首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seven-hole 3.5 mm broad and 5-hole 4.5 mm narrow dynamic compression plates were applied to paired canine cadaveric tibias in a stable fracture model. Paired tibias were tested to acute failure in rotation and four-point bending, and to fatigue failure in four-point bending. Resistance to screw pullout was measured for three 3.5 mm cortical screws and two 4.5 mm cortical screws inserted in the configurations of the bone plates. All plate-bone systems failed by fracture of the bone through a screw hole. The 3.5 mm plate-bone system was stronger in acute failure in rotation and in four-point bending. There was no difference in stiffness, and no difference in the number of cycles to failure in fatigue testing. Three 3.5 mm screws had greater resistance to pullout than two 4.5 mm screws. Results indicate that the 7-hole 3.5 mm broad dynamic compression plate has a biomechanical advantage over the 5-hole 4.5 mm narrow dynamic compression plate.  相似文献   

2.
Objectives— To compare (1) pullout properties between 3.5 mm cortical and locking screws, and (2) mechanical properties and gap displacements between the 3.5 mm broad limited‐contact dynamic compression plate (LC‐DCP), broad dynamic compression plate (DCP), and narrow locking compression plate (LCP), during axial loading of plate‐stabilized diaphyseal fragments with an interfragmentary gap. Study Design— In vitro mechanical testing of implanted polyurethane foam (PUF) hollow cylinders that simulated compact or osteopenic diaphyseal bone. Sample Population— (1) Five cortical and locking screws and (2) 4 PUF‐plate constructs for each plate type; using high‐ and low‐density (0.8 and 0.32 g/cm3) cylinders. Methods— (1) Screws were completely extracted at 5 mm/min. (2) Plated constructs were axially compressed at 300 N/s for 10 cycles from 5 to 355 N to determine gap displacement during physiologic loading, followed by single cycle increasing load to failure. Results— Pullout properties were not different between screw types. All plate constructs had yield loads over 3 times trotting loads. Gap closure occurred with LC‐DCP and DCP constructs, but not LCP constructs. LCP construct properties were most similar to LC‐DCP and DCP construct properties in the low‐density model. Conclusion— All plate systems sustained physiologic limb loads. Only LCP constructs maintained some gap integrity, although LC‐DCP and DCP screws were placed in neutral position. Clinical Relevance— The LCP system is more likely than LC‐DCP and DCP systems, with neutrally positioned screws, to maintain a planned interfragmentary gap, although gap strains range from 0% to 15% across the 2 mm gap during a trot load.  相似文献   

3.
OBJECTIVE: To compare the mechanical properties of 2 configurations of a veterinary fixation system (VFS) for large animal long bones with dynamic compression plating (DCP). SAMPLE POPULATION: Eighteen pairs of Canevasit tubes (Canevasit; Amsler und Frei, Schinznach Dorf, Switzerland) (length, 170 mm; diameter, 47.5 mm; cortex thickness, 10 mm), aligned with a 10-mm gap, and stabilized with 2 DCP or 2 VFS implants. METHODS: Three groups (n = 6) were compared. Group 1 Canevasit tubes were stabilized with two 10-hole, broad 4.5-mm stainless steel DCP applied with both plates centered over the gap, in orthogonal planes parallel to the long axis of the tubes and staggered to allow bicortical fixation with ten 4.5-mm, 52-mm-long cortex screws each. Group 2 tubes were stabilized similarly with 2 VFS implants, each composed of a stainless steel rod (length, 167 mm; diameter, 8 mm), and 10 clamps were applied in alternating fashion left and right on the rod and fixed bicortically with ten 4.5-mm, 52-mm-long, cortex screws. Group 3 tubes were stabilized similarly, but using only 6 clamps/rod. All groups were tested initially in torsion within elastic limits and subsequently in 4-point bending, with 1 implant on the tension side, until gap closure occurred. RESULTS: None of the constructs failed, but all had plastic deformation after 4-point bending. No statistically significant differences were found among the 3 groups in torsional stiffness. Double DCP fixation was significantly stiffer and stronger in 4-point bending, compared with both configurations of double VFS fixation. CONCLUSIONS: The plate design was favored in this study. The VFS system may have to be adapted before further tests are conducted. Test modalities have to be chosen closer to clinical conditions (real bone, cyclic loading, closed gap). CLINICAL RELEVANCE: The veterinary fixation system has not yet proven its advantages for large animal long bone fracture repair. From the pure mechanical point of view, double DCP is the favored method for the treatment mentioned.  相似文献   

4.
Objectives: To compare in vitro monotonic biomechanical properties of an axial 3‐hole, 4.5 mm narrow locking compression plate (ELCP) using 5.0 mm locking screws and 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (ELCP–TLS) with an axial 3‐hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP–TLS) for equine proximal interphalangeal (PIP) joint arthrodesis. Design: Experimental. Animal Population: Cadaveric adult equine forelimbs (n=18 pairs). Methods: For each forelimb pair, 1 PIP joint was stabilized with an axial ELCP using 5.0 mm locking screws and 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 PIP joint with an axial 3‐hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion. Six matching pairs of constructs were tested in single cycle to failure under axial compression, 6 construct pairs were tested for cyclic fatigue under axial compression, and 6 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t‐test within each group with statistical significance set at P<.05. Results: Mean yield load, yield stiffness, and failure load under axial compression, single cycle to failure, of the DCP–TLS fixation were significantly greater than those of the LCP–TLS fixation. There was no significant difference between the mean number of cycles to failure in axial compression of the LCP–TLS and the DCP–TLS fixations. Mean yield load, yield stiffness, and failure load under torsion, single cycle to failure, of the LCP–TLS fixation were significantly greater than those of the DCP–TLS fixation. Conclusion: The DCP–TLS construct provided significantly greater stability under axial compression in single cycle to failure than the ELCP–TLS construct, the ELCP–TLS construct provided significantly greater stability under torsional loading in single cycle to failure than the DCP–TLS construct, and there was no significant difference in stability between the 2 constructs for cyclic loading under axial compression.  相似文献   

5.
OBJECTIVE: To compare the biomechanical characteristics and mode of failure of two different dynamic compression plate (DCP) techniques for proximal interphalangeal joint (PIPJ) arthrodesis in horses. STUDY DESIGN: Randomized block-design blocking on horse (1-5), method of fixation (two 7-hole, 3.5-mm broad DCP vs two 5-hole, 4.5-mm narrow DCP), side (left, right), and end (front, hind). Constructs were loaded to failure in 3-point bending in a dorsal-to-palmar (plantar) direction. SAMPLE POPULATION: Ten paired limbs from 5 equine cadavers. METHODS: Two 7-hole, 3.5-mm broad dynamic compression plates (bDCP) were used in 1 limb of a pair, and two 5-hole 4.5-mm narrow dynamic compression plates (nDCP) were used on the contralateral limb. Plates were positioned abaxially across the dorsomedial and dorsolateral aspect of the PIPJ. Arthrodesis constructs were loaded (19 mm/s) in 3-point bending in a dorsal-to-palmar (plantar) direction using a materials-testing machine. Composite stiffness, yield point, and maximal bending moment at failure were obtained from bending moment-angular deformation curves. Data were analyzed using ANOVA, X(2) analysis, and Fisher's exact tests; the power of the test was calculated when differences were not significant. RESULTS: There were no significant differences in composite stiffness (P >.05; power = 0.8 @ delta = 21.9%), yield point (P >.05; power = 0.8 @ delta = 34.4%), or maximal bending moment (P >.05; power = 0.8 @ delta = 17.8%) between the two fixation techniques. For bDCP constructs, 11% (15 of 140) of the 3.5-mm screws were damaged; 7 of the screw heads pulled through plates where the plates bent, 1 screw head broke off, and 7 screws were bent or pulled out of the phalanx. For nDCP constructs, 8% (8 of 100) of the 4.5-mm screws were damaged; 1 screw head pulled through a plate, 1 screw head broke off, and 6 screws were bent or pulled out of the phalanx. CONCLUSIONS: There were no biomechanical or failure differences between bDCP and nDCP fixation of the PIPJ in horses when evaluated in single-cycle 3-point bending to failure. CLINICAL RELEVANCE: There is no biomechanical advantage to the use of two 7-hole, 3.5-mm bDCP in equine proximal interphalangeal arthrodesis compared with two 5-hole, 4.5-mm nDCP. Two 5-hole, 4.5-mm nDCP may be easier to place, whereas two 7-hole, 3.5-mm bDCP may provide more versatility in fracture repair.  相似文献   

6.
Objectives— To compare monotonic biomechanical properties and fatigue life of a 5.5 mm broad limited‐contact dynamic compression plate (5.5‐LC‐DCP) fixation with a 4.5 mm broad LC‐DCP (4.5‐LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Sample Population— Adult equine cadaveric MC3 bones (n=18 pair). Methods— MC3 were divided into 3 test groups (6 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 5.5 mm broad LC‐DCP (5.5‐LC‐DCP) was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm broad LC‐DCP (4.5‐LC‐DCP) was applied dorsally to the contralateral bone from each pair. Plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t–test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment under 4‐point bending, single cycle to failure, of the 5.5‐LC‐DCP fixation were significantly greater (P<.024) than those of the 4.5‐LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly (P<.05) greater for the 4.5‐LC‐DCP fixation compared with the 5.5‐LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion for the 5.5‐LC‐DCP fixation was not significantly different (P>.05) than those with the 4.5‐LC‐DCP fixation. Conclusion— 5.5‐LC‐DCP fixation was superior to 4.5‐LC‐DCP fixation in resisting the static overload forces under palmarodorsal 4‐point bending. There was no significant difference between 5.5‐LC‐DCP fixation and 4.5‐LC‐DCP fixation in resisting static overload forces under torsion; however, the 5.5‐LC‐DCP offers significantly less stability (80% of that of the 4.5‐LC‐DCP) in cyclic fatigue testing. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for long bone fracture repair in horses.  相似文献   

7.
OBJECTIVE: To compare the stiffness and strength of AO bone plates (DCP, LC-DCP, VCP, RCP, and LP) and the Clamp-Rod Internal Fixation System (CRIF). Study design: In vitro. Sample size: 12 individual implants of 18 plate dimensions and four sizes of CRIF, each corresponding to 2.0, 2.4/2.7, 3.5, or 4.5 mm screw sizes. METHODS: Implant-constructs of each plate and CRIF were created using Canevasit rods as a bone substitute in an unstable gap fracture model. Six implant-constructs of each type were tested under single cycle four-point bending loading, and six were tested under single cycle torsional loading until permanent plastic deformation occurred. RESULTS: Torsional stiffness and yield load of the DCP were always significantly greater than the CRIF within the same group. Bending properties of the 2.0 DCP were not significantly different to the 2.0 CRIF. The 2.7 DCP had significantly higher bending values than the 2.7 CRIF. The bending stiffness of the 3.5 DCP and 4.5 DCP was significantly less than their CRIF counterparts. While the bending yield load of the 3.5 DCP was significantly greater than the 3.5 CRIF, the bending yield load of the 4.5 DCP was significantly less than the 4.5 CRIF. CONCLUSION: A weakness was found in the torsional resistance of the CRIF constructs compared to the DCP constructs. CLINICAL SIGNIFICANCE: Bone holding power and applied screw torque should be considered when using the CRIF system in clinical application.  相似文献   

8.
Objectives— To compare in vitro monotonic biomechanical properties of an axial 3‐hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP‐TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3‐TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Study Design— Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Sample Population— Cadaveric adult equine forelimbs (n=15 pairs). Methods— For each forelimb pair, 1 PIP joint was stabilized with an axial 3‐hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t‐test within each group with statistical significance set at P<.05. Results— Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP‐TLS fixation were significantly greater than those of the 3‐TLS fixation. Mean cycles to failure in axial compression of the DCP‐TLS fixation was significantly greater than that of the 3‐TLS fixation. Conclusion— The DCP‐TLS was superior to the 3‐TLS in resisting the static overload forces and in resisting cyclic fatigue. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.  相似文献   

9.
OBJECTIVE: To compare the biomechanical characteristics and mode of failure of 2 techniques using parallel 5.5 mm screws for pastern joint arthrodesis in horses. STUDY DESIGN: Randomized block design, for horse (1-5), method of fixation (two 5.5 mm screws versus three 5.5 mm screws), side (right, left), and end (front, hind). Constructs were tested to failure in 3-point bending. SAMPLE POPULATION: Twenty limbs (5 cadavers). METHODS: A combined aiming device was used to facilitate screw placement. Two parallel 5.5 mm screws were inserted in lag fashion in 1 limb of a pair, and three 5.5 mm screws were inserted in the contralateral limb. Constructs were then tested in 3-point bending in a dorsal-to-palmar (plantar) direction using a materials testing machine at a loading rate of 19 mm/s. Maximal bending moment at failure and stiffness were obtained from bending moment-angular deformation curves. RESULTS: There was no significant difference between two and three 5.5 mm screw constructs for bending moment and stiffness (P<.05). All constructs ultimately failed by bone fracture or screw bending. For proximal interphalangeal (PIP) joint arthrodesis constructs loaded in 3-point bending, no significant effect of treatment, side, or end on maximal bending moment or stiffness was detected. CONCLUSIONS: Two 5.5 mm cortical screws inserted in parallel should provide a surgically simpler and equally strong PIP joint arthrodesis compared with three 5.5 mm cortical screws. CLINICAL RELEVANCE: Two 5.5 mm cortical screws inserted in parallel for PIP joint arthrodesis should perform similarly under conditions used in this study, as three 5.5 mm screws inserted in a similar manner, when loaded under bending.  相似文献   

10.
Objectives: To compare the biomechanical characteristics of 2 arthrodesis techniques for the equine proximal interphalangeal joint (PIP) using either a 3‐hole 4.5 mm locking compression plate (LCP) or 3‐hole 4.5 mm narrow dynamic compression plate (DCP), both with 2 transarticular 5.5 mm cortex screws. Study Design: Experimental. Sample Population: Cadaveric adult equine forelimbs (*n=6 pairs). Methods: For each forelimb pair, 1 limb was randomly assigned to 1 of 2 treatment groups and the contralateral limb by default to the other treatment group. Construct stiffness, gap formation across the PIP joint, and rotation about the PIP joint were determined for each construct before cyclic axial loading and after each of four, 5000 cycle loading regimens. After the 20,000 cycle axial loading regimen, each construct was loaded to failure. Results: There were no significant differences in construct stiffness, gap formation, or sagittal plane rotation between the LCP and DCP treatment groups at any of the measured time points. Conclusion: Biomechanically, fixation of the equine PIP joint with a 3‐hole 4.5 mm LCP is equivalent to fixation with a 3‐hole 4.5 mm narrow DCP under the test conditions used.  相似文献   

11.
OBJECTIVES: To compare the monotonic biomechanical properties of a prototype equine third metacarpal dynamic compression plate (EM-DCP) fixation with a double broad dynamic compression plate (DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional testing. The EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of one randomly selected bone from each pair. Two DCPs, 1 dorsally (10-hole, 4.5 mm broad) and 1 laterally (9-hole, 4.5 mm broad) were applied to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the EM-DCP fixation were significantly greater (P<.0001) than those of the double broad DCP fixation. Mean cycles to failure in 4-point bending of the EM-DCP fixation was significantly greater (P<.0008) than that of the double broad DCP fixation. Mean yield load, composite rigidity, and failure load in torsion of the EM-DCP fixation were significantly greater (P<.0035) than that of the double broad DCP fixation. CONCLUSION: The EM-DCP provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: Results of this in vitro study support the conclusion that the prototype EM-DCP fixation is biomechanically superior to the double broad DCP fixation for the stabilization of osteotomized equine MC3.  相似文献   

12.
OBJECTIVES: To compare the monotonic biomechanical properties and fatigue life of a broad, limited contact, dynamic compression plate (LC-DCP) fixation with a broad, dynamic compression plate (DCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An LC-DCP (8-hole, 4.5 mm) was applied to the dorsal surface of 1 randomly selected bone from each pair. One DCP (8-hole, 4.5 mm broad) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: The mean 4-point bending yield load, yield bending moment, composite rigidity, failure load, and failure bending moment of LC-DCP fixation were significantly greater (P<.01) than those of broad DCP fixation. Mean cycles to failure for 4-point bending was significantly (P<.001) greater for broad DCP fixation compared with broad LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion was significantly (P<.02) greater for broad LC-DCP fixation compared with broad DCP fixation. CONCLUSION: Broad LC-DCP offers increased stability in static overload testing, however, it offers significantly less stability in cyclic fatigue testing. CLINICAL RELEVANCE: The clinical relevance of the cyclic fatigue data supports the conclusion that the broad DCP fixation is biomechanically superior to the broad LC-DCP fixation in osteotomized equine MC3 bones despite the results of the static overload testing.  相似文献   

13.
Objectives— To compare in vitro monotonic biomechanical properties of an equine spoon plate (ESP) with an axial 3‐hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws (DCP‐TLS) inserted in lag fashion for equine proximal interphalangeal (PIP) joint arthrodesis. Study Design— Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Animal Population— Cadaveric adult equine forelimbs (n=18 pairs). Methods— For each forelimb pair, 1 PIP joint was stabilized with an ESP (8 hole, 4.5 mm) and 1 with an axial 3‐hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion. Six matching pairs of constructs were tested in single cycle to failure under axial compression with load applied under displacement control at a constant rate of 5 cm/s. Six construct pairs were tested for cyclic fatigue under axial compression with cyclic load (0–7.5 kN) applied at 6 Hz; cycles to failure were recorded. Six construct pairs were tested in single cycle to failure under torsional loading applied at a constant displacement rate (0.17 radians/s) until rotation of 0.87 radians occurred. Mean values for each fixation method were compared using a paired t‐test within each group with statistical significance set at P<.05. Results— Mean yield load, yield stiffness, and failure load for ESP fixation were significantly greater (for axial compression and torsion) than for DCP‐TLS fixation. Mean (± SD) values for the ESP and DCP‐TLS fixation techniques, respectively, in single cycle to failure under axial compression were: yield load 123.9 ± 8.96 and 28.5 ± 3.32 kN; stiffness, 13.11 ± 0.242 and 2.60 ± 0.17 kN/cm; and failure load, 144.4 ± 13.6 and 31.4 ± 3.8 kN. In single cycle to failure under torsion, mean (± SD) values for ESP and DCP‐TLS, respectively, were: stiffness 2,022 ± 26.2 and 107.9 ± 11.1 N m/rad; and failure load: 256.4 ± 39.2 and 87.1 ± 11.5 N m. Mean cycles to failure in axial compression of ESP fixation (622,529 ± 65,468) was significantly greater than DCP‐TLS (95,418 ± 11,037). Conclusion— ESP was superior to an axial 3‐hole narrow DCP with 2 abaxial transarticular screws inserted in lag fashion in resisting static overload forces and cyclic fatigue. Clinical Relevance— In vitro results support further evaluation of ESP for PIP joint arthrodesis in horses. Its specific design may provide increased stability without need for external coaptation support.  相似文献   

14.
Objective— To compare monotonic biomechanical properties and fatigue life of a broad locking compression plate (LCP) fixation with a broad limited contact dynamic compression plate (LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population— Cadaveric adult equine MC3 bones (n=12 pairs). Methods— MC3 were divided into 3 groups (4 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 4.5 mm LCP was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm LC‐DCP) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment, under 4‐point bending, single cycle to failure, of the LCP fixation were significantly greater than those of the LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly greater for the LCP fixation compared with LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad LCP fixation compared with the LC‐DCP fixation. Conclusion— The 4.5 mm LCP was superior to the 4.5 mm LC‐DCP in resisting the static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for the repair of equine long bone fractures.  相似文献   

15.
OBJECTIVE: To determine the optimal fixation technique for equine interdental space fractures by evaluating the biomechanical characteristics of 4 fixation techniques. STUDY DESIGN: In vitro randomized block design. SAMPLE POPULATION: Twenty-seven adult equine mandibles. METHODS: Mandibles with interdental osteotomies were randomly divided into 4 fixation groups (n = 6/group). Fixation techniques were the following: (1) dynamic compression plates (DCP), (2) external fixator (EF), (3) external fixator with interdental wires (EFW), and (4) intraoral splint with interdental wires (ISW). Three intact (nonosteotomized) mandibles were tested as controls. Mandibles were subjected to monotonic cantilever bending until failure. Angular displacement data (radians) were derived from continuously recorded gap width measurements provided by extensometers placed across the osteotomy site. Osteotomy gap width data (mm) at 50 and 100 Nm were selected for standardized comparison of gap width before the yield point and failure point, respectively of all constructs tested. Stiffness (Nm/radian), yield strength (Nm), and failure strength (Nm) were determined from bending moment-angular displacement curves and were compared using ANOVA with appropriate post hoc testing when indicated. Radiographs were obtained prefixation, postfixation, and posttesting. RESULTS: Bending stiffness, yield, and ultimate failure loads were greatest for intact mandibles. Among osteotomized mandibles, stiffness was greatest for DCP constructs (P <.05) and was not significantly different among EF, EFW, and ISW constructs. Yield load was greatest for ISW constructs (P <.05) and was not significantly different among DCP and EFW constructs. Yield and ultimate failure loads were lowest (P <.05) and osteotomy gap width at 50 and 100 Nm were greatest for EF constructs (P =.09 and P <.05, respectively). There was no significant difference in failure loads and osteotomy gap widths among DCP, EFW, and ISW constructs (P <.05). Failure occurred through the screw-bone interface (DCP), acrylic splint (ISW), acrylic connecting bar and/or pin-bone interface (EF, EFW), and wire loosening (EFW). All 3 intact mandibles fractured through the vertical ramus at its attachment to the testing apparatus. CONCLUSIONS: Among osteotomized mandibles, DCP fixation had the greatest stiffness under monotonic bending to failure; however, the relatively low yield value may predispose it to earlier failure in fatigue testing without supplemental fixation. Techniques using tension-band wiring (EFW and ISW) were similar to DCP constructs in yield, failure, and osteotomy displacement, whereas EF constructs were biomechanically inferior to all other constructs. CLINICAL RELEVANCE: DCP fixation is most likely the most stable form of fixation for comminuted interdental space fractures. However, for simple interdental space fractures, ISW fixation may provide adequate stability with minimal invasiveness and decreased expense. Tension-band wiring significantly enhances the strength of type II external skeletal fixators and should be used to augment mandibular fracture repairs.  相似文献   

16.
Using standard material testing techniques (bending stiffness, torsional stiffness, and maximum torque to failure or yield torque), the structural properties of interlocking nails (IN), canine femora, and IN/femur constructs were determined. Specimens that were tested included: 6 and 8 mm diameter IN with 5 to 10 screw holes (n = 18), and intact canine femora (n = 10), which also, with an IN inserted, formed the intact construct (IC) group, (n = 10). Specimens in the IC group were first tested with an 8 mm diameter IN with zero screws, followed by one and two screws (4.5 mm diameter) in the proximal and distal femur. A fracture model construct (FMC), (n = 14), consisting of a transverse femoral osteotomy with a 3 mm gap, was used with either 6 mm or 8 mm IN. In the 6 mm FMC, one and two 3.5 mm screws were used sequentially in the proximal and distal femoral segment. In the 8 mm FMC, one and two 3.5 mm screws and one and two 4.5 diameter screws were used similarly. When bending forces were applied parallel to IN screw holes, mean IN stiffness was 20% less than with forces perpendicular to the holes (n = 18), (P <.05). Eight-millimeter IN were 220% stiffer in torsion and 270% stiffer in bending than 6 mm IN (P <.05). Six-millimeter IN had approximately 32% of the bending stiffness and torsional stiffness of intact femurs (P <.05). Eight-millimeter IN had 93% and 79% of the bending stiffness and torsional stiffness, respectively, of intact femurs. Intact femur constructs (8 mm IN with four, 4.5 mm screws) had 147% of the bending stiffness (P <.05), and similar torsional stiffness and maximum torque, as intact femora (P >.05). The mean values of 6 mm FMC with four screws (3.5 mm) were 21% and 33% in torsional stiffness and bending stiffness, respectively, of intact femora values. When tested in torsion, 8 mm FMC failed by bone fracture; 6 mm FMC, in contrast, underwent plastic deformation. In comparing FMC stabilized with an 8 mm IN with two screws (4.5 mm diameter) in each bone segment, to intact femurs, the maximum torque was similar, FMC torsional stiffness was 40% (P <.05), and FMC bending stiffness was 65% (P <.05). These 8 mm FMC percentages are comparable to human IN fracture model construct values, indicating that the 8 mm IN/four screw construct should provide adequate stabilization for many canine diaphyseal femoral fractures.  相似文献   

17.
Objectives: To compare the monotonic biomechanical properties and fatigue life of a 5.5‐mm‐broad locking compression plate (5.5 LCP) fixation with a 4.5‐mm‐broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. Study Design: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4‐point bending single cycle to failure testing, (2) 4‐point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8‐hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8‐hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group with significance set at P<.05. Results: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4‐point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4‐point bending of the 5.5 LCP fixation (170,535±19,166) was significantly greater than that of the 4.5 LCP fixation (129,629±14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean±SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4±19.6 and 97.6±12.1 N m; composite rigidity, 790.3±58.1 and 412.3±28.1 N m/rad; and failure load: 162.1±20.2 and 117.9±14.6 N m. Conclusion: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.  相似文献   

18.
Objectives: To compare the number of cycles to failure of 4.5 mm broad dynamic compression plates (DCP), 4.5 mm broad limited‐contact dynamic compression plates (4.5‐LC‐DCP), and 5.5 mm broad limited‐contact dynamic compression plates (5.5‐LC‐DCP) having a rough (denoted by a prefix R‐) versus a standard smooth contact surface for the fixation of osteotomized equine 3rd metacarpal (MC3) bones. Study Design: Experimental. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for comparison of (1) R‐DCP fixation with DCP fixation, (2) R‐4.5‐LC‐DCP fixation with 4.5‐LC‐DCP fixation, and (3) R‐5.5‐LC‐DCP fixation with 5.5‐LC‐DCP fixation to repair osteotomized equine MC3 bones under palmarodorsal 4‐point bending cyclic fatigue testing. For each group an 8‐hole plate with rough contact surface was applied to the dorsal surface of one randomly selected bone from each pair and a corresponding 8‐hole plate with smooth contact surface was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean number of cycles to failure for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results: Mean cycles to failure ± standard deviation was significantly greater for the R‐DCP fixation (230,025 ± 23,129) compared with the DCP fixation (103,451 ± 14,556), for the R‐4.5‐LC‐DCP fixation (99,237 ± 14,390) compared with the 4.5‐LC‐DCP fixation (46,464 ± 6325) and for the R‐5.5‐LC‐DCP fixation (65,113 ± 7796) compared with the 5.5‐LC‐DCP fixation (34,224 ± 3835). Conclusion: For the fixation of osteotomized MC3 bones, the constructs with plates having rough contact surface were superior to the corresponding constructs with plates having standard smooth contact surfaces in resisting cyclic fatigue under palmarodorsal 4‐point bending.  相似文献   

19.
OBJECTIVE: To compare the structural properties and the interfragmentary motion in ostectomized canine femurs stabilized with either an 8-mm interlocking nail system (IN) or a 10-hole dynamic compression broad plate (DCP). ANIMAL OR SAMPLE POPULATION: Ten pairs of adult canine femurs with a 25-mm mid-diaphyseal gap. METHODS: Bone specimens were divided into 2 groups (10 femurs each). Left femurs were stabilized with a DCP and 8 bicortical screws; right femurs were stabilized with an IN and 3 screws. Mechanical tests were performed in eccentric axial loading and in craniocaudal bending. The testing was first conducted nondestructively and then until breakage. Structural properties, ie, stiffness, yield limits, and failure limits, were determined. Interfragmentary motion was measured during nondestructive tests with the use of an optoelectronic device. Axial, transverse, and rotational motions were calculated. Mean values of stiffness, yield and failure limits, and axial and shear motions for each fixation method were compared using a paired t test within each group (P <.05). RESULTS: Mean (+/-SD) values of stiffness and failure limit were significantly higher for IN constructs than for DCP constructs in compression, while there was little difference in the results between each tested group in bending. Mean yield load values were significantly higher for IN than for DCP specimens in compression as well as in bending. The axial-motion analysis revealed significant differences between IN and DCP groups during bending tests only. The highest score of transverse motion at the gap was recorded during bending tests, and was higher for DCP than for IN specimens. There were insignificant differences between the two groups with regard to rotation around the diaphyseal axis. CONCLUSIONS AND CLINICAL RELEVANCE: Structural properties and interfragmentary shear motion analysis demonstrated a much higher rigidity in the IN-bone than in the DCP-bone constructs.  相似文献   

20.
Objective—To determine and compare the in vitro pullout strength of 5.5-mm cortical versus 6.5-mm cancellous bone screws inserted in the diaphysis and metaphysis of adult equine third metacarpal (MCIII) bones, in threaded 4.5-mm cortical bone screw insertion holes that were then overdrilled with a 4.5-mm drill bit to provide information relevant to the selection of a replacement screw if a 4.5-mm cortical screw is stripped. Study Design—In vitro pullout tests of 5.5-mm cortical and 6.5-mm cancellous screws in equine MCIII bones. Sample Population—Two independent cadaver studies each consisting of 14 adult equine MCIII bones. Methods—Two 4.5-mm cortical screws were placed either in the middiaphysis (study 1) or distal metaphysis (study 2) of MCIII bones. The holes were then overdrilled with a 4.5-mm drill bit and had either a 5.5-mm cortical or a 6.5-mm cancellous screw inserted; screw pullout tests were performed at a rate of 0.04 mm/second until screw or bone failure occurred. Results—In diaphyseal bone, the screws failed in all tests. Tensile breaking strength for 5.5-mm cortical screws (997.5 ± 49.3 kg) and 6.5-mm cancellous screws (931.6 ± 19.5 kg) was not significantly different. In metaphyseal bone, the bone failed in all tests. The holding power for 6.5-mm cancellous screws (39.1 ± 4.9 kg/mm) was significantly greater than 5.5-mm cortical screws (23.5 ± 3.5 kg/mm) in the metaphysis. There was no difference in the tensile breaking strength of screws in the diaphysis between proximal and distal screw holes; however, the holding power was significantly greater in the distal, compared with the proximal, metaphyseal holes. Conclusions—Although tensile breaking strength was not different between 5.5-mm cortical and 6.5-mm cancellous screws in middiaphyseal cortical bone, holding power of 6.5-mm cancellous screws was greater than 5.5-mm cortical screws in metaphyseal bone of adult horses. Clinical Relevance—If a 4.5-mm cortical bone screw strips in MCIII diaphyseal bone of adult horses, either a 5.5-mm cortical or 6.5-mm cancellous screw, however, would have equivalent pullout strengths. A 6.5-mm cancellous screw, however, would provide greater holding power than a 5.5-mm cortical screw in metaphyseal bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号