首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
[目的]筛选并鉴定生物表面活性剂,同时分析其目标产物结构。[方法]运用油平板法、排油圈法等方法对从葡萄中筛选出的72株菌株进行初筛与复筛,初步筛选出产生物表面活性剂的最佳菌株,对其进行菌种鉴定,并通过薄层层析试验、红外光谱分析等鉴定生物表面活性剂类型。[结果]从72株葡萄内生菌中分离筛选得到9株产生物表面活性剂的菌株,其中菌株C2J6发酵液排油圈为最大,通过形态特征、生理生化试验及26S r DNA序列分析,初步鉴定该菌为黑曲霉(Aspergillus niger)。通过薄层色谱和红外光谱分析表明,菌株C2J6在代谢过程中能产生脂肽类表面活性物质。[结论]试验可为研究脂肽类生物表面活性剂的产生与应用打下基础。  相似文献   

2.
温钢  卢克欢  赵悦  刘虹  金虎 《湖北农业科学》2016,(15):3980-3984
从被石油污染的土壤中用蓝色凝胶培养基分离筛选出1株产糖脂类生物表面活性剂的菌株B2。经生理生化试验与16S r DNA序列分析将该菌株鉴定为沙雷氏菌属(Serratia sp.)。经红外光谱与薄层层析分析,结果表明该菌株产生的表面活性剂是一种鼠李糖脂。以发酵液的表面张力为指标,通过正交试验确定最佳发酵条件,即以20 g/L豆油为碳源、5 g/L尿素为氮源、温度34℃、p H 7.0、发酵时间96 h。在此最佳条件下测得表面活性剂的产量为3.746 1 g/L。该菌株所产表面活性剂水溶液在其浓度为临界胶束浓度时的表面张力为180 m N/m。  相似文献   

3.
[目的]筛选1株生物表面活性剂高产量菌株,并对其发酵条件进行优化。[方法]利用血平板和油平板法,从油污水沟中分离得到1株生物表面活性剂高产菌,经形态、生理生化特征及16SrDNA鉴定,该菌为奇异变形杆菌E(Proteus mirabilis E)。对产生物表面活性剂的条件进行优化。[结果]结果表明,该茵在菜籽油15ml/L、(NH4)2S041.5g/L、pH值为8、接种量6%,37℃、200r/min发酵培养48h,生物表面活性剂的产量达到4.1g/L,是优化前的2.28倍。排油圈分析和TLC分析表明,菌株E发酵液排油圈直径为7.2cm,表面活性剂为糖脂类生物表面活性剂;该生物表面活性剂对菜籽油乳化能力较好,可以使乳化性能稳定保持14d以上。[结果]该研究结果为新型表面活性剂的开发和工业化生产奠定基础:  相似文献   

4.
堆肥中生物表面活性剂产生菌的筛选及培养条件优化   总被引:1,自引:1,他引:1  
[目的]筛选堆肥中生物表面活性剂产生菌,优化其培养条件。[方法]采用富集培养、菌种纯化等方法从农业好氧堆肥中筛选出能产生生物表面活性剂的菌株,并采用正交试验对菌株的培养条件进行优化。[结果]从农业好氧堆肥中筛选出1株能产生生物表面活性剂的菌株BS-2,该菌株能将发酵液的表面张力降到40mN/m以下,在温度20—100℃和pH值6.0~9.5条件下,其表面张力始终保持在40mN/m以下,具有良好的表面活性及对堆肥环境的稳定性。该菌株的最佳培养条件为:可溶性淀粉25.0g/L、NH4NO3 8.0g/L、KH2PO4 2.0g/L、K2HPO42.5g/L、KCl 1.1g/L、NaCl 1.1g/L、MgSO4 0.15g/L、FeSO4·7H2O 5.0×10^-5g/L、EDTA 1.0g/L、酵母浸膏0.2g/L、初始pH值为7.0、温度为30℃、摇床转速为150r/min、发酵培养时间为3d。在该条件下,发酵液的表面张力最低,为29.3mN/m。[结论]菌株BS-2初步鉴定为枯草芽孢杆菌。  相似文献   

5.
在非常高的蒽浓度下,用高效液相色谱测定了不同的表面活性剂条件下蒽高效降解菌降解蒽的情况。结果表明,使用表面活性剂能极大地促进蒽的降解,而相同条件下生物表面活性剂效果要优于化学表面活性剂。在不加表面活性剂、加入十二烷基磺酸钠、加入吐温-20及加入生物表面活性剂产生菌四种情况下,经过6d的降解,蒽的浓度分别从250μg·mL-1降至214,199.2,138.7和114.8μg·mL-1,分别降解了36,50.4,111.3和135.2μg·mL-1,显示了极强的降蒽能力。说明使用单一的降解菌效果不太明显,将蒽降解菌和产表面活性剂产生菌接合构成一个混合菌群使用时,效果非常明显。  相似文献   

6.
针对某焦化厂内高浓度多环芳烃污染土壤,以烷基苷(APG)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX100)为表面活性剂代表物,采用静态平衡法和高效液相色谱分析,探索采用单一及混合表面活性剂清洗修复多环芳烃污染土壤,并考察生物柴油对多环芳烃去除效果的影响。结果表明,单一表面活性剂对土壤中多环芳烃去除率顺序为SDBS>APG>TX100。APG/SDBS混合处理及TX100/SDBS为9∶1混合处理提高了土壤中多环芳烃去除率,而APG/TX100混合处理没能提高多环芳烃去除率。生物柴油对TX100及TX100/SDBS去除多环芳烃效果没有明显提高,对APG及APG/TX100去除多环芳烃略有提高。当APG/SDBS为9∶1时,生物柴油可以使多环芳烃去除率从(63.3±2.0)%提高到(75.6±2.0)%。单一表面活性剂、混合表面活性剂、及表面活性剂-生物柴油乳液对多环芳烃各组分去除率比较类似,对菲的去除率最高,茚并[1,2,3-d]芘次之,其余相对较低。因此,建议采用APG/SDBS+生物柴油的混合体系对高浓度多环芳烃污染土壤进行修复。  相似文献   

7.
对北京东三岔矿区农田土壤基本理化性质、重金属含量和可培养微生物数量进行调查,并筛选出6株生物表面活性剂产生菌。结果表明:该矿区农田土壤主要重金属污染物为镉和铅,微生物种群受到明显抑制,矿区土样pH(6.78±0.78),有机质含量(0.83±0.06)%,非金属营养元素、土壤微生物量均显著低于对照。菌株J3于30℃摇床培养5 d后的发酵液排油直径达(5.4±0.58)cm,对总Pb含量为400,800和1 200 mg/kg的土样处理48 h后,有效态Pb含量分别提高了44.12,145.04和179.76 mg/kg,显著高于CTAB和对照处理。经薄层层析,判断发酵液含脂肽类生物表面活性剂。经16S rDNA序列分析,确定J3为Serratiasp.。  相似文献   

8.
从常年堆积的秸秆堆下面的土样和牛场的堆肥中,筛选出13株能产生生物表面活性剂的细菌。其中有6株菌株为耐冷菌,其发酵液在低温环境下(0~10℃)仍具有较低的表面张力,且均属于假单胞菌属(Pseudomonas),其余属于土壤杆菌属(Agrobacterium)。对一株耐冷菌G3-6进行最佳发酵培养基组成和发酵条件进行了研究。经鉴定,其代谢产物是糖脂类。同时也对生物表面活性剂在作物生长中的作用进行了初步的研究。  相似文献   

9.
黄文  蒋志敏 《安徽农业科学》2010,38(8):4402-4404
[目的]对产生物表面活性剂菌种BS-2的生长动力进行研究并对其发酵的营养条件进行优化。[方法]运用Monad、Haldane和Teissier模型对BS-2的生长动力学进行探讨,分别在不同单因素限制条件下对初始营养条件进行优化,并对初始营养中的碳源与氮源的质量比进行优化。[结果]表面活性剂产生菌BS-2在单因素营养条件受限时,菌体的最大生长量分别出现在碳源初始浓度为60g/L和氮源初始浓度为4g/L时,此时的特征生长率分别为0.0912h-1和0.092h-1,Teissier模型的回归参数与实际值最为接近,在碳源和氮源受限时的最大生长速率umax分别为0.0903h-1和0.0924h-1;而在保持相同的碳源初始浓度时,培养液的最小表面张力与菌体生长量分别出现在C/N=10和15时。[结论]BS-2对氮源比对碳源有更好的亲和性,C/N比能够较好地调节表面活性剂产生菌在增加自身生长量和产表面活性剂2种生长功能之间的平衡。  相似文献   

10.
从广州某炼油厂附近石油污染的土壤中筛选出一株可高效产表面活性剂的原油降解菌株MZ01,结合菌株形态观察、革兰氏染色和16S rDNA 序列同源性进行分析鉴定其属于假单胞菌属(Pseudomonas sp. MZ01),该菌9 d对原油的降解率达54.7%。通过正交实验优化其产表面活性剂的环境因子并进行发酵培养,结果表明,MZ01最佳发酵条件为:酵母膏(3 g·L-1)作为氮源,玉米油(2 g·L-1)作为碳源,温度为25 ℃,pH值为9.0和含盐量为5%。该条件下3 d的发酵产物经提纯后得到表面活性剂产量为2.27 g·L-1,测得该产物CMC值为0.1 g·L-1,可将水的表面张力从初始的72 mN·m-1降至30 mN·m-1。  相似文献   

11.
通过对农田土壤多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)的分布特征、污染程度及成因解析,深入了解工业活动引发的土壤污染问题,实现工业园区周边农田土壤的污染预警和科学合理利用。在黄河三角洲石油开采区和西南铅锌冶炼区附近的农田分别采集89个和148个土壤样品,采用气相色谱-质谱仪(GC-MS)分析美国环境保护署(Environmental protection agency,EPA)优控的土壤中PAHs组成与含量,运用主成分分析(Principal component analysis,PCA)和正定矩阵因子法(Positive matrix factorization,PMF)模型比较两个区域农田土壤中PAHs的来源。结果表明,石油开采区农田土壤中16种PAHs总含量(以干质量计)平均值为149.8 μg·kg-1(含量范围31.5~1 399 μg·kg-1),铅锌冶炼区农田土壤PAHs总含量平均值为267.6 μg·kg-1(含量范围8.99~2 231 μg·kg-1),两个地区主要以4~6环PAHs为主。聚类分析、PCA和PMF 3种源解析方法对两个区域的PAHs来源进行比较,石油开采区农田土壤中PAHs主要来源及其贡献率分别为燃煤9.1%、生物质燃烧和石油源60.7%、化石燃烧24.1%以及柴油燃烧6.2%,铅锌冶炼区分别为生物质燃烧和石油源31.6%、汽油及重油的燃烧28.3%、煤燃烧40.1%。铅锌冶炼区周边农田土壤PAHs污染程度相对较高。  相似文献   

12.
菲高效降解菌的筛选及其降解中间产物分析   总被引:25,自引:3,他引:22  
生物降解是多环芳烃从环境中去除的主要途径,而获得高效降解多环芳烃的优势微生物是当前进行多环芳烃污染生态系统修复的关键所在。本研究采用水-硅油双相体系从污染土壤中富集到3个以菲为惟一碳源和能源的混合菌系GY2、GS3和GM2,这3种混合菌在72h内对初始浓度为100mg·L-1菲的降解率分别达到99.9%、99.9%和91.9%。从GY2中分离得到高效降解菲的菌株GY2B,48h对菲的降解率达到99.1%。经UV-Vis和GC-MS分析发现,混合菌GY2降解菲的中间代谢产物主要有1-羟基-2-萘酸和1-萘酚,纯菌GY2B降解菲的中间代谢产物主要有水杨酸、1-萘酚和1-羟基-2-萘酸。  相似文献   

13.
多环芳烃污染土壤的植物修复研究进展   总被引:4,自引:3,他引:4  
多环芳烃是一类广泛存在于环境中的持久性有机污染物,它不仅降低环境质量还会危害人体健康。植物修复是近年来发展起来的一种利用植物修复环境污染的技术,也是当前生物修复研究领域中的热点,许多实验证明植物能够促进土壤中多环芳烃的去除。植物修复的机理主要包括植物对多环芳烃的直接作用、根际微生物的降解作用和植物与微生物的联合作用,植物修复的效率会受多种环境因素的影响。为此,对植物修复多环芳烃污染土壤的植物筛选、修复机理、影响因素进行了概括,并对国内外近年来植物修复技术在多环芳烃污染土壤修复中的应用、研究成果和存在的一些问题进行了综述。  相似文献   

14.
黑麦草对苯并[a]芘污染土壤的根际修复及其酶学机理研究   总被引:4,自引:8,他引:4  
采用室内盆栽试验方法,研究了黑麦草(Lolium multiflorum L.)对多环芳烃苯并[a]芘污染土壤的修复作用。结果表明。土壤中苯并[a]芘的可提取态浓度随着时间延长而逐渐减少,黑麦草加快了土壤中可提取态苯并[a]芘浓度的减少,提高了苯并[a]芘在土壤中的降解率,在1、10、50mg·k^-1苯并[a]芘处理浓度下,黑麦草生长土壤中苯并[a]芘的降解率分别达90.3%、87.5%、78.6%;而没有黑麦草生长土壤中苯并[a]芘的降解率则为79.3%、66。4%、55.6%。黑麦草根系增强了土壤中多酚氧化酶和脱氢酶的活性以及增加土壤中微生物碳的含量,从而提高植物对苯并[a]芘的降解率。植物的地上部也可积累少量苯并[a]芘,但植物对苯并[a磁的吸收不是黑麦草对其修复的主要机制。土壤自身具有修复苯并[a]芘的潜能.种植黑麦草具有强化土壤修复苯并[a]芭污染的作用.  相似文献   

15.
多环芳烃对土壤线虫和微生物生物量的影响   总被引:2,自引:0,他引:2  
通过向土壤中添加不同浓度的3种多环芳烃(PAHs)蒽、2-甲基蒽和7,12-二甲基苯并[a]蒽,研究PAHs对土壤微生物生物量碳和土壤线虫的影响。结果表明,土壤微生物生物量碳随PAHs浓度增加而呈指数下降,说明PAHs可抑制土壤微生物活性。土壤线虫总数随PAHs浓度不同而变化,低浓度和高浓度条件下土壤线虫总数增加,中等浓度对土壤线虫总数无影响。土壤线虫中食植物线虫和食细菌线虫占总数的81.8%,PAHs加入后此两类线虫仍占绝对优势,占总数的77.0%-92.8%。但线虫营养类群发生变化,食植物线虫和杂食性线虫比例增高,而食细菌线虫和食真菌线虫比例趋于降低,这主要由PAHs对土壤微生物的影响所致。  相似文献   

16.
我国土壤PAHs污染日益严重且来源较为复杂,为探明煤矿区土壤PAHs的污染情况,确定其污染来源,本试验通过在煤矿区不同点位采集表层土壤样品,并以该区未受PAHs污染的土壤样品作为对照,用气相色谱—质谱方法测定土壤中16种多环芳烃(PAHs)的含量,结合比值法、聚类分析法及其复合分析方法探讨PAHs污染土壤的来源。结果表明:煤矿区各采样点农地土壤中萘(Naph)、苯并(g,h,i)苝(BghiP)、茚并(1,2,3-cd)芘(InP)、二苯并(a,h)蒽(DbA)、苯并(b)荧蒽(BbF)、荧蒽(Flt)、苯并(a)蒽(BaA)、(Chry)、芘(Pyr)、苯并(a)芘(BaP)和苯并(k)荧蒽(BkF)含量基本达到了对照的5倍以上,人为影响较大。在空间分布上,萘(Naph)、芴(Flu)、菲(Phe)、蒽(Anth)和二苯并(a,h)蒽(DbA)为分异型,而其余PAHs则属于强分异型,不同采样点之间PAHs空间差异较大。比值法解析PAHs的来源结果表明,该煤矿区农地土壤PAHs主要来源于焦化厂、钢厂等工厂加工的煤、石油等化石燃料燃烧以及交通车辆燃烧源的燃烧。聚类分析法结果表明,PAHs来源主要包括石油泄漏、化石燃料(石油和煤)燃烧的燃烧源以及交通尾气排放;通过两种方法联合将不同污染水平点位进行功能分类的基础上,对煤矿区不同方位上PAHs的来源进行了细化分析认为,煤矿区北部、中部、南部区域土壤PAHs可能多受石油等化石燃料燃烧影响,而西部偏北方向土壤PAHs可能更多受生物质及煤炭等燃料燃烧影响。  相似文献   

17.
土壤和植物样品的多环芳烃分析方法研究   总被引:19,自引:10,他引:19  
采用超声提取的前处理方法并结合HPLC/UV分离和分析技术,研究了土壤和植物样品的多环芳烃(PAHs)分析方法。结果表明,植物样品中供试6种PAHs的方法回收率为76.00% ̄103.1%,相对标准偏差(RSD)均小于4.1%。土壤样品(干土或湿土,湿土含水量为50%田间持水量)中6种PAHs的方法回收率均高于85%,RSD则低于3.1%;但干土的方法回收率要高于湿土,RSD则比湿土略低。所建立的分析方法具有操作简单、省时的优点,有可接受的回收率和较好的重复性,可用于污染土壤和植物样品的PAHs检测分析。  相似文献   

18.
腐植酸对土壤持留多环芳烃的影响   总被引:6,自引:1,他引:5  
用腐植酸(HA)提取3种土壤(污灌区土壤、经过氧化的清洁土壤和未经氧化的清洁土壤)中的多环芳烃(PAHs),对比其提取PAHs浓度的变化。结果表明,PAHs的可提取率受其自身性质和PAHs在土壤中持留时间的影响,并随着HA浓度的增加而增加。与氧化土壤相比,未氧化土壤中PAHs的可提取量较小,表明天然HA增加了土壤中PAHs的持留。污灌区土壤中PAHs可提取率较低,其可提取程度远远小于人工污染土壤。  相似文献   

19.
黑麦草对多环芳烃污染土壤的修复作用及机制   总被引:30,自引:8,他引:30  
采用盆栽试验方法,研究了黑麦草(LoliummultiflorumLam)对土壤中菲和芘的修复作用。供试污染土壤中菲和芘的起始浓度分别为0 ̄456.5和0 ̄488.7mg·kg-1。结果表明,黑麦草可明显促进土壤中菲和芘的降解。45d后,种植黑麦草的土壤中菲和芘的去除率分别为85.80% ̄90.79%和44.32% ̄89.21%,均显著高于无植物对照;而残留浓度则比对照约低53.6%和78.3%。修复过程中,尽管黑麦草本身可吸收积累菲和芘,且根和茎叶中菲和芘的含量均随土壤中菲和芘浓度的提高而明显增大,但植物吸收积累并不是黑麦草促进土壤中菲和芘降解的主要原因,其贡献小于0.54%;与微生物对照相比,植物修复效率明显提高,主要是植物促进了土著微生物对土壤中菲和芘的降解作用。  相似文献   

20.
【目的】分析贵州松桃县植烟土壤和烟叶中多环芳烃(PAHs)的含量及污染特征,并解析其污染来源,为烟区土壤 烤烟体系的环境评价、PAHs污染修复提供参考。【方法】2020年7月,分别采集贵州省铜仁市松桃县烤烟成熟期40个土壤样品和40个新鲜烟叶样品,测定了16种PAHs含量,分析土壤和烟叶中PAHs的组成特征,并解析其在土壤 烤烟体系中的污染来源。【结果】贵州松桃县植烟土壤中16种PAHs的总含量为166.74~989.43 μg/kg,平均含量为600.77 μg/kg,其中以3~5环PAHs所占比例较高(78.7%);致癌性的∑7PAHs含量为70.97~365.71 μg/kg,平均含量为221.13 μg/kg,占16种PAHs总含量的24.5%~62.7%,其中具有强致癌性的苯并(b)荧蒽(BbF)、苯并(k)荧蒽(BkF)和苯并(a)芘(BaP)的平均占比分别为5.18%,5.32%和6.03%;在松桃县烤烟烟叶中,16种PAHs的含量为502.79~2 217.15 μg/kg,平均值为1 011.23 μg/kg,其中4~5环PAHs占75.1%;致癌性的∑7PAHs含量为293.53~1 730.72 μg/kg,平均含量为707.03 μg/kg,占16种PAHs总含量的56.0%~85.5%;其中具有强致癌性的BbF、BkF和BaP平均占比分别为10.19%,7.78%和39.96%。烟叶中的PAHs平均含量高于土壤。根据欧洲农业土壤中PAHs的控制标准,本研究有50%的土壤样品处于PAHs中度污染水平,45%的土壤样品处于PAHs轻度污染水平。诊断比例法解析表明,PAHs主要来源于当地工业生产活动、车用石油燃烧及煤炭、秸秆、木材的高温燃烧排放,最终通过大气沉降和叶面吸收进入土壤-烤烟体系;此外,烤烟种植和管理中塑料薄膜及肥料的使用也是土壤PAHs累积的重要来源。【结论】工业活动和农膜及肥料的使用,使贵州松桃县土壤 烤烟体系中PAHs出现累积,可能会对当地生态环境和居民(尤其是烟农)健康造成威胁,应当引起足够重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号