首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
不同施氮水平对春玉米氮素吸收、转运及产量的影响   总被引:5,自引:1,他引:4  
采用田间试验研究吉林省中部玉米主产区不同氮水平对玉米产量、氮素吸收、转运及氮肥利用率的影响。结果表明,施用氮肥可以提高干物质最大积累速率和氮素最大吸收速率,并能提前干物质最大积累速率和氮素最大吸收速率出现的天数。在施N 60~180 kg/hm2之间,玉米产量、干物质最大积累速率、氮素最大吸收速率、转运量、转运率及子粒中养分比例等指标均有显著提高;超过N180 kg/hm2,干物质最大积累速率、氮素最大吸收速率、转运量、转运率及子粒中养分比例等指标开始下降。根据玉米产量(y)和施氮量(x)拟合得出,最高产量氮肥用量为184.2 kg/hm2,最佳经济产量氮肥用量为172.9 kg/hm2。氮素农学利用率、氮肥当季回收率及偏生产力随着氮肥用量的提高而显著降低。综合考虑提高玉米产量、效益和氮肥利用效率等方面的要求,在吉林省中部玉米主产区,适宜施氮量为172.9 kg/hm2。  相似文献   

2.
为探明在引黄灌区春小麦生产中减施化肥对土壤供氮与春小麦吸氮的影响,通过田间小区试验,分析不同氮、磷、钾用量对耕层土壤矿质态氮累积与春小麦氮素吸收利用的影响。结果表明:(1)施氮量120~180 kg·hm-2时,土壤矿质态氮累积量和植株氮素累积量最高为102.58 kg·hm-2和294.92 kg·hm-2,与常规施氮量(240 kg·hm-2)相比,氮素利用率、氮肥贡献率及氮肥农学效率均显著提高,增幅分别为138.97%、29.23%、136.35%,氮肥偏生产力和依存率降低至41.2 kg·kg-1和68.35%;籽粒产量增加3.54%~15.66%。可见,适量减氮有利于耕层土壤氮素矿化,促进氮向籽粒转移,提高氮肥利用率和籽粒产量。(2)从常规施磷量(120 kg·hm-2)减施至48~96 kg·hm-2时,土壤矿质态氮累积量和植株氮累积量均升高,最高为98.61 kg·hm-2和242.79 kg·hm...  相似文献   

3.
氮肥用量对油菜产量及氮素利用效率的影响   总被引:11,自引:0,他引:11  
通过大田试验研究了氮肥用量对油菜产量、养分含量、养分累积量及氮肥利用效率的影响。结果表明,与不施氮相比,施氮肥75、150和225kg/hm2平均分别增产41.9%、70.3%和66.2%,籽粒含氮量分别提高9.1%、14.2%和13.1%,植株地上部氮素总累积量分别增加59.6%、111.6%和108.0%。施氮促进油菜生长发育,显著提高油菜对氮素的吸收、累积和籽粒需氮量,但氮肥农学利用率、偏生产力和表观利用率均随氮肥用量的增加显著下降。氮肥用量在150kg/hm2时,能较好地协调油菜较高产量水平与合理氮肥利用率的统一。  相似文献   

4.
晚播条件下施氮量对稻茬小麦氮素吸收及产量的影响   总被引:2,自引:0,他引:2  
为给安徽省江淮稻麦轮作区域晚播稻茬小麦高产栽培的氮肥合理施用提供依据,选用当地主栽品种扬麦18和皖垦麦076为试验材料,设置5个施氮水平(0、90、180、270和360 kg·hm~(-2)),分析施氮量对晚播小麦氮素积累与分配、糖氮比、氮素同化酶活性及产量的影响。结果表明,增施氮肥能显著提高小麦各器官的氮积累量以及营养器官花前贮存氮素转运量、转运效率和转运氮素对籽粒氮素的贡献率,氮素收获指数随着施氮量的增加而降低。随施氮量的增加,小麦各生育时期不同器官的糖氮比值显著降低。小麦的氮素分配比例在生育前期以叶片最高,成熟期籽粒中氮素分配比例显著高于其余部位,而小麦的可溶性糖分配比例在生育前期以茎鞘最高,成熟期籽粒较高。在0~270 kg·hm~(-2)施氮量范围内,增施氮肥后,两个小麦品种的硝酸还原酶、谷氨酰胺合成酶和谷氨酸合成酶活性均显著提高,穗数、穗粒数和籽粒产量均明显增加。继续增加施氮量至360kg·hm~(-2)时,氮素同化酶活性和产量无显著变化,说明施氮过多对小麦氮素同化和产量无益。土壤氮贡献率、氮肥农学利用效率和氮素偏生产力均随施氮量增加而降低。推荐江淮区域稻茬小麦晚播条件下适宜施氮量为180~270kg·hm~(-2)偏下限,可兼顾高产及氮素高效吸收和利用。  相似文献   

5.
高产小麦花后植株氮素累积、转运和产量的水氮调控效应   总被引:2,自引:0,他引:2  
为给高产小麦合理灌溉和氮肥施用提供科学依据,以小麦品种豫麦49-198为材料,在豫北高产麦田研究了不同水、氮处理对小麦花后植株氮素吸收、累积和转运的影响。试验采取灌水与施氮量两因子裂区设计,其中灌水为主区,设全生育期不灌水(W0)、拔节期灌1水(W1)和拔节水+开花水灌2水(W2)3个水平;施氮量为副区,设置4个水平,即每公顷施纯氮量0kg(N0)、180kg(N1)、240kg(N2)和300kg(N3)。结果表明,W1和W2下小麦籽粒产量较W0分别提高16.6%和25.6%,蛋白质产量分别提高14.2%和19.2%。籽粒产量和蛋白质产量的提高与氮素积累和转运有关。灌水增加了茎鞘、叶片和颖轴的氮素累积量,提高了茎鞘氮素转运效率和贡献率,但减小了叶片氮素转运量、转运效率和贡献率。施氮可显著增加小麦花后植株氮素累积量及氮素转运量,进而提高小麦籽粒氮素累积量和蛋白质产量。与N0相比,成熟期N1、N2和N3籽粒氮素累积量分别增加44.9%、59.3%和60.2%,叶片贡献率分别增加60.2%、40.9%和61.5%,籽粒产量分别提高75.3%、73.5%和79.8%。水氮互作显著影响叶片氮素累积量和氮素转运效率,但对籽粒产量和蛋白质产量影响不显著。综合来看,在豫北高产条件下,不灌水或灌1水时小麦适宜施氮量为180~240kg·hm-2,灌2水时适宜施氮量为240kg·hm-2。  相似文献   

6.
为给免耕覆盖条件下旱地小麦高产和氮肥管理提供理论依据,通过大田试验研究了150kg·hm-2和180kg·hm-2两种施氮水平下不同氮磷配比(1∶0.5、1∶0.75、1∶1)对旱地小麦植株氮素积累和转运、氮利用效率及产量的影响。结果表明,在1∶0.5和1∶0.75氮磷配比下,增加施氮量可提高小麦开花和成熟期植株氮素积累量、营养器官花前贮存氮素转运量及其对籽粒氮素的贡献率,并最终提高产量、籽粒蛋白质含量及氮素收获指数;在氮磷比为1∶1时,增加施氮量则表现出相反的结果。在低氮(150kg·hm-2)条件下,增施磷肥可提高开花期和成熟期地上部氮素积累量、营养器官花前贮存氮素转运量及转运效率,并提高产量、籽粒蛋白质含量、氮肥利用率、氮肥偏生产力和氮素收获指数;高氮(180kg·hm-2)条件下,上述指标则随着施磷量的增加呈先升后降的趋势。总体来看,1∶0.75的氮磷比最有利于小麦植株氮素吸收及营养器官花前贮存氮素向籽粒的转运,并最终获得了最高的籽粒产量、氮肥利用率及氮素收获指数。  相似文献   

7.
以超级杂交早稻淦鑫203和超级杂交晚稻淦鑫688为材料,研究了施氮量对双季超级稻产量、干物质生产及氮素吸收利用的影响。结果表明,淦鑫203在施氮量为207 kg/hm2时产量最高,淦鑫688在施氮量为232.5 kg/hm2时产量最高;淦鑫203和淦鑫688分别在施氮量为234 kg/hm2和232.5 kg/hm2时的干物质生产量最大;淦鑫203在施氮量为153 kg/hm2时氮肥利用率最高,淦鑫688在施氮量为197.7 kg/hm2时氮肥利用率最高。认为淦鑫203和淦鑫688在生产中的合理施氮量可以分别确定为180~207 kg/hm2和197.7~232.5 kg/hm2。  相似文献   

8.
为探究长江中游不同品质类型小麦产量形成和氮素吸收利用对氮肥的响应,选用强筋品种郑麦9023、中筋品种鄂麦596和弱筋品种扬麦13为供试材料,设置0、60、180和360 kg·hm-2共4个施氮水平,分析了不同施氮水平下各小麦品种的产量、干物质积累分配、氮素吸收分配及利用率的差异。结果表明,与不施氮处理相比,施氮处理下郑麦9023、鄂麦596和扬麦13的籽粒产量均显著提高,增幅分别为34.8%~152.0%、30.8%~160.5%和34.6%~137.3%,穗粒数增加是施氮增产的主要原因。增施氮肥显著增加了小麦开花前和成熟期干物质积累量,促进了花前干物质向籽粒的转运。施氮也显著提高了三个品种的籽粒氮素积累量,但显著降低了氮肥偏生产力。品种间比较,鄂麦596的平均产量比郑麦9023和扬麦13分别高14.0%和21.8%,主要得益于其较高的穗粒数、千粒重以及干物质积累量;鄂麦596的花前氮素转运量及转运效率、氮肥偏生产力、氮肥农学利用率均高于其余两个品种,但花后氮素吸收量和氮肥回收率较低。这说明,施氮对不同品质类型小麦产量形成、干物质和氮素积累分配以及氮素利用效率的...  相似文献   

9.
不同施氮水平对胡麻根系形态和氮素利用的影响   总被引:2,自引:0,他引:2  
以陇亚杂1号为研究对象,设置4个施氮量(纯N)水平:不施氮(N0,0kg·hm-2)、低氮(N1,78.75kg·hm-2)、中氮(N2,105kg·hm-2)、高氮(N3,131.25kg·hm-2),采用土柱栽培法研究了氮肥运筹对胡麻根系形态和氮素利用率的影响。结果表明:施氮抑制了胡麻枞形期根系的生长,现蕾期后根长、根系直径、根表面积和根体积均随着施氮量增加而增加,当超过一定施氮量(N2)时又呈下降趋势。中氮处理增加了胡麻生育后期根系在40cm以下土层的分布,随着施氮量的增加,根系分布呈现高氮(N3)浅根化趋势。胡麻的根冠比随着生育进程的推进逐渐降低,但中氮处理显著提高了生育后期的根冠比。胡麻成熟期各器官氮素积累量和分配比例表现为:籽粒茎根叶非籽粒生殖器官,籽粒在氮素的分配上占有绝对优势,而且在中氮水平(N2)时籽粒中氮素分配比例最高,显著高于其他处理。与不施氮相比,施氮处理下籽粒产量增加,中氮水平下的氮素籽粒生产效率最高。综合籽粒产量和氮素利用结果表明,在本试验条件下,施氮量105kg·hm-2为有利于实现胡麻高产和高效的最优氮肥运筹模式。  相似文献   

10.
采用大田小区试验,分析不同施氮水平旱直播湿润管理下粳稻不同生育时期干物质和氮素积累、转运的差异。结果表明,增施氮肥显著提高茎、叶、穗中干物质和氮积累水平以及旱直播湿润管理下粳稻的产量,T3处理产量最高,为8 660.63 kg/hm2。不同施氮水平下氮素的积累及物质转运对籽粒的贡献率随施氮量增加呈上升的趋势,随着氮素水平的提高氮素吸收利用效率呈上升趋势。相关性分析表明,齐穗期和成熟期茎、叶、穗氮积累量与旱直播粳稻产量均呈极显著正相关。旱直播粳稻产量与播种-分蘖-齐穗期的茎叶氮积累速率呈显著正相关。旱直播粳稻产量与齐穗-成熟期茎的氮转运量呈显著正相关,与齐穗-成熟期的叶的氮转运量呈极显著正相关。总体上,T3处理能够提高旱直播湿润管理下的结实率,增加穗数、穗粒数,有利于促进营养器官氮素积累并向籽粒转运,提高氮肥利用效率并提升产量,是适宜吉林省中部地区旱直播湿润管理粳稻的施氮水平。  相似文献   

11.
Field experiment was arranged in a randomized complete block design to determine effects of nitrogen (N) application levels (J0: 150 ​kg/hm2, J1: 120 ​kg/hm2, J2: 90 ​kg/hm2, J3: 60 ​kg/hm2) on regulating dry biomass accumulation, allocation and translocation, and grain yield of oil flax during 2018 cropping season. Significant promotion was observed in dry matter during accumulation stage of oil flax, when N rate was reduced by 40% (from 150 to 90 ​kg/hm2). Under J2 treatment, translocation of dry matter from vegetative organs to pod increased by 38.46% and 61.54% respectively, when compared with J1 and J0 treatment. Dry matter distribution proportion of pod at maturity increased 4.47%–7.61%, contribution rate of leaf to grain upgraded 5.09%–8.77%, and number of effective pods and grains per pod increased by 27.16%–45.38% and 6.49%–26.59% respectively compared to other treatments. As a result, seed yield of oil flax under J2 treatment was 2.23%–18.21% higher than those of other treatments. Our study recommended 90 ​kg/hm2 as the best N fertilizer level to improve seed yield of oil flax.  相似文献   

12.
氮肥减施对京科968与郑单958氮效率及产量的影响   总被引:3,自引:2,他引:1  
以郑单958与京科968为材料,在减施氮肥(正常施氮量210 kg/hm~2)14.3%~28.6%水平下,比较玉米品种氮效率与产量。结果表明,施氮肥150~180 kg/hm2,郑单958产量下降2.39%~4.03%,京科968产量下降1.67%~2.99%。随着施氮量减少,氮肥偏生产力、氮肥利用效率,氮肥农学利用效率升高,氮肥表观利用效率、100 kg子粒需氮量降低,氮收获指数保持基本稳定。适度减施氮肥,可有效提高玉米生产效率。施氮处理下不同器官的氮转运率与对子粒的氮贡献率高于不施氮处理,不同器官的氮转运率顺序为穗轴叶片苞叶叶鞘茎秆;对子粒的氮贡献率表现为叶片茎秆穗轴叶鞘苞叶。京科968氮收获指数、氮肥偏生产力、氮肥表观利用效率均优于郑单958,氮肥农学利用效率、氮肥利用效率与子粒吸氮量与郑单958相当。京科968氮吸收效率优于郑单958,具备较好的耐低氮特性。  相似文献   

13.
缓释氮肥减量配施和株距对机插杂交籼稻氮素利用的影响   总被引:2,自引:0,他引:2  
【目的】进一步研究缓释氮肥减量配施和株距对机插杂交籼稻主要生育时期氮素积累、转运、氮肥利用率及产量的影响,并探讨机插密度和缓释氮肥配施耦合下,氮素吸收、转运及利用率与产量间的关系。【方法】在前期研究确定高产施氮量180 kg/hm2,机插稻缓释氮肥与常规氮肥适宜配比为7∶3基础上,设3种株距(行距均为30 cm):16、18和20 cm,以及4种缓释氮肥(36、66、96 和126 kg/hm2)与常规氮肥(54 kg/hm2)配施处理。【结果】缓释氮肥减量配施和株距对机插稻主要生育时期氮素积累总量、成熟期叶片及穗部氮素吸收量、氮素转运量、氮肥利用率及产量均存在显著或极显著的互作效应;缓释氮肥减量配施对机插稻产量及氮素吸收利用与转运特性的影响显著大于株距。株距为18 cm,缓释氮肥(96 kg/hm2)与常规氮肥(54 kg/hm2)配施量为150 kg/hm2能促进水稻主要生育时期及各生育阶段氮素的累积,提高结实期各器官氮素积累量,并促进叶片和茎鞘中氮素的转运,进而显著提高穗部氮素增加量(107.58 kg/hm2)、氮肥利用率(66.19%)及产量(11463.85 kg/hm2);株距为16 cm,缓释氮肥(126 kg/hm2)与常规氮肥(54 kg/hm2)配施量为180 kg/hm2虽能促进主要生育时期氮素的累积,但易造成结实期茎鞘及叶片中氮滞留量的增加,降低氮素转运率,导致氮素收获指数和氮肥利用率降低。从高产高效的角度考虑,以缓释氮肥(96 kg/hm2)与常规氮肥(54 kg/hm2)配施量150 kg/hm2为宜;当株距增加到20 cm时,主要生育时期水稻吸收氮素的绝对量少,茎鞘叶片中的氮素向穗部转运及穗部氮素积累量增加,产量及氮素利用率随缓释氮肥配施量的增加而增加,以缓释氮肥与常规氮肥配施量为180 kg/hm2为宜。相关性分析表明,缓释氮肥减量配施与株距耦合下,机插杂交稻以齐穗至成熟期氮素积累量、叶片氮素转运量与产量及氮肥利用率的相关性(r=0.54**~0.85**)最高,对提高氮肥利用率及产量更为重要。【结论】株距为18 cm,缓释氮肥与常规氮肥配施量为150 kg/hm2能协同提高穗部氮素增加量、氮肥利用率及产量,为本研究氮肥减量配施的最佳处理。  相似文献   

14.
氮肥对辽宁春玉米品种氮素吸收利用的影响   总被引:1,自引:0,他引:1  
选择辽宁春玉米区3个主推品种铁研58(TY58)、良玉99(LY99)、郑单958(ZD958)进行3个氮素水平的试验,梯度设N0(不施入氮肥)、N1(施入纯氮112 kg/hm~2),N2(施入纯氮225 kg/hm~2)。研究表明,不同品种氮反应有差异,施入氮肥后植株主要通过提高穗粒数而获得产量,TY58为氮反应敏感品种;施入氮肥植株氮积累量增加,成熟期达最大,吐丝前后的氮素积累品种间存在差异,成熟时氮素分配比例由高到低为子粒叶片茎鞘穂轴苞叶雄穂;氮肥亏缺条件下,植株加大氮素由茎叶器官向子粒的供应比例,叶片对子粒氮贡献率最高,达28.0%~51.3%。  相似文献   

15.
通过田间试验,研究6种(N_1~N_6)硝态氮与铵态氮配比处理对旱地全膜双垄沟播玉米植株氮素积累、转运、氮素利用及子粒产量的影响。结果表明,单施硝态氮时玉米的养分吸收、氮素利用及产量均最低。N6(硝态氮与铵态氮3∶1配比)处理下玉米全生育期氮素积累量最高,氮素吸收强度较单施硝态氮处理高55.19%~73.28%(P0.05),该处理下叶片和茎中氮素转移量较单施硝态氮处理高78.99%和93.52%(P0.05);叶片和茎中分别有66.50%~71.89%和43.44%~55.59%的氮素转移到子粒中;叶片和茎对子粒的氮素贡献率分别较单施硝态氮处理高43.80%和56.00%(P0.05);玉米子粒产量、氮素吸收效率及氮肥偏生产力较其他处理显著增加3.31%~9.94%、4.62%~33.89%和3.31%~9.93%。硝态氮和铵态氮配施对玉米的养分吸收有明显的促进作用,提高硝态氮的施用比例有利于提高玉米叶片和茎对子粒氮素的贡献率,硝态氮与铵态氮按3∶1比例配施有利于提高当地玉米子粒产量。  相似文献   

16.
施氮对稻茬冬小麦氮肥吸收利用及转运的影响   总被引:1,自引:0,他引:1  
为推动稻茬冬小麦氮肥高效利用,采取15N微区试验,研究了施氮量(N0、N120、N210、N300)对稻茬小麦氮素吸收、转运、产量和氮肥利用的影响。结果表明,增加施氮量能够显著提高成熟期植株对肥料氮和土壤氮的吸收量。小麦对基肥氮的吸收以越冬至拔节期最高,对追肥氮的吸收以拔节至开花期最高。植株对追肥氮的积累量均高于基肥氮,对土壤氮的积累量在N120 处理下高于肥料氮,在N210、N300 处理下则相反;N120、N210、N300 处理下植株中土壤氮积累量占总吸氮量的比例分别为57%、48%、45%。成熟期叶片、茎鞘、穗轴+颖壳和籽粒中的氮素分配比例分别为6.09%~9.70%、9.01%~11.14%、7.19%~7.48%、71.96%~ 77.42%。肥料氮对籽粒氮素的贡献率随施氮量增加而显著增加,N120、N210、N300 处理分别为45.78%、 56.22%、61.25%。植株中肥料氮的转运量、花后积累量和土壤氮的花后积累量均随施氮量增加而显著增加,而土壤氮的转运量则随施氮量的增加而下降。基肥氮、追肥氮、肥料氮和土壤氮的转运效率分别为 77.31%~79.96%、77.89%~81.80%、77.61%~81.13%、51.55%~67.64%。植株花后氮积累量对籽粒氮素的贡献率约为1/5,肥料氮和土壤氮花后积累量对籽粒中肥料氮和土壤氮的贡献率分别为9.59%~ 14.56% 和 24.11%~34.48%。施氮量超过210 kg·hm-2 时产量增加不显著,N120、N210、N300 处理氮肥回收率分别为54.48%、48.15%、41.64%。  相似文献   

17.
为给长江中下游稻麦轮作区小麦的高产栽培提供理论依据,以扬麦10号为材料,设置0、93.75、168.75和243.75 kg/ha四个氮肥处理水平(分别用N0、N1、N2和N3表示),研究了施氮对小麦地上器官干物质及氮素累积运转的影响.结果表明,增施氮肥提高了小麦群体叶面积指数,N3处理与N2处理差别不大,增施氮肥不影响叶面积指数的动态变化规律.干物质量随着施氮量的增加而增大,营养器官转运率以不施氮(N0)处理最大,对籽粒的贡献率以N2处理最大.增加施氮量提高了小麦各个生长时期氮素累积量,N3处理在收获时茎秆中有较高的氮素残留,降低了氮肥利用效率.增施氮肥提高了小麦产量,N2处理与N3处理之间差异不显著.氮肥生理效率以N1最高,氮肥利用效率和农学效率均以N2最高.  相似文献   

18.
In order to identify effects of nitrogen (N) and phosphorus (P) on soil nitrogen morphological characteristics and grain yield of oil flax, a two-factor experiment was conducted in a randomized complete block design in typical semi-arid and hilly-gully area of Loess Plateau with 3 replicates in 2013 and 2014. Two levels of N application included 150 ​kg/hm2 (N2) and 75 ​kg/hm2 (N1). P application included 150 ​kg P2O5/hm2 (P2) and 75 ​kg P2O5/hm2 (P1). Temporal and spatial variation of soil nitrate nitrogen (NO3-N) and ammonium nitrogen (NH4+-N) contents in 0–60 ​cm soil layer, and relationship between soil NO3-N accumulation (SNA) and grain yield of oil flax were analyzed. Results showed that SNA increased with evaluated N application rate in different soil layers (0–20 ​cm, 20–40 ​cm and 40–60 ​cm). With the increased P application, SNA increased at N1 level but decreased at N2 level. SNA under N2P1 treatment increased by 73.33% in 2013 and 74.97% in 2014 respectively, compared with control treatment (CK) at maturity stage. Grain yield of oil flax also increased by 44.27% in 2013 and 56.55% in 2014, compared with CK under the same treatment. Correlation analysis showed that SNA in different soil layers were respectively positively correlated with grain yield. In conclusion, this research suggested that the optimal fertilizer application rate was 150 ​kg ​N/hm2 and 75 ​kg P2O5/hm2 in the Northwest of China.  相似文献   

19.
Crop yield is primarily seed-filling-limited in production system under field conditions.This study was aimed to determine whether seed filling traits of oil flax(Linum usitatissimum L.)could be controlled by phosphorus(P),nitrogen(N),and phosphorus and nitrogen(NP)supply.Effects on seed filling traits were investigated in 2 years including capsule diameter,capsule height,capsule dry matter(DM),seed DM per capsule,pericarp DM per capsule,protein content and oil content.DM translocation from pericarps to seed,translocation efficiency,and contribution of photoassimilates during seed filling period were also detected.In a randomized complete block design,cultivar'Longyaza 1'was grown under P(33 kg P/ha),N(75 kg N/ha),and NP(33 kg P/ha and 75 kg N/ha)along with a zerofertilizer(CK)treatment in 2013 and 2014.Results suggested that DM translocation efficiency and contribution efficiency increased to different extent due to P,N or NP application.At 42 DAA(days after anthesis),seed DM per capsule reached the greatest,while protein content and pericarp DM obtained the least level.However,the highest oil content was detected at 35 DAA.A significant positive linear relationship was observed between seed DM,capsule DM and DM translocation in both years.Protein content showed inconsistent relation with oil content.The results indicated that appropriate N and P management could be an effective approach to increase oil flax production.  相似文献   

20.
为了解华北地区小麦玉米轮作模式下小麦不同器官氮素吸收、分配及转运的差异,采用田间试验方法,以西农979为供试品种,于小麦的分蘖期、越冬期、返青期、拔节期、抽穗期、灌浆期和成熟期采集植株样品,对其叶、叶鞘、茎、穗轴、颖壳和籽粒的干物重及氮含量进行了测定和分析。结果表明,小麦成熟时,不同器官氮含量从大到小依次为:籽粒>叶>叶鞘>颖壳>茎>穗轴,氮积累量从大到小依次为:籽粒>叶鞘>叶>茎>颖壳>穗轴,即氮在籽粒中分配和积累量最大,叶是最大的氮素“源器官”。在不同生育阶段,拔节至抽穗期的氮吸收量和吸收速率最大。在华北小麦玉米轮作区,籽粒氮收获指数达到68.48%,而叶对籽粒的氮转运贡献率达到54.52%;拔节至抽穗期氮素吸收比例占全生育期的48.07%,故而底施氮肥与拔节期追氮的比例控制在5∶5为好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号