首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Determinate architecture is of great interest for lupin production in Europe but the extent of genetic and environmental variation in the structure and yield of determinate lupins must be evaluated. Forty-three genotypes of determinate autumn-sown white lupin were studied in four environments in France in 1991/92 and 1992/93. Wide variation was observed for phenological (dates of mainstem and branch flowering, date of end of flowering and date of maturity), morphological (numbers of branch orders, branches and leaves) and seed characters (seed yield, mean seed weight, number of seeds/m2). Both genetic and environmental effects contributed to the observed variation. Heritabilities were high for all characters, and the interaction between genotype and location effects was low. There were significant positive correlations of flowering dates with vegetative plant development including the number of branches, number of leaves and number of branch orders. Seed yield and phenological and archtectural characters were significantly correlated. Distribution of yield on the vegetative orders showed important variations according the genotype, and the variations were related to variation for the architecture. There are possibilities for yield improvement using morphological characters in determinate autumn-sown lupin.  相似文献   

2.
Indian mustard is mostly targeted for commercial cultivation as an early-sown or late-sown crop with the expectation of higher seed yield and oil content. With this lacuna, 45 genotypes were analyzed for yield traits by growing them as early, timely, and late-sown crops over 2 years in Pantnagar, India. The results of the ‘Eberhart and Russell Model’ and ‘GGE Biplot’ analyses were in accordance to each other but Eberhart and Russell’s model was more appropriate for judging the genotype(s) to environment specificity/adaptation while GGE Biplot was the best approach to evaluate the concerned environments for their discriminating power to genotypes. Inverse and counteracting relationships were observed among model parameters, i.e., crop growth rate (C), partitioning coefficient (P), and duration of reproductive phase (Dr) with seed yield and oil content. Seed yield was positively (P ≤ 0.01) related to all related traits except Dr, while oil content was positively (P ≤ 0.01) related to only Dr. Both C and P contributed to final yields, but P had a greater contribution particularly under terminal heat stress.  相似文献   

3.
Chickpea (Cicer arietinum L.) has an indeterminate growth nature, and the plant canopy with an improved light environment during critical growth stages may increase biomass (BM) production and improve crop yield. This study examined (i) the effects of shading, light enrichment and defoliation applied at various growth stages on BM and seed yield of chickpea in northern latitudes; and (ii) the difference between cultivars with fern‐ vs. unfoliate‐leaf type in responding to the altered canopy light environments. Field studies were conducted at Saskatoon and Swift Current, Saskatchewan in 2004 and 2005. Different light environments were created by 50 % defoliation at vegetative growth and at first flower, 50 % shading from vegetative growth to first flower, and two light enrichment treatments initiated at the first flower and pod formation stages. The 50 % shade treatment prior to flowering significantly decreased harvest index (HI) and seed yield. Light enrichments increased seed yield only one of three location‐years (the fourth site excluded because of disease damage). Defoliation at vegetative growth or first flower had a marginal effect on seed yield, largely as a result of the regrowth of vegetative tissues compensating for the lost plant tissues. The cultivar CDC Yuma (fern‐leaf type) exhibited consistently greater maximum light interception (LI), cumulative intercepted radiation, HI and seed yield than the cultivar Sanford (unifoliate‐leaf type) across all location‐years. Selective use of chickpea cultivars with improved morphological traits such as fern‐leaf type will likely improve LI and increase crop yield for chickpea in northern latitudes. Moreover, optimized crop management practices should be adopted to ensure that chickpea be grown under conditions with minimum shading before flowering and optimum light environment within the canopy especially during reproductive growth period.  相似文献   

4.
Physiological attributes determining yield, both under drought and under irrigated conditions, of some advanced chickpea lines of recent origin were investigated over two seasons using a physiological model. Total shoot biomass, grain yield, and vegetative (Dv) and reproductive (Dr) durations were measured and the crop growth rates (C) and the rate of partitioning to seed (p) were estimated. The contribution of model parameters to variations in grain yield were determined by path analysis, and the relationships of the yield determinants with seed yield were obtained by regression techniques. The model was found to be suitable for chickpea, and when the parameters were fitted the model explained 98% of the variation. Irrigation enhanced Dr and C. While C was the major single yield determinant, the combination of C and p in non-irrigated environments explained most of the grain yield variation. Dv and Dr exhibited a negative relationship while C and p exhibited a positive relationship under drought stress and a negative relationship in the irrigated environment. There were indications of the existence of an optimum Dv for maximum C among the genotypes, suggesting the need to select for optimum duration genotypes. As high values for p and C in severe drought stress and Dr and C in the irrigated environments are advantageous for high yield, separate breeding strategies are needed for different soil water environments.  相似文献   

5.
A better understanding of the agronomic importance of planting date and the influence of cold temperatures and photoperiod during germination and plant growth may lead to better management strategies for cultivation of the sweet white lupin (Lupinus albus). The effects of planting date (temperature and photoperiod) were determined on the number of days to flowering, yield and yield components of four early to medium and one late sweet white lupin genotype in a field trial at Potchefstroom, South Africa, planted during February 1996 to January 1997. Moisture stress was avoided through regular irrigation. Duration of the developmental phases planting date to emergence, emergence to floral initiation, initiation to first flower, duration of flower and days to physiological and harvest maturity was related to field measurements of temperature and photoperiod. Differences in the main determinants of yield, i.e. seeds per pod, pods per plant, single seed mass (SSM), plant and pod height and yield, were measured. Results showed that both temperature and photoperiod influence the growth and development of the Lupinus albus genotypes ‘Esta’, ‘Hantie’, ‘Tifwhite’, ‘Kiev’ and ‘LAL 186’. Temperature influences include the effect of vernalization at seedling emergence. Minimum grass temperatures under 5 °C at emergence are effective for vernalization. However, after grass temperatures at emergence increased again from June to December, to gether with an increase in the photoperiod length, ‘Tifwhite’ as well as the other genotypes still flowered earlier, confirming that these cultivars are long‐day plants, which is in accordance with controlled‐environment data. Cool vernalizing temperatures thus not only influence obligate vernalization requiring genotypes such as ‘Tifwhite’, but also influence the non‐obligate genotypes studied. Plan‐ting date had a significant influence on pods per plant, single seed mass (SSM) and seed yield. In all trials laterplanting, from June to November, decreased SSM and seed yield. The highest seed yield of 1.5 t ha?1 was obtained for the 10 June planting date and the lowest average yield of 0.450 t ha?1 for the 5 November planting date.  相似文献   

6.
Eleven cotton (Gossypium hirsutum L.) cultivars were evaluated for their growth and yield performance in Shihezi, Xinjiang, China, an area in Central Asia with short growing period in 1999 and 2000. In each cultivar the number of bolls per plant was low and the number of bolls per unit area was high. Each cultivar showed rather high seed and lint yields. The highest lint yield was Xinluzao 10 in both years with 1761 and 1809 kg ha?1. High yield ability of the cultivars in this study was attributed to large number of bolls per unit area with high lint percentage. Seed and lint yields had significant positive correlations with mean net assimilation rate, ratio of reproductive to vegetative organs and mean boll weight at earlier stages of boll growth, suggesting that early boll formation and successive partitioning of dry matter into bolls were important factors for boll growth in this study area.  相似文献   

7.
Sixteen white clover genotypes and their half-sib progenies were grown in pure stand. Each clover progeny was also grown in a mixed stand that also included three grass varieties of different species. Dry matter (DM) yield was measured over 2 years and seed yield at the second year. Competitive ability of clover families was defined as the ratio between mixed stand and pure stand for clover DM yield. Narrow-sense heritability from parent-offspring regression of pure stand data was high to moderate (h20.50) for DM yield, seed yield and most of their components. Persistence as predicted by stolon density showed negative genetic correlations with seed yield (rg= -0.70) and DM yield (r2= -0.60), whereas seed yield and DM yield tended towards a negative correlation (r2=0.45). Sizes of different vegetative or reproductive organs were generally correlated positively. Evidence was provided that the set of parent genotypes represents well the genetic variation available within the Ladino gene pool. The results highlighted the difficulty of combining relatively short-term DM yield, persistence and seed yield into a unique plant type. Differences in competitive ability emerged only in the second year, better ability being related mainly to petiole length among the traits assessed in pure stand.  相似文献   

8.
Two series of field trials were performed at three sites in Schleswig-Holstein between 1981 and 1988 to inquire into the yield structure of European winter types of Vicia faba L. and to compare their yield potential with that of spring types. Due to low winter survival, 6 winter types could be evaluated only in 4 environments in dependence of 1–3 sowing times (series α: seed rate 30/m2) and 1 winter type in 5 environments in dependence of 3 sowing times and 3 seed rates (series β: seed rate 15, 30, 45/m2). Seed yield of winter type averaged 410 g/m2 (D.M.) surpassing spring types by about 14 %. Environments caused a considerable variation in yield (275–620 g/m2) and in each yield component of winter types, while sowing dates and seed rates hardly affected the components seeds/pod and seed weight, which displayed stable genotypic rank orders. Compensative forces among the components plants/m2, tillers/plant and pods/tiller, were established. Plant densities of less than 10/m2 in spring, generally led to seed yield below 350 g/m2. Variation between 15–30 plants/m2 due to environments, sowing times or seed rates were frequently not fully compensated by tillering of plants, but often variation of the thus formed yield potential was reduced by pod set of tillers resulting in 210–270 pods/m2. The direction of correlations of pods/tillers with tillers/plant and plants/m2 differed due to experimental conditions whereas negative correlations between pods/tiller and tillers/ m2 were generally evident. Tillering was significantly influenced by the sowing time, though the increase because of early sowing was often covered by compensative effects of different plant densities. A genotypic capability to produce reproductive tillers was demonstrated using an approach which considered different plant densities and compensative forces. Neither a genotypic capability of tillers to set pods nor direct effects of environments or sowing time on pod set were established.  相似文献   

9.
A relay cropping system of cereals, whereby winter wheat (Triticum aestivum L.) was undersown in two‐row spring barley (Hordeum distichum L.), was established in a field trial in central Sweden in 1999 and continued until 2000. The purpose of the study was to examine crop and weed responses to different plant densities of the undersown winter crop. Winter wheat was sown at four seed rates (187, 94, 47 and 0 kg ha?1) immediately after the sowing of barley. Barley was harvested in the first autumn after sowing and winter wheat in the second autumn. The grain yield of barley was not affected by the seed rate of wheat, and averaged 4580 kg ha?1. Winter wheat did not vernalize during the first growing season but remained at the vegetative stage. The grain yield of wheat was 1990 kg ha?1 for the lowest and 5610 kg ha?1 for the highest seed rate of wheat. Whilst the undersowing process itself stimulated weed emergence in this experiment, increasing the undersowing seed rate reduced the population of perennial weeds by 40–70 %. In the second growing season, the total biomass of weeds was 66 % higher at the highest seed rate compared with the lowest seed rate.  相似文献   

10.
Grown as a monoculture, peas (Pisum sativum L.) exhibit severe lodging after flowering and lodging causes yield reductions considerable. This study was conducted to investigate the effects of dose (untreated, 25, 50, 75 and 100 g a.i. ha?1) and stage (late vegetative, early blooming and early pod filling) of mepiquat chloride (MC) application on the growth, lodging control, seed yield and yield parameters of pea (Pisum sativum L.) under field conditions in Erzurum, Turkey in 2002 and 2003. Application doses of 25, 50, 75 and 100 g a.i. ha?1 significantly reduced stem height by 5.3 %, 7.2 %, 7.5 % and 6.4 % and increased stem width by 7.5 %, 12.7 %, 12.3 % and 15.7 % respectively, when compared with the untreated control, and thereby reduced the tendency of the crop to lodging. Increases of the seed yield under different application doses of MC ranged between 13.7 % and 20.1 % over the untreated control. However, in all parameters investigated, except for stem width, higher application doses of MC gave no clear advantages compared with the application dose of 25 g a.i. ha?1. Seed yield was also significantly influenced by application stage of MC and application at early blooming stage of crop, MC significantly increased seed yield by 11.4 % and 10.2 % when compared with the late vegetative and the early pod filling stages respectively. Furthermore, the interaction of application dose and stage was significant, and spraying of pea plants with 25 g a.i. ha?1 MC at early blooming stage has the most beneficial effects on the characters evaluated.  相似文献   

11.
Soybean (Glycine max (L.) Merrill) production is expanding into temperate and tropical environments. Yield stability studies under rhizobia inoculation were investigated in 24 soybean genotypes over two successive growing seasons at three agro‐ecological zone of Nigeria, during the 2015–2016 rainy seasons. Treatments were arranged in a split‐plot design and replicated three times. Treatments were 24 soybean genotypes and three levels of rhizobia inoculation. Results indicated that the variation of genotypes and inoculation on percentage emergence, height, number of leaves, number of branches per plant, total biomass yield, above‐ground biomass and seed yield was significant (p = .05). The effects of genotypes (G), environment (E) and G × E interactions on seed yield were also significant. Two soybean genotypes (TGx 1989‐45F and TGx 1990‐110FN) were identified as the most promising in relation to yield stability. Of the three locations, Abuja produced the least interaction effects followed by Igabi and may be most appropriate environments for large‐scale soybean production. Appropriate inoculation of soybean with inoculants (LegumeFix and or NoduMax) should be encouraged in farmer's field.  相似文献   

12.
In the dry Mediterranean environments of the West Asia and North Africa region, irrigation is frequently used to supplement rainfall to increase crop productivity and yield stability. Chickpea (Cicer arietinum L.), an important pulse crop of the region, often suffers from drought and can benefit from such a practice. To investigate the response of chickpea to irrigation, experiments were conducted in the field at Tel Hadya, Syria, from 1985 to 1988 using 24 improved chickpea genotypes sown in winter. Irrigation scheduling was done using the daily water balance computed from rainfall and pan evaporation data. Yearly rainfall was 316, 358, and 504 mm and supplemental irrigation amount was 130, 120, and 80 mm in 1985–86, 1986–87, and 1987–88, respectively. Irrigation increased seed yield by 916 kg ha?1 (44.0%) over the 3-year period. Irrigation requirement for chickpea coincided with flowering and seed development period. The top 10 highest-yielding genotypes under irrigated conditions were ILC 464, ILC 1272, ILC 237, ILC 613, ILC 95, ILC 4291, ILC 142, ILC 147, ILC 295, and ILC 3256. Their mean seed yields ranged from 3877 to 3208 kg ha?1. Among these four genotypes, ILC 464, ILC 1272, ILC 3256, and ILC 4291 with mean seed yields of 3877, 3726, 3208, and 3266 kg ha?1, respectively, were with predictable response to favourable conditions. Aboveground biomass contributed 49% of the total increase in seed yield from irrigation followed by plant height (26%) and early maturity (16%). These results indicate that it may be possible to breed chickpea for improved response to irrigation, and irrigation can enhance the yields of winter-sown chickpea grown in the lowland Mediterranean drylands.  相似文献   

13.
Defining a minimum set of phenotypic traits that can integrate ontogeny and structure of Brassica napus L. is required for breeding and selection of high yielding and adapted genotypes to the short growing season of the upper Midwest, USA. Forward phenomics was instrumental in striking a balance between accuracy, timing and speed of capturing multi-level, spatiotemporal data at different scales of integration. Quantitative and categorical data digitally recorded, measured or scored on whole canopies, single plants, single leaves, and single siliques; and on random mature seed samples of entries in a phenotyping nursery of B. napus were used to identify plant traits that can integrate the effects of time (ontogeny) and space (architecture) on oil%, and to develop a multilevel-multitrait protocol based on field and laboratory characterization of phenotypic and agronomic data while accounting for fixed and random sources of variation when interpreting components of phenotypic variance. Traits conferring tolerance to low temperatures during germination and early seedling growth included fast emergence, early vigor, early flowering combined with short duration of bolting-to-flowering, and early maturity. To approximate rapeseed yield potential in the upper Midwest, USA, genotypes with biomass?>?6.0 Mg ha?1, seed?>?3.5 Mg ha?1, oil?>?1.75 Mg ha?1 and protein yield?>?0.75 Mg ha?1 are envisioned. A subset of adaptive traits has been identified that can be combined in a selection index to develop a plant ideotype for B. napus.  相似文献   

14.
Salinity is a major abiotic stress to barley (Hordum vulgare L.) growth and yield. In the current study, quantitative trait loci (QTL) for yield and physiological components at the late growth stage under salt stress and non-stress environments were determined in barley using a double haploid population derived from a cross between CM72 (salt-tolerant) and Gairdner (salt-sensitive). A total of 30 QTLs for 10 traits, including tiller numbers (TN), plant height, spikes per line (SPL), spikes per plant (SPP), dry weight per plant, grains per plant, grain yield, shoot Na+ (NA) and K+ concentraitions (K) in shoot, and Na+/K+ ratio (NAK), were detected, with 17 and 13 QTLs under non-stress and salt stress, respectively. The phenotypic variation explained by individual QTL ranged from 3.25 to 29.81%. QTL flanked by markers bPb-1278 and bPb-8437 on chromosomes 4H was associated with TN, SPL, and SPP under salt stress. This locus may be useful in the breeding program of marker-assisted selection for improving salt tolerance of barley. However, QTLs associated with NA, K, and NAK differed greatly between non-stress and salt stress environments. It may be suggested that only the QTLs detected under salt stress are really associated with salt tolerance in barley. D. Xue and Y. Huang contributed equally to the article.  相似文献   

15.
A field study was conducted to investigate the influence of variable rates of application of N and P fertilizers in splits at various times on the growth and the seed and oil yields of canola (Brassica napus L.) during 1995–97. Rates of fertilizer application were 0 and 0 (F0), 60 and 0 (F1), 0 and 30 (F2), 60 and 30 (F3), 90 and 60 (F4) and 120 and 90 (F5) kg N ha?1 and kg P2O5 ha?1. All the P was applied at sowing while N was applied in splits, i.e. all at sowing, half at sowing and half with first irrigation, or half at sowing and half at flowering. The responses of growth, seed yield and components of yield were consistent in both years. Increasing the rate of fertilizer application from F4 (90/60 kg N/P2O5 ha?1) to F5 (120/90 kg N/P2O5 ha?1) increased the leaf area index (LAI) relative to the control and to lower rates of fertilizer application. For both crops, application of 90/60 kg N/P2O5 ha?1 significantly enhanced total dry matter (TDM) and seed yield. Seed yield increased mainly due to a greater number of pods per plant and seeds per seed‐pod. The time of fertilizer application did not significantly affect seed yield or components of yield in either season. Oil yield generally followed seed yield, increasing with increasing rate of fertilizer application up to 90/60 kg N/P2O5 ha?1. The maximum oil contents were obtained from the control. The results show that seed and oil yields of canola were maximized at the F4 (90/60 kg N/P2O5 ha?1) rate of application under the agro‐ecological conditions of Faisalabad, Pakistan.  相似文献   

16.
Quantitative information regarding biomass accumulation and partitioning in chickpea (Cicer arietinum L.) is limited or inconclusive. The objective of this study was to obtain baseline values for extinction coefficient (KS), radiation use efficiency (RUE, g MJ?1) and biomass partitioning coefficients of chickpea crops grown under well‐watered conditions. The stability of these parameters during the crop life cycle and under different environmental and growth conditions, caused by season and sowing date and density, were also evaluated. Two field experiments, each with three sowing dates and four plant densities, were conducted during 2002–2004. Crop leaf area index, light interception and crop biomass were measured between emergence and maturity. A KS value of 0.5 was obtained. An average RUE of 1 g MJ?1 was obtained. Plant density had no effect on RUE, but some effects of temperature were detected. There was no effect of solar radiation or vapour pressure deficit on RUE when RUE values were corrected for the effect of temperature. RUE was constant during the whole crop cycle. A biphasic pattern was found for biomass partitioning between leaves and stems before first‐seed stage. At lower levels of total dry matter, 54 % of biomass produced was allocated to leaves, but at higher levels of total dry matter, i.e. under favourable and prolonged conditions for vegetative growth, this portion decreased to 28 %. During the period from first‐pod to first‐seed, 60 % of biomass produced went to stems, 27 % to pods and 13 % to leaves. During the period from first‐seed to maturity, 83 % of biomass was partitioned to pods. It was concluded that using fixed partitioning coefficients after first‐seed are not as effective as they are before this stage. Environmental conditions (temperature and solar radiation) and plant density did not affect partitioning of biomass.  相似文献   

17.
Breeding for high symbiotic nitrogen (N) fixation (SNF) in common bean (Phaseolus vulgaris L.) is expected to contribute to reduced application of chemical fertilizers in cropping systems involving common bean. The magnitude of variation and the genetic and phenotypic correlation among seed yield, SNF, estimated as the percentage of nitrogen derived from atmosphere, and related traits were studied in a population of 140 F4-derived F5 recombinant inbred lines, developed from a cross between low- and high-SNF bean genotypes ‘Sanilac’ and ‘Mist’, respectively. The experiment was conducted in a total of five location-years in Ontario, Canada, from 2011 to 2013. These location-years were grouped into stress- and optimum moisture test sites, based on the total precipitation during the growing season. In each test site two nitrogen supply management strategies, SNF-dependent and N fertilizer-dependent, were simulated separately in the field by inoculating the seed with a commercial Rhizobium leguminosarum bv. phaseoli and by application of N fertilizers at 100 kg ha?1, respectively. The genetic variation was significant for seed yield, SNF and related traits. The heritability of the traits ranged from 14 to 71% and 4 to 25% in optimum moisture and in stress environments, respectively. No significant correlation between SNF and seed yield indicated that selection for high SNF does not necessarily lead to greater seed yield and that selection for both traits should be performed simultaneously.  相似文献   

18.
Two experiments were conducted in the Rift Valley, Ethiopia (8°N and 39°E) to determine associations between eight plant traits and seed yield, and to obtain estimates of narrow sense heritability for the traits. Experiment I evaluated seven dry edible bean cultivars/lines at two locations to simulate different soil moisture stress, including, Debre Zeit(non-stress) and Dera (moderate-stress). Experiment II evaluated 25 cultivars/lines in three environments including, Melkassa early planted (non-stress), Melkassa late planted (high-stress), and Dera (moderate-stress). A randomized-complete-block design with three replicates was used in both experiments. Plant traits evaluated were seed yield, pods plant-1, seeds pod-1, 100 seed weight, root dry weight, hypocotyl diameter, plant biomass, plant height and days to flowering. Plant traits that were significantly associated with seed yield were included in a stepwise-regression model to determine which trait or combination of traits provided the best model to estimate seed yield in each environment. An analysis of variance was conducted to test main effects and interactions between plant traits and environments. Significant variation among lines occurred for seed yield and all plant traits in both experiments. Strong positive correlations were observed between plant biomass and seed yield in all environments. Seed yield and pods plant-1 were also highly associated in four of the five environments. Stepwise regression models indicated that the combination of pods plant-1 and plant biomass consistently contributed to seed yield prediction, while other traits did not. Because both plant biomass and pods plant-1 had moderate to high narrow sense heritability estimates and low GE interactions, they should be useful as indirect selection criteria to improve and stabilize seed yield in a breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Crop tolerance to salinity is of high importance due to the extent and the constant increase in salt-affected areas in arid and semi-arid regions. Pearl millet (Pennistum glaucum), generally considered as fairly tolerant to salinity, could be an alternative crop option for salt affected areas. To explore the genotypic variability of vegetative-stage salinity tolerance, 100 pearl millet lines from ICRISAT breeding programs were first screened in a pot culture containing Alfisol with 250 mM NaCl solution as basal application. Subsequently, 31 lines including many parents of commercial hybrids, selected from the first trial were re-tested for confirmation of the initial salinity responses. Substantial variation for salinity tolerance was found on the basis of shoot biomass ratio (shoot biomass under salinity/ non-saline control) and 22 lines with a wide range of tolerance varying from highly tolerant to sensitive entries were identified. The performance of the genotypes was largely consistent across experiments. In a separate seed germination and seedling growth study, the seed germination was found to be adversely affected (more than 70% decrease) in more than half of the genotypes with 250 mM concentration of NaCl. The root growth ratio (root growth under salinity/control) as well as shoot growth ratio was measured at 6 DAS and this did not reflect the whole plant performance at 39 DAS. In general, the whole plant salinity tolerance was associated with reduced shoot N content, increased K+ and Na+ contents. The K+/Na+ and Ca++/Na+ ratios were also positively related to the tolerance but not as closely as the Na+ content. Therefore, it is concluded that a large scope exists for improving salt tolerance in pearl millet and that shoot Na+ concentration could be considered as a potential non-destructive selection criterion for vegetative-stage screening. The usefulness of this criterion for salinity response with respect to grain and stover yield remains to be investigated.  相似文献   

20.
The effects of seeding rate (30, 60 and 90 seeds m?2), seeding date (14 January, 28 January and 12 February), seed weight (0.18 and 0.25 g seed?1), seeding depth (3 and 6 cm), and phosphorus fertilization rate (17.5, 35.0 and 52.5 kg P ha?1) and placement method (banded or broadcasted) on field pea (Pisum sativum L.) development and seed yields were investigated in irrigated field experiments conducted in northern Jordan in 2000 and 2001. Results and treatment responses were consistent in both years. Seeding rate, seeding date, seed weight and rate and method of phosphorus fertilization had significant effects on most traits measured; planting depth however did not affect any of the traits. Generally a positive correlation was observed between each factor and seed yield and yield components, with the exception of a negative correlation between seeding rate and yield components, and seeding date and yield and yield components. Increase in seeding rate from 30 to 90 seeds m?2, and increase in P fertilization from 17.5 to 52.5 kg ha?1 alone increased seed yields by 50 and 41 %, respectively. Each delay of 2 weeks for seeding from mid‐January resulted in reductions of 12 % in seed yields. Overall, the results revealed that a combination of early seeding (14 January), of large seeds at an high seeding rate (90 seeds m?2), with P fertilizer banding (52.5 kg P ha?1) maximize field pea yields in irrigated fields in semi‐arid Mediterranean environments. With such management pea seed yields can be as high as 2800 kg ha?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号