首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型S...  相似文献   

2.
为实时监测违法用地现象,对作业挖掘机等施工机械进行实时监测至关重要。针对自然场景下由于背景复杂、光照不均匀及遮挡等导致作业挖掘机难以准确检测出的问题,该文采用类似SSD(Single Shot Detector)方法的网络结构,提出一种自然场景下的挖掘机实时监测方法。该方法采用堆叠DDB(Depthwise Dense Block)模块组成基础网络,实现浅层特征提取,并与高层特征融合,提高网络模型的特征表达能力;在MobileNetV2网络的基础上进行改进,设计BDM(Bottleneck Down-Sampling Module)模块构成多尺度特征提取网络,使模型参数数量和计算量减少为SSD的68.4%。构建不同视角和场景下的挖掘机目标数据集,共计18 537张,其中15 009张作为训练集,3 528张作为测试集,并在主流Jetson TX1嵌入式硬件平台进行网络模型移植和验证。试验表明,该文方法的m AP(Mean Average Precision)为90.6%,其检测精度优于SSD和Mobile Net V2SSD的90.2%;模型大小为4.2 MB,分别减小为SSD和Mobile Net V2SSD的1/25和1/4,每帧检测耗时145.2 ms,相比SSD和MobileNetV2SSD分别提高了122.7%和28.2%,可以较好地部署在嵌入式硬件平台上,为现场及时发现违法用地作业提供有效手段。  相似文献   

3.
为解决传统小肠绒毛需要专业人员手动检测耗时耗力且存在主观性和不稳定性等问题,同时提高在复杂病理学图像中小肠绒毛检测的准确率和效率,该研究提出基于改进YOLOv5s检测复杂病理学图像下猪只小肠绒毛的方法。首先,采用串联形式的混合池化对空间金字塔进行优化,增强特征提取与特征表达,提升检测精度;然后引入一种基于注意力机制的网络模块(simpleattentionmechanism,SimAM)与Bottleneck中的残差连接相结合,使用SimAM对Bottleneck中的特征图进行加权,得到加权后的特征表示,利用注意力机制加强模型对目标的感知。试验结果表明,该研究算法的平均精度(average precision)和每秒传输帧数(frame per second,FPS)达到92.43%和40帧/s。改进后的YOLOv5s在召回率和平均精度上相较改进前提高2.49和4.62个百分点,在不增加模型参数量的情况下,每帧图片的推理时间缩短1.04 ms。与经典的目标检测算法SSD、Faster R-CNN、YOLOv6s、YOLOX相比,平均精度分别提高15.16、10.56、2.03和4.07...  相似文献   

4.
注意力与多尺度特征融合的水培芥蓝花蕾检测   总被引:4,自引:3,他引:1  
准确辨识水培芥蓝花蕾特征是区分其成熟度,实现及时采收的关键。该研究针对自然环境下不同品种与成熟度的水培芥蓝花蕾外形与尺度差异大、花蕾颜色与茎叶相近等问题,提出一种注意力与多尺度特征融合的Faster R-CNN水培芥蓝花蕾分类检测模型。采用InceptionV3的前37层作为基础特征提取网络,在其ReductionA、InceptionA和InceptionB模块后分别嵌入SENet模块,将基础特征提取网络的第2组至第4组卷积特征图通过FPN特征金字塔网络层分别进行叠加后作为特征图输出,依据花蕾目标框尺寸统计结果在各FPN特征图上设计不同锚点尺寸。对绿宝芥蓝、香港白花芥蓝及两个品种的混合数据集测试的平均精度均值mAP最高为96.5%,最低为95.9%,表明模型能实现不同品种水培芥蓝高准确率检测。消融试验结果表明,基础特征提取网络引入SENet或FPN模块对不同成熟度花蕾的检测准确率均有提升作用,同时融合SENet模块和FPN模块对未成熟花蕾检测的平均准确率AP为92.3%,对成熟花蕾检测的AP为98.2%,对过成熟花蕾检测的AP为97.9%,不同成熟度花蕾检测的mAP为96.1%,表明模型设计合理,能充分发挥各模块的优势。相比VGG16、ResNet50、ResNet101和InceptionV3网络,模型对不同成熟度花蕾检测的mAP分别提高了10.8%、8.3%、 6.9%和12.7%,检测性能具有较大提升。在召回率为80%时,模型对不同成熟度水培芥蓝花蕾检测的准确率均能保持在90%以上,具有较高的鲁棒性。该研究结果可为确定水培芥蓝采收期提供依据。  相似文献   

5.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

6.
基于优选YOLOv7模型的采摘机器人多姿态火龙果检测系统   总被引:3,自引:3,他引:0  
为了检测复杂自然环境下多种生长姿态的火龙果,该研究基于优选YOLOv7模型提出一种多姿态火龙果检测方法,构建了能区分不同姿态火龙果的视觉系统。首先比较了不同模型的检测效果,并给出不同设备的建议模型。经测试,YOLOv7系列模型优于YOLOv4、YOLOv5和YOLOX的同量级模型。适用于移动设备的YOLOv7-tiny模型的检测准确率为83.6%,召回率为79.9%,平均精度均值(mean average precision,mAP)为88.3%,正视角和侧视角火龙果的分类准确率为80.4%,推理一张图像仅需1.8 ms,与YOLOv3-tiny、YOLOv4-tiny和YOLOX-tiny相比准确率分别提高了16.8、4.3和4.8个百分点,mAP分别提高了7.3、21和3.9个百分点,与EfficientDet、SSD、Faster-RCNN和CenterNet相比mAP分别提高了8.2、5.8、4.0和42.4个百分点。然后,该研究对不同光照条件下的火龙果进行检测,结果表明在强光、弱光、人工补光条件下均保持着较高的精度。最后将基于YOLOv7-tiny的火龙果检测模型部署到Jetson Xavier NX上并针对正视角火龙果进行了验证性采摘试验,结果表明检测系统的推理分类时间占完整采摘动作总时间的比例约为22.6%,正视角火龙果采摘成功率为90%,验证了基于优选YOLOv7的火龙果多姿态检测系统的性能。  相似文献   

7.
基于特征递归融合YOLOv4网络模型的春见柑橘检测与计数   总被引:3,自引:3,他引:0  
春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model with recursive fusion of features,FR-YOLOv4)。针对春见柑橘尺寸小的特点,FR-YOLOv4网络模型的主干特征提取网络采用了感受野更小的CSPResNest50网络,降低了小尺寸目标的特征图传不到目标检测器中的可能性;针对春见柑橘被遮挡和密集分布的情况,采用了递归特征金字塔(Recursive Feature Pyramid,RFP)网络来进行特征递归融合,提高了对果园环境下春见柑橘的检测精度。试验结果表明:FR-YOLOv4网络模型对于果园环境中春见柑橘的平均检测精度为94.6%,视频检测帧率为51帧/s。FR-YOLOv4网络模型相比于YOLOv4、单次多框检测器(Single Shot Multi-Box Detector,SSD)、CenterNet和更快速卷积神经网络(Faster- Region-Convolutional Neural Networks,Faster R-CNN)的平均检测精度分别提高了8.9、29.3、14.1和16.2个百分点,视频检测帧率分别比SSD、Faster R-CNN提高了17帧/s和33帧/s。FR-YOLOv4网络模型对于实际果园环境中春见柑橘的检测精度高,具备检测实时性,适用于春见果园中春见柑橘检测与计数。  相似文献   

8.
基于改进的轻量化卷积神经网络火龙果检测方法   总被引:2,自引:2,他引:0  
在自然环境下对火龙果进行实时检测是实现火龙果自动化采摘的必要条件之一。该研究提出了一种轻量级卷积神经网络YOLOv4- LITE火龙果检测方法。YOLOv4集成了多种优化策略,YOLOv4的检测准确率比传统的YOLOv3高出10%。但是YOLOv4的骨干网络复杂,计算量大,模型体积较大,不适合部署在嵌入式设备中进行实时检测。将YOLOv4的骨干网络CSPDarknet-53替换为MobileNet-v3,MobileNet-v3提取特征可以显著提高YOLOv4的检测速度。为了提高小目标的检测精度,分别设置在网络第39层以及第46层进行上采样特征融合。使用2 513张不同遮挡环境下的火龙果图像作为数据集进行训练测试,试验结果表明,该研究提出的轻量级YOLOv4-LITE模型 Average Precision(AP)值为96.48%,F1值为95%,平均交并比为81.09%,模型大小仅为2.7 MB。同时对比分析不同骨干网络,MobileNet-v3检测速度大幅度提升,比YOLOv4的原CSPDarknet-53平均检测时间减少了132.33 ms。YOLOv4-LITE在GPU上检测一幅1 200×900的图像只需要2.28 ms,可以在自然环境下实时检测,具有较强的鲁棒性。相比现有的目标检测算法,YOLOv4-LITE的检测速度是SSD-300的9.5倍,是Faster-RCNN的14.3倍。进一步分析了多尺度预测对模型性能的影响,利用4个不同尺度特征图融合预测,相比YOLOv4-LITE平均检测精度提高了0.81%,但是平均检测时间增加了10.33 ms,模型大小增加了7.4 MB。因此,增加多尺度预测虽然提高了检测精度,但是检测时间也随之增加。总体结果表明,该研究提出的轻量级YOLOv4-LITE在检测速度、检测精度和模型大小方面具有显著优势,可应用于自然环境下火龙果检测。  相似文献   

9.
柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法。该方法首先对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该模型在YOLOv7模型骨干网络中引入坐标注意力模块(coordinate attention, CA),从而提高模型对缺陷部分的关注度。在网络头部引入CT(contextual transformer,CT)模块,融合静态和动态上下文表征特征,从而增强缺陷部分特征表达能力。通过试验确定CA模块和CT模块的最佳位置。改进后的YOLOv7-CACT模型检测结果平均精度均值(mean average precision,mAP)相较于原始模型增加了4.1个百分点,达到91.1%,满足了实际生产中对柑橘缺陷检测精度的要求。最后将基于YOLOv7-CACT的柑橘检测模型通过TensorRT进行部署,试验结果表明模型的推理时间满足柑橘生产线10个/s的实时分选要求,总体的检测精度达到94.4%,为柑橘表面缺陷在线检测提供了一种精准的实时检测方法。  相似文献   

10.
采用轻量级网络MobileNetV2的酿酒葡萄检测模型   总被引:1,自引:1,他引:0  
为提高高分辨率田间葡萄图像中小目标葡萄检测的速度和精度,该研究提出了一种基于轻量级网络的酿酒葡萄检测模型(Wine Grape Detection Model,WGDM)。首先,采用轻量级网络MobileNetV2取代YOLOv3算法的骨干网络DarkNet53完成特征提取,加快目标检测的速度;其次,在多尺度检测模块中引入M-Res2Net模块,提高检测精度;最后,采用平衡损失函数和交并比损失函数作为改进的定位损失函数,增大目标定位的准确性。试验结果表明,提出的WGDM模型在公开的酿酒葡萄图像数据集的测试集上平均精度为81.2%,网络结构大小为44 MB,平均每幅图像的检测时间为6.29 ms;与单发检测器(Single Shot Detector,SSD)、YOLOv3、YOLOv4和快速区域卷积神经网络(Faster Regions with Convolutional Neural Network,Faster R-CNN)4种主流检测模型相比,平均精度分别提高8.15%、1.10%、3.33%和6.52%,网络结构分别减小了50、191、191和83 MB,平均检测时间分别减少了4.91、7.75、14.84和158.20 ms。因此,该研究提出的WGDM模型对田间葡萄果实具有更快速、更准确的识别与定位,为实现葡萄采摘机器人的高效视觉检测提供了可行方法。  相似文献   

11.
基于多重特征增强与特征融合SSD的荔枝检测   总被引:2,自引:2,他引:0  
使用无人机拍摄的荔枝图像目标尺寸小、特征信息不足.为了更多、更好地检测到荔枝,该研究提出一种基于多重特征增强与特征融合的SSD(Single Shot Multibox Detector based on Multiple Feature Enhancement and Feature Fusion,MFEFF-SSD...  相似文献   

12.
便携式柑橘虫害实时检测系统的研制与试验   总被引:3,自引:2,他引:1  
为实现柑橘虫害的快速、准确识别,帮助果农及时掌握果园内虫害的危害程度和分布情况,该研究结合嵌入式图像处理技术设计了一套基于深度卷积神经网络的柑橘虫害实时检测系统。优选MoblieNet作为虫害图像特征提取网络,区域候选网络生成害虫的初步位置候选框,快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)实现候选框的分类和定位。检测系统根据目标图像中虫害数量计算危害程度,按照正常、轻度、中度、重度4个等级判定柑橘虫害的严重程度,形成虫害识别与级别定量化测评软件。最后引入北斗模块获取采样点位置信息,进一步处理成可视化的虫害热力图。结果表明,该方法可实现对柑橘红蜘蛛和蚜虫的快速准确检测,识别准确率分别达到91.0%和89.0%,单帧图像平均处理速度低至286ms。该系统实现了柑橘虫害的精准识别与定位,可为农药喷洒作业提供精准信息服务。  相似文献   

13.
采用改进YOLOv4-Tiny模型的柑橘木虱识别   总被引:3,自引:2,他引:1  
黄龙病是一种以柑橘木虱为传播媒介的毁灭性病害,其关键预防措施是在果园现场环境对柑橘木虱识别监测,辅助果农进行早期防治。该研究基于YOLOv4-Tiny模型提出一种适用于嵌入式系统的柑橘木虱识别模型。通过改进YOLOv4-Tiny模型的颈部网络,利用浅层网络的细节信息以提高模型识别柑橘木虱的平均精度;采用交叉小批量归一化(Cross mini-Batch Normalization,CmBN)方法代替批归一化(Batch Normalization,BN)方法,通过累计卷积层的输出,提升统计信息的准确度;针对柑橘木虱易被遮挡的问题,模型训练时使用Mosaic数据增强,提升模型对遮挡目标的识别能力。通过自行建立的柑橘木虱图像数据集完成模型的试验验证。结果表明,该模型的柑橘木虱平均识别精度为96.16%,在图形处理器(Graphics Processing Unit, GPU)上的推理速度为3.63 ms/帧,模型大小为24.5 MB,实现了果园环境下快速准确地识别柑橘木虱,可为黄龙病防治技术的进一步发展提供参考。  相似文献   

14.
自然环境下多类水果采摘目标识别的通用改进SSD模型   总被引:16,自引:11,他引:5  
为解决当前自然环境下水果识别率不高、泛化性不强等问题,该文以苹果、荔枝、脐橙、皇帝柑4种水果为研究对象,提出了一种改进的SSD(single shot multi-boxdetector)深度学习水果检测模型:将经典SSD深度学习模型中的VGG16输入模型替换为Res Net-101模型,并运用迁移学习方法和随机梯度下降算法优化SSD深度学习模型。该文基于Caffe深度学习框架,对自然环境下采集的水果图像进行不同网络模型、不同数据集大小和不同遮挡比例等多组水果识别检测效果对比试验。试验表明:改进的SSD深度学习水果检测模型对4种水果在各种环境下的平均检测精度达到88.4%,高于经典SSD深度学习模型中的86.38%,经过数据增强后平均检测精度可提升至89.53%,在遮挡面积低于50%的情况下F1值能达到96.12%,有较好的泛化性和鲁棒性,可以很好地实现自然环境下多类水果的精准检测,可为农业自动化采摘中的水果识别检测问题提供新的方案。  相似文献   

15.
卷积神经网络具有很强的分类能力,并在图像分类等应用中取得显著成效,但遥感图像检索应用中还较少利用该分类能力。为了提高农业遥感图像检索性能,该文提出一种利用卷积神经网络分类能力的遥感图像检索方法。首先利用微调的卷积神经网络模型提取查询图像的检索特征和估计查询图像的每个类别权重,然后利用根据CNN模型判断的检索图像类别和初始排序结果计算类别查准率,根据查询图像的类别权重和类别查准率计算加权类别查准率,最后根据加权类别查准率对图像类别进行排序,并根据排序结果对初始检索结果进行重排序,从而得到最终的检索结果。试验结果表明:该检索方法在PatternNet数据集中平均查准率达到97.56%,平均归一化调整后的检索秩达到0.0201;在UCM_LandUse数据集中平均查准率达到93.67%,平均归一化调整后的检索秩达到0.049 2,较之其他遥感图像检索方法下降0.2358,降幅超过82.7%;平均每张检索图像重排序时间大约是初始排序时间的1%。该文提出的重排序方法可以得到更好的遥感图像检索结果,提高了遥感图像检索性能,将有助于农业信息领域信息化和智能化。  相似文献   

16.
基于改进卷积神经网络模型的玉米叶部病害识别(英文稿)   总被引:3,自引:2,他引:1  
准确识别玉米病害有助于对病害进行及时有效的防治。针对传统方法对于玉米叶片病害识别精度低和模型泛化能力弱等问题,该研究提出了一种基于改进卷积神经网络模型的玉米叶片病害识别方法。改进后的模型由大小为3×3的卷积层堆栈和Inception模块与ResNet 模块组成的特征融合网络两部分组成,其中3×3卷积层的堆栈用于增加特征映射的区域大小,Inception模块和ResNet 模块的结合用于提取出玉米叶片病害的可区分特征。同时模型通过对批处理大小、学习率和 dropout参数进行优化选择,确定了试验的最佳参数值。试验结果表明,与经典机器学习模型如最近邻节点算法(K- Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)和反向传播神经网络(Back Propagation Neural Networks,BPNN)以及深度学习模型如AlexNet、VGG16、ResNet 和Inception-v3相比,经典机器学习模型的识别率最高为77%,该研究中改进后的卷积神经网络模型的识别率为98.73%,进一步提高了模型的稳定性,为玉米病害检测与识别的进一步研究提供了参考。  相似文献   

17.
为解决自然条件下的油橄榄品种识别问题,该研究以油橄榄品种佛奥、莱星、皮削利和鄂植8号为研究对象,融合双线性网络与注意力机制,提出双线性注意力EfficientNet模型。针对不同品种油橄榄表型差异很小的特点,搭建双线性网络以充分提取油橄榄图像中的特征信息。在此基础上,选用兼顾了速度和精度的EfficientNet-B0网络为特征提取网络。针对自然条件下油橄榄品种识别易受复杂背景干扰的问题,将CBAM(convolutional block attention module,CBAM)注意力与双线性网络结合,使模型在提取油橄榄图像特征时,能够聚焦到对油橄榄品种识别起关键作用的特征上。经测试,所提模型对4个油橄榄品种识别的总体准确率达到90.28%,推理时间为9.15 ms。Grad-CAM(gradient-weighted class activation mapping,Grad-CAM)热力图可视化结果也表明,所提模型在识别油橄榄品种时重点关注了果实以及部分叶子区域。消融试验结果表明,在EfficientNet模型中引入CBAM注意力和搭建双线性网络后,总体准确率分别提高了5.00和10.97个百分点。并且,对比试验结果表明,与双线性ResNet34、EfficientNet-SE注意力、双线性ResNet18、双线性VGG16和双线性GoogLeNet等模型相比,所提模型的总体识别准确率分别高12.78、11.53、11.11、10.70和5.00个百分点。该研究为解决自然条件下的油橄榄品种识别提供了依据,同时也可为其他作物的品种识别提供参考。  相似文献   

18.
为了解决现阶段水稻发育期信息的获取主要依靠人工观测的效率低、主观性强等问题,该研究提出一种基于Rectified Adam(RAdam)优化器的ResNet50卷积神经网络图像识别方法,开展水稻关键生育期的自动识别。连续2a对12块试验田的水稻物候特征进行持续自动拍摄,对采集的水稻图像进行预处理,得到水稻各发育期分类图像数据集;采用ExG因子和大津法(Otsu)算法相结合的方法对水稻图像分割,减小稻田背景干扰;对比分析了VGG16、VGG19、ResNet50和Inception v3四种模型下水稻生育期图像分级识别的性能,选取性能较优网络模型并进行了网络参数调优;对比试验了不同优化器下模型准确率和损失值的变化,选取了RAdam优化器。结果表明,采取基于RAdam优化器卷积神经网络构建的模型,在真实场景下分类识别准确率达到97.33%,网络稳定性高、收敛速度快,为水稻生育期自动化观测提供了有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号