首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of microbial community diversity in two similar sandy surface soils from Virginia and Delaware (USA) was analysed with a culture-independent small subunit ribosomal RNA (SSU rRNA) gene-based cloning approach with about 400-700 SSU rDNA clones obtained from each sample. While there were no operational taxonomic units (OTUs) having more than three individuals, about 96-99% of the OTUs had only a single individual. The clones showing less than 85% similarity to the sequences in the current databases were fully sequenced. The majority of the clones (55%) had sequences that were more than 20% different from those in the current databases. About 37% of the clones differed by 15-20% in sequence from the database, 16% of the clones differed by 10-15%, and 5% of the clones differed by only 1-10%. Phylogenetic analysis indicated that these sequences fell into 10 of the 35-40 known phylogenetic divisions. Many of the clones were affiliated with Acidobacterium (35%). While a substantial portion of the clones belong to alpha (24%) and beta (12%) Proteobacteria, a few of them were affiliated with delta (6%) and gamma (3%) Proteobacteria. About 6% of the clones belong to Planctomycetes, and 4% of the clones were related to gram-positive bacteria. About 4% of clones were related to other bacterial divisions, including Cytophaga, Green sulfur bacteria, Nitrospira, OP10, and Verrucomicrobia. Eight sequences had no specific association with any of the known divisions or candidate divisions and were phylogenetically divided into three novel division level groups, named AD1, AD2 and AD3. Candidate division AD1 represented by six clones (4%) was found in both sites and consisted of two subdivisions. The community structures were similar between these two widely separated, sandy, oligotrophic, surface soils under grass vegetation in a temperate, humid climate but somewhat dissimilar to community structures revealed in similar studies in other types of soil habitats.  相似文献   

2.
Two complementary studies were performed to examine (1) the effect of 18 years of nitrogen (N) fertilization, and (2) the effects of N fertilization during one growing season on soil microbial community composition and soil resource availability in a grassland ecosystem. N was added at three different rates: 0, 5.44, and 27.2 g N m−2 y−1. In both studies, Schizachyrium scoparium was the dominant plant species before N treatments were applied. Soil microbial communities from each experiment were characterized using fatty acid methyl ester (FAME) analysis. Discriminant analysis of the FAMEs separated the three N fertilizer treatments in both experiments, indicating shifts in the composition of the microbial communities. In general, plots that received N fertilizer at low or high application rates for 18 years showed increased proportions of bacterial FAMEs and decreased fungal FAMEs. In particular, control plots contained a significantly higher proportion of fungal FAMEs C18:1(cis9) and C18:2(cis9,12) and of the arbuscular mycorrhizal fungal (AMF) FAME, C16:1(cis11), than both of the N addition treatment plots. A significant negative effect of N fertilization on the AMF FAME, C16:1(cis11), was measured in the short-term experiment. Our results indicate that high rates of anthropogenic N deposition can lead to significant changes in the composition of soil microbial communities over short periods and can even disrupt the relationship between AMF and plants.  相似文献   

3.
Composts are increasingly used as environmentally safe biofertilizers in sustainable agriculture all over the world. Although it is well known that composts may contribute to soil vitality and sustainability, and in the enhancement of various soil microbiological processes, little is known about their direct or indirect effects on a microbial-community or population level. Ammonia oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and plays an important role in the global nitrogen cycle. Here, we studied the diversity and community composition of ammonia oxidizers in a long-term crop rotation field experiment (>10 years) where four major types of compost (from organic waste, cattle manure, green waste and sewage sludge) had been applied annually. The methods used ranged from PCR-DGGE (denaturing gradient gel electrophoresis) and cloning of 16S rDNA fragments to quantitative real-time PCR. Cluster analysis of DGGE profiles differentiated between the microbial communities of composts, compost-treated soils and mineral-fertilized soils. The community composition of the composts was not reflected in the community composition of the compost-treated soils. Sequencing of screened clones revealed a characteristic AOB community structure for the representative soil sample and the four composts. All AOB-like sequences grouped within the Nitrosospira cluster 3 and 4 and within the Nitrosomonas cluster 6 and 7. The average AOB abundance in compost-treated soils was two times higher than in mineral-fertilized soils (4.3×107 and 1.9×107, respectively). Our data suggest that composts do not leave direct microbial imprints in soils after long-term amendment, but an indirect effect on the AOB community was evident.  相似文献   

4.
采用PCR-DGGE及其特异性条带克隆测序的方法,研究黑土长期定位试验原状土整体搬迁对土壤真菌群落结构多样性的影响。对同为小麦茬的搬迁前(2010年)和搬迁后(2013年)土壤真菌群落结构的研究表明:DGGE图谱中搬迁前后2个土层不同处理的样品间条带的数量和亮度存在部分变化;对DGGE图谱进行聚类分析可得,真菌群落结构在2个土层各处理中搬迁前后有部分变化,其中MNPK处理的变化较为显著;对DGGE图谱主成分分析结果可得,在0~20 cm土层中各处理虽然搬迁前和搬迁后产生分异,但搬迁前后的3年中处理间的分布规律相似,在20~40 cm土层中搬迁前和搬迁后MNPK和CK处理的分布规律发生了变化。搬迁前和搬迁后土壤真菌群落结构受到搬迁扰动的影响远小于耕作方式、植被类型、土壤肥力等的影响。  相似文献   

5.
In forest ecosystems, the external nitrogen (N) inputs mainly involve wet and dry depositions that potentially alter inorganic N availability in the soil and carbon (C) turnover. This study assesses the effect of a slow increase of inorganic N availability on microbial community activity and functionality in a Mediterranean forest soil. A four-month incubation experiment was performed with soil collected from the organic layer of a forest site and fertilized with a solution of ammonium nitrate. The fertilizer was supplied at an equivalent of 0, 10, 25, 50 and 75 kg N ha−1 (0, 0.3, 0.7, 1.3 and 2 mg N g−1 for control N0 and treatments N1, N2, N3 and N4, respectively). The incubation was carried out under optimal conditions, with the addition of the nutritive solution in small aliquots once a week to mimic the phenomenon of N deposition. In order to isolate the effect of N, the pH of the NH4NO3 solutions was adjusted to soil pH, and phosphorus was added in order to prevent any nutrient limitation effect. Inorganic N, C-mineralization, the activity of one oxidative enzyme (o-diphenol oxidase) and 8 hydrolitic enzymes (α-glucosidase, β-glucosidase, N-acetyl-β-d-glucosaminidase, cellulase, leucine amino-peptidase, acid phosphatase, butyric esterase and β-xylosidase) and the community level physiological profile (CLPP) were measured and analyzed during the whole incubation and at the end of the experiment as a proxy for microbial decomposition activity. In the first month, the highest N availability (N4) repressed the microbial respiration activity but stimulated microbial enzymatic activity, suggesting a change of C-pathways from spilling to enzymes and biomass investment. The treatments N1, N2 and N3 had no effect in the same period. Throughout the incubation, a general stress condition affected all the treated soils. As a consequence, treated soils exhibited higher respiration rates than the control. This was accompanied by a loss of functional diversity and an end-detected decline in biomass C. Although at the end of incubation most of the soil features showed a clear correlation with the inorganic N pool, the organic C content was strongly affected by different patterns of microbial activity during the experiment: the highest N treatment (N4) showed a lower C loss than the N3 treatment. Overall, the experiment showed how inorganic N availability can potentially alter the C cycle in a Mediterranean forest soil. The effect is non linear, depending on microbial community dynamics, on the community’s ability to adapt given the time scale of the process, and on N supply amount. Our study also revealed a common pattern in the short-term response to N addition in other, similar ecosystems with different climatic conditions.  相似文献   

6.
Podzolization occurs quickly in acidic parent materials with addition of acidic litter from coniferous trees. This study was conducted to evaluate Podzol formation and estimate lengths of time required to meet morphological and chemical criteria of podzolic B horizon and spodic horizon in Finland. Soil color, organic C, ODOE, and extractable Al and Fe were measured in a seven-pedon chronosequence (230–1800 years) and four older pedons (8300–11,300 years). The bulk mineralogical composition of the BC and C horizons was uniform with quartz, plagioclase and K-feldspar as main components and amphibole, illite and chlorite as minor components. The fine (<5 μm) fraction of selected samples was primarily amorphous allophone-like material with some mixed-layered illite–vermiculite. All pedons in the study met the criteria for albic horizons according to the FAO–Unesco, World Reference Base (WRB) and Soil Taxonomy systems. According to the FAO–Unesco system, all pedons had spodic B horizons and were classified as Podzols. According to the WRB system, none of pedons of the chronosequence had spodic horizons, whereas the older pedons met the criteria for a spodic horizon. About 4780 years were required to form a spodic horizon according to the WRB system. The oldest pedon of the chronosequence and the older pedons had spodic horizons according to Soil Taxonomy, but the younger pedons failed to meet the spodic horizon criteria. About 1520 years were required to form a spodic horizon that met the color and organic C criteria of Soil Taxonomy, whereas it took about 4780 years to meet the required accumulation of Fe and Al. This study points out the discrepancy between the color criteria and the criteria reflecting the accumulation of Al, Fe and organic matter in the B horizon.  相似文献   

7.
菜田土壤有效氮的动态研究   总被引:4,自引:1,他引:4  
在田间条件下研究了种植莴苣和西葫芦对菜田土壤硝态氮、有机态氮和微生物量氮剖面动态的影响 ,结果表明 ,不同作物对土壤表层硝态氮、有机态氮和微生物量氮影响较大 ,表层有效氮在作物生长期间基本上处于耗竭状态 ;2 0~ 4 0cm土层土壤有效氮除硝态氮以外 ,受作物影响较小 ;而 4 0~ 60cm土层土壤各种形态氮基本不受作物影响  相似文献   

8.
不同海拔茶树根系土壤微生物群落多样性分析   总被引:4,自引:0,他引:4  
从福建省泉州市安溪县不同海拔铁观音茶园采集了根系区域土壤, 利用磷脂脂肪酸(PLFAs)生物标记法研究了不同海拔茶园根系土壤微生物群落多样性。结果表明, 不同海拔茶树根系土壤共检测22个PLFAs, 不同的PLFAs在不同海拔茶树根系土壤分布差异明显, 可分为完全分布和不完全分布两种类型。高海拔(834 m)茶树根系土壤分布的PLFAs种类和数量都最多, 分布最高的前3个生物标记为16:0(指示细菌)、18:3ω6c(6,9,12)(指示真菌)、18:00(指示嗜热解氢杆菌)。对不同海拔茶树根系土壤特征微生物PLFAs分析表明, 代表细菌的16:0、代表真菌的18:3ω6c(6,9,12)和代表放线菌的10Me 16:0相对生物量在不同海拔茶树根系土壤中分布量不同, 细菌分布量最大, 其次是放线菌, 真菌分布量最小。微生物群落PLFAs标记聚类结果显示, 当欧氏距离为11.51时, 可将不同海拔茶园根系土壤的PLFAs生物标记分成3个大的类群, 类群I的PLFAs生物标记为完全分布且分布量中等, 类群Ⅱ的PLFAs生物标记为完全分布且分布量较高, 类群Ⅲ的PLFAs生物标记为不完全分布且分布量较低。分析多样性指数表明, Shannon-Wiener指数、Simpson指数和Pielou指数均是海拔834 m处最大, 海拔717 m处最低。  相似文献   

9.
This study aimed at quantifying nitrogen (N) and potassium (K) released from winery solid waste (WSW) composts during laboratory incubation to address deficiency in two texturally distinct soils. Composts had 4, 10, 20, 30, 40% (w/w) of filter materials (FMs) mixed with grape marc and pruning canes. The composts were mixed with the soils at equivalent rate of 200 kg N ha?1 and incubated for 42 days. Quantitatively higher (p < 0.05) ammonium N content was recorded in sandy than sandy loam soil during the incubation duration while exchangeable K was increased in K-deficient sandy soil. Cumulative total mineralized N (TMN) measured during the incubation duration ranged from 59 mg kg?1 to 672 mg kg?1 depending on compost type and soil texture while a 10-fold increase in compost FMs content resulted in 144% and 139% increases in cumulative mineralized K in sandy and sandy loam textured soil, respectively. Percent N mineralized from the composts relative to the amount applied during the incubation duration was less than 54% reflecting the composts and soils inherent characteristics. The high ammonium N and K mineralized suggests that farmers must be cautious in utilizing these composts for field crops production due to the potential environmental risks.  相似文献   

10.
为明确黄土高原旱作麦田长期保护性耕作对土壤肥力和土壤原核微生物的效应,以位于山西省临汾市实施保护性耕作26年的小麦田为试验基地,采用Illumina Hiseq 2500高通量测序等手段,开展了不同耕作措施[免耕覆盖(NTS)、深松免耕覆盖(SNTS)和传统耕作(TT1)]对土壤理化性质和土壤原核微生物多样性的影响分析。研究结果表明:1)NTS和SNTS处理比TT1处理显著提高了土壤全氮、碱解氮、速效磷及速效钾的含量,降低了土壤pH,提高了土壤贮水能力和水分含量,降低了0~10 cm土层的土壤容重,但提高了10~20 cm土层的土壤容重;同时,SNTS处理显著增加了土壤的有机质含量。2)Illumina Hiseq高通量16S rRNA基因V4区测序结果表明:NTS和SNTS处理比TT1处理显著降低了绿弯菌门的相对丰度;NTS比SNTS处理显著降低了土壤中疣微菌门和绿弯菌门的相对丰度;NTS处理显著增加了土壤原核微生物群落的多样性,但未显著改变原核微生物群落的丰度;SNTS对原核微生物群落的多样性和丰富度均未有显著改变;NTS处理的显著性差异物种(Biomarker)高于其他2个处理;其他原核微生物门的相对丰度,在3个处理间尚未有明显差异。3)聚类分析可见:NTS和SNTS处理与TT1处理的微生物群落结构差异较大;NTS处理与SNTS处理间的微生物群落结构差异较小。4)CCA分析可知:土壤pH、有机质、速效氮、速效磷、速效钾含量对土壤原核微生物群落遗传多样性的变化起着重要作用;与TT1处理相比,NTS和SNTS处理在一定程度上改变了土壤原核微生物群落结构,但仍存在结构的相似性。综上所述,长期进行NTS和SNTS处理对黄土高原旱地麦田土壤微生物多样性、丰富度以及土壤肥力因子等的正效作用明显。  相似文献   

11.
12.
The impact of DNA extraction protocol on soil DNA yield and bacterial community composition was evaluated. Three different procedures to physically disrupt cells were compared: sonication, grinding-freezing-thawing, and bead beating. The three protocols were applied to three different topsoils. For all soils, we found that each DNA extraction method resulted in unique community patterns as measured by denaturing gradient gel electrophoresis. This indicates the importance of the DNA extraction protocol on data for evaluating soil bacterial diversity. Consistently, the bead-beating procedure gave rise to the highest number of DNA bands, indicating the highest number of bacterial species. Supplementing the bead-beating procedure with additional cell-rupture steps generally did not change the bacterial community profile. The same consistency was not observed when evaluating the efficiency of the different methods on soil DNA yield. This parameter depended on soil type. The DNA size was of highest molecular weight with the sonication and grinding-freezing-thawing procedures (approx. 20 kb). In contrast, the inclusion of bead beating resulted in more sheared DNA (approx. 6-20 kb), and the longer the bead-beating time, the higher the fraction of low-molecular weight DNA. Clearly, the choice of DNA extraction protocol depends on soil type. We found, however, that for the analysis of indigenous soil bacterial communities the bead-beating procedure was appropriate because it is fast, reproducible, and gives very pure DNA of relatively high molecular weight. And very importantly, with this protocol the highest soil bacterial diversity was obtained. We believe that the choice of DNA extraction protocol will influence not only the determined phylogenetic diversity of indigenous microbial communities, but also the obtained functional diversity. This means that the detected presence of a functional gene—and thus the indication of enzyme activity—may depend on the nature of the applied DNA extraction procedure.  相似文献   

13.
亚热带四种主要植被类型土壤细菌群落结构分析   总被引:2,自引:2,他引:0  
刘卜榕  徐秋芳  秦华  郭帅  石慧丽 《土壤学报》2012,49(6):1185-1193
应用PCR-DGGE方法分别对天目山和玲珑山的四种典型森林土壤细菌群落结构进行了研究分析。结果表明,阔叶林、杉木林、马尾松林和毛竹林在天目山土壤中的DGGE条带数分别为49、45、51和51条,在玲珑山土壤中的DGGE条带数分别为42、4i多是奥前啊2、44和48条。不同森林植被土壤DGGE带谱差异不明显,天目山和玲珑山4种森林土壤分别有31条和23条共性条带,分别占总数的61%和48%以上,然而每种林分也有各自的特征条带。相对而言,两个样地杉木林与其他三种林分的土壤细菌群落结构相似度较低,相似值分别为0.72和0.68,其土壤细菌多样性指数也明显低于其他3种林分,而毛竹林和马尾松林多样性指数则没有显著差异。同时分析两个采样区的土壤细菌DGGE发现,土壤性质对细菌群落结构的影响大于植被。  相似文献   

14.
生物炭施入土壤被认为是一种有效的固碳减排措施,可增加土壤有机碳及矿质养分含量,提高土壤的持水能力及保肥能力。为探明其施入土壤后对土壤微生物活性及多样性的影响,本文在盆栽试验条件下,采用Biolog与高通量测序相结合的方法,研究了CK(不施生物炭)和施用5 g·kg~(-1)、10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)玉米秸秆生物炭对土壤微生物碳源利用能力(AWCD)、功能多样性指数以及土壤细菌的丰度和多样性的影响。结果表明,随着生物炭施用量的增加,表征土壤微生物活性的AWCD值呈下降趋势,表现为:5 g·kg~(-1)处理≈CK10 g·kg~(-1)处理30 g·kg~(-1)处理60 g·kg~(-1)处理,其中CK和5 g·kg~(-1)处理间差异不显著(P0.05),而10 g·kg~(-1)、30 g·kg~(-1)和60 g·kg~(-1)处理在整个培养期间的AWCD值显著低于CK处理(P0.05);土壤微生物群落代谢功能多样性指数(H′)、碳源利用丰富度指数(S)均随生物炭施用量的增加而呈下降趋势,但均匀度指数(E)表现出相反趋势,5g·kg~(-1)、10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)各处理的H′较CK处理分别增加0.16%、-0.88%、-3.14%、-11.09%,S分别增加-2.82%、-11.27%、-18.31%、-47.89%,E分别增加1.14%、3.00%、3.73%和13.76%。主成分分析表明,与CK处理比较,5 g·kg~(-1)处理对土壤微生物群落碳源利用方式没有显著影响(P0.05),而10 g·kg~(-1)、30 g·kg~(-1)和60g·kg~(-1)处理对土壤微生物群落碳源利用方式影响显著(P0.05)。随着生物炭施用量的增加,土壤细菌OTU数目及丰富度指数(Chao1)呈增加趋势,5 g·kg~(-1)处理与CK处理差异不显著,而10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)处理的OTU数目较CK处理分别增加1.09%、5.26%、24.42%,Chao1分别增加5.73%、10.21%、37.68%。土壤中施用生物炭后土壤细菌变形菌门(Proteobacteria)的丰度在CK处理和5 g·kg~(-1)处理间差异不显著(P0.05),而10g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)处理较CK处理分别增加32.3%、21.1%、16.7%,拟杆菌门(Bacteroidetes)的丰度随着生物炭施用量的增加各处理较CK处理分别减少22.1%、55.3%、66.8%、50.5%。生物炭施入土壤后降低了土壤可培养微生物的活性,减少或改变了土壤微生物碳源利用的种类,使土壤原有微生物群落组分发生改变,生物炭也影响了土壤细菌各菌群在土壤中的丰度,使其分布的均匀性降低。为了不影响微生物群落结构和功能,石灰性褐土上生物炭一次还田量不能超过5 g·kg~(-1)(干土)。  相似文献   

15.
Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with PSMs. The effect of inoculation with phosphate-solubilizing fungal (PSF) isolates Aspergillus niger P39 and Penicillium oxalicum P66 on the bacterial communities in the rhizospheres of maize (Zea mays L. ‘Haiyu 6') and soybean (Glycine max Merr. ‘Heinong 35') was examined using culture-dependent methods as well as a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Compared with the control, the number of culturable microbes for soybean was significantly greater with P39, whereas for maize, the same was significantly greater with P66. In addition, a greater number of microbes were found in the rhizosphere of maize compared with soybean. The fingerprint of DGGE for 16S rDNA indicated that inoculation with PSF also increased bacterial communities, with the P66 treatment having higher numbers of DGGE bands and a higher Shannon-Weaver diversity index compared with P39; the composition of the microbial community was also more complex with the P66 treatment. Overall, complex interactions between plant species and exotic PSMs affected the structure of the bacterial community in the rhizosphere, but plant species were more important in determining the bacterial community structure than the introduction of exotic microorganisms.  相似文献   

16.
Quantitative analyses of nitrogen cycling genes in soils   总被引:2,自引:0,他引:2  
  相似文献   

17.
ABSTRACT

Our objectives were to investigate whether AP affects the soil bacterial community composition and diversity in high-level available phosphorus (AP) soils. The bacterial community was analysed through high-throughput sequencing using the Illumina MiSeq platform. Fifteen soils, including barren land, cropland and greenhouse soils which were sandy loam Fluvisols, were selected from different fields in Beijing, China, with AP contents ranging from 5.03 to 391.45 mg kg?1. Statistical analyses revealed high AP (>100 mg kg?1) decreased alpha diversity (Shannon’s index, H’) but not beta diversity of the soil bacterial community. The sequencing of 16S rRNA genes showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla in sandy loam Fluvisols. AP, soil organic carbon (SOC) and total nitrogen (TN) had synergistic influence on the shift of the bacterial community composition. Moreover, AP was the main driving factor affecting the soil bacterial community composition compared with other environmental factors. The members of the Proteobacteria, Bacteroidetes and Actinobacteria belonging to copiotrophic taxa typically increased in relative abundance in high-P soils, while oligotrophic taxa (mainly Acidobacteria) decreased in relative abundance. Our results demonstrated that the bacterial community composition would shift from oligotrophic to copiotrophic with increasing levels of AP.  相似文献   

18.
王丹  李恋卿  刘永卓  潘根兴 《土壤》2012,44(2):290-296
选择太湖地区水稻-油菜轮作的长期肥料试验的水稻田,采集原状土进行团聚体颗粒分离,提取土壤微生物DNA进行PCR-DGGE分析,通过对DGGE结果进行主成分分析和多样性指数的计算,比较秸秆还田和化肥配施与单施化肥两施肥处理对土壤团聚体中微生物群落组成和多样性的影响。结果表明:与单施化肥相比,秸秆还田显著改变了2 000 ~ 200 μm和200 ~ 20 μm两粒组中细菌和真菌的群落组成,说明较大颗粒组中微生物群落组成灵敏响应施肥措施的变化。不同团聚体粒组微生物群落多样性存在差异,细菌的多样性在2 000 ~ 200 μm与<2 μm粒组中较高,真菌则在大粒组中表现出较高的多样性,而且由团聚体粒组本身带来的微生物多样性的变异大于施肥措施引起的变异。  相似文献   

19.
The Negev Desert is characterized by low soil moisture and organic matter content and an unpredictable rainfall amount, dispersion, and intensity. Water and nutrient availability are, therefore, the major limiting factors of biological activity in arid and semi-arid ecosystems. Plants have developed different ecophysiological adaptations in order to cope with the harsh conditions in this xeric environment, e.g., excretion of salt (Reaumuria negevensis) and chemical compounds (Artemisia sieberi) through the leaves. Microorganisms constitute a major part of these ecosystems' total biomass, and are diverse members of the soil food web, being primarily responsible for breaking down complex organic compounds, which are then recycled. They are also known to be very sensitive to abiotic changes and can time their activity to the environmental conditions.Soil samples were collected monthly from a 0 to 10 cm depth, under the canopies of A. sieberi, Noaea mucronata, and R. negevensis. Samples collected from inter-shrub spaces served as control. CO2 evolution, microbial biomass, microbial functional diversity, and the physiological profile of the community, were determined by MicroResp™ analysis. A significant difference was found between the two dry periods in most of the examined parameters. The values of water, organic matter content, and total soluble nitrogen were higher in soil samples collected in the vicinity of R. negevensis than in samples collected in the vicinity of N. mucronata, A. sieberi, and the open area. A similar trend was found in CO2 evolution, microbial biomass, and H' values, in which soil samples collected beneath the canopies of N. mucronata and R. negevensis and from open area had higher values during the wet periods (which were characterized by a mesic environment) and in samples collected beneath the A. sieberi in the wet 2006 and dry 2007 periods.  相似文献   

20.
In this study, we investigated crop yield and various chemical and microbiological properties in rhizosphere of wheat, maize, and faba bean grown in the field solely and intercropped (wheat/faba bean, wheat/maize, and maize/faba bean) in the second and third year after establishment of the cropping systems. In both years, intercropping increased crop yield, changed N and P availability, and affected the microbiological properties in rhizosphere of the three species compared to sole cropping. Generally, intercropping increased microbial biomass C, N, and P availability, whereas it reduced microbial biomass N in rhizosphere of wheat. The rhizosphere bacterial community composition was studied by denaturing gradient gel electrophoresis of 16S rRNA. In the third year of different cropping systems, intercropping significantly changed bacterial community composition in rhizosphere compared with sole cropping, and the effects were most pronounced in the wheat/faba bean intercropping system. The effects were less pronounced in the second year. The results show that intercropping has significant effects on microbiological and chemical properties in the rhizosphere, which may contribute to the yield enhancement by intercropping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号