性的92.49%(Hs=0.215 5)来自于居群内部,居群间遗传变异只占7.51%(Gst=0.075 1),AMOVA分析进一步证明草果的遗传变异主要存在居群内部。4个草果居群遗传一致度分析显示各居群的遗传一致度较高(0.958 2~0.983 3),其中元阳居群和绿春居群的遗传关系相对较近,金平居群和屏边居群的遗传关系相对较远,居群间遗传变异较小。本研究可为草果资源的保护及利用提供重要的理论依据。  相似文献   

11.
贵港最大面积原生地新收集普通野生稻分子鉴定评价   总被引:1,自引:1,他引:0  
《中国农学通报》2013,29(24):11-16
为了对来自贵港市最大面积原生地新收集普通野生稻资源进行遗传多样性分析,并在此基础上 进一步对居群内的个体进行区分。选择分布于水稻染色体组的25 对微卫星(SSR)引物对来自贵港的 349 份材料进行多样分析和遗传结构研究。结果表明,所有个体平均等位基因数A=6,有效等位基因数 Ae=2.23,期望杂合度He=0.44,实际杂合度Ho=0.40,香农指数I=0.88。该居群可分为4 个亚群结构,并 且90%以上个体可以得到区分。该群体遗传多样性丰富,SSR分子标记可以简单有效的区分群体内的 大部分个体,提高了保护效率。  相似文献   

12.
广东高州野生稻应用核心种质取样策略   总被引:2,自引:2,他引:0  
广东省高州野生稻(简称“高野”,下同)具有丰富的遗传多样性,是水稻遗传改良的重要基因库。以217份高野保存材料为对象,结合按居群分类和系统聚类选择的方法,通过多重比较认为20%为最佳取样比例,从中筛选出了43份材料作为应用核心种质。对表型保留比例、表型方差、多样性指数、变异系数、极差符合率、均值符合率、标准差符合率等重要检验指标的分析表明,该应用核心种质很好地代表了总样品的遗传多样性和变异幅度。利用34对SSR引物对应用核心种质进行分析表明,其平均等位基因数为6.879,平均遗传多样性指数达0.656,基因杂合度达0.558,76.7%的材料在遗传背景上不同,且各居群材料相对较为独立。高野应用核心种质的筛选为该资源的高效研究利用奠定了良好的材料基础。  相似文献   

13.
利用均匀分布于烟草24个连锁群上的48个SSR标记对80份烟草材料进行分析。结果显示,48个SSR标记共扩增出211个等位基因,平均每个标记4.396个,Shannon′s信息指数I为1.034,多态信息含量值为0.229~0.905,观测杂合度(Ho)、期望杂合度(He)和Nei′s多样性指数(H)平均值分别为0.320、0.572、0.431。聚类结果表明,在遗传距离为0.68时可以将80份烟草种质分为2个类群。5个烟草居群间的遗传一致度在0.643~0.765范围内,遗传距离分布在0.268~0.442。筛选4对核心引物构建了不同烟草种质资源的数字指纹图谱, 可将这80份烟草种质资源全部区分开。本研究在分子水平上为筛选优质烟草种质资源、挖掘重要基因以及拓宽烟草育种遗传基础等工作提供科学依据。  相似文献   

14.
广东高州野生稻应用核心种质取样策略   总被引:1,自引:0,他引:1  
广东省高州野生稻(简称“高野”,下同)具有丰富的遗传多样性,是水稻遗传改良的重要基因库。以217份高野保存材料为对象,结合按居群分类和系统聚类选择的方法,通过多重比较认为20%为最佳取样比例,从中筛选出了43份材料作为应用核心种质。对表型保留比例、表型方差、多样性指数、变异系数、极差符合率、均值符合率、标准差符合率等重要检验指标的分析表明,该应用核心种质很好地代表了总样品的遗传多样性和变异幅度。利用34对SSR引物对应用核心种质进行分析表明,其平均等位基因数为6.879,平均遗传多样性指数达0.656,基因杂合度达0.558,76.7%的材料在遗传背景上不同,且各居群材料相对较为独立。高野应用核心种质的筛选为该资源的高效研究利用奠定了良好的材料基础。  相似文献   

15.
中国普通野生稻与栽培稻种SSR多样性的比较分析   总被引:5,自引:0,他引:5  
采用48对SSR引物对288份我国普通野生稻和栽培稻的遗传多样性进行比较分析。结果显示, 共检测到505个等位基因, 每个位点的等位基因数变幅为5~20, 平均10.5个; 平均Nei基因多样性指数(He)为0.731, 变幅为0.384(RM409)~0.905(RM206)。普通野生稻遗传多样性高于栽培稻种, 栽培稻等位基因数和平均Nei基因多样性指数分别为普通野生稻的70.2%和88.2%, 其中, 栽培稻地方品种和选育品种等位基因数分别为普通野生稻的65.4%和53.0%, 选育品种等位基因数仅为地方品种的81.1%。AMOVA分析表明, 总变异的10.3%是由于种间SSR遗传差异所引起的, 不同SSR位点种间的分化程度不同, 在0.7%~46.3%之间, 有43个位点种间遗传分化达到显著水平, 其中以RM427分化最为明显, 达46.3%。聚类分析表明, 中国普通野生稻总体偏粳, 极少数广东、海南材料偏籼。  相似文献   

16.
陕西省野生大豆种质资源的SSR遗传多样性研究   总被引:1,自引:0,他引:1  
为了研究陕西地区野生大豆的遗传多样性特点,利用SSR分子标记分析了陕西省6个野生大豆(Glycine soja)天然种群和1个栽培大豆(Glycine max)种群的遗传结构与遗传多样性。结果显示:13个位点共检测出113个等位基因,平均每个位点的等位基因数(A)为8.69个,等位基因数目范围为4~13个,有效等位基因数(Ne)范围为2.135(Satt590)~9.385 (Satt487),平均有效等因基因数为5.623;观察杂合度(Ho)变化范围为0.033~0.121,平均为0.080;预期杂合度(He)的变化范围为0.312~0.658,平均为0.482;种群平均Shannon遗传多样性指数(I)为0.657;野生大豆种群基因多样度比率(FST)为0.465。该研究显示,陕西省野生大豆具有较高水平的遗传多样性,野生大豆的遗传多样性普遍高于栽培大豆;随着海拔的不断升高,野生大豆遗传多样性变低;陕西中部、南部的野生大豆种质资源丰富、种群具有较高的遗传多样性,推测该区域为陕西省野生大豆的遗传多样性中心。  相似文献   

17.
A total of 448 samples in five natural populations of wild rice (Oryza rufipogon) were collected in Cambodia. They were examined using 12 SSR and two chloroplast markers to evaluate the degree of variation among populations and the genetic structure within populations. In the two annual populations, the number of plants with homozygous alleles at all 12 SSR loci were high (66.3% and 79.5%), suggesting that these plants propagate mainly through self-pollination. In the three perennial populations, no individuals had all homozygous genotypes, but redundant genotypes resulted from clonal propagation were observed. Percentages of the redundant genotypes were highly varied (3.6%, 29.2% and 86.0%). This may be due to the different stable levels of environmental conditions. As for chloroplast genome, most of the wild plants showed the same chloroplast types as most Indica-type cultivars have. However, plants with different chloroplast types were maintained, even in the same population. In tropical Asian countries, many wild rice populations were observed under similar ecological conditions examined in this study. Therefore, the present results concerning population structure will be important to further elucidate genetic features of wild rice, and will also give strong clues to utilize and conserve wild natural genetic resources.  相似文献   

18.
Ke-Jing Wang  Xiang-Hua Li 《Euphytica》2012,186(3):817-830
To design appropriate strategies for ex situ and in situ conservation of wild soybean and safeguard the biosafety of the wild soybean gene pool when genetically modified soybeans are grown, it is important to understand its genetic characteristics, and to quantify gene flow and kinship within and between neighboring populations. We analyzed 9 pairs of neighboring populations of wild soybeans using 20 pairs of nuclear SSR markers. Results showed that Chinese wild soybean natural populations had outcrossing rates of 0–3.5% and that most populations contained many kinship families. The kinship families could be attributed to the accumulation of outcrossed offspring within populations during the history of population colonization. Wild soybean is very sensitive to environmental selection, which results in genetic differentiation of populations, and the emergence of specific alleles. We used an index τ to explain why genetic differences would exist between the pairwise populations; the interpopulation genetic differentiation chiefly consisted in the differences of allele frequencies over the genome. We found long-distance dispersal (1.5 km) of wild soybean seeds in a land ecosystem. There was close correlation between genetic and geographical distance among natural populations of Chinese wild soybean. Within a distance of 50 km, there was greater gene flow when the distance between populations was shorter. These findings have implications for ex situ and in situ conservation in an ecogeographical region, and also for protection of the gene pool from contamination by GM soybeans in wild soybean species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号