共查询到5条相似文献,搜索用时 15 毫秒
1.
复杂背景与天气条件下的棉花叶片图像分割方法 总被引:4,自引:0,他引:4
为实现自然条件下棉花叶片的精准分割,提出一种粒子群(Particle swarm optimization,PSO)优化算法和K-means聚类算法混合的棉花叶片图像分割方法。本算法将棉花叶片图像在RGB颜色空间模式下采用二维卷积滤波进行去噪预处理,并将预处理后的彩色图像从RGB转换到目标与背景差异性最大的Q分量、超G分量、a*分量;随后在K均值聚类的一维数据空间中,利用PSO算法向全局像素解的子空间搜寻,通过迭代搜寻得到全局最优解,确定最佳聚类中心点,改善K均值聚类的收敛效果;最后,对像素进行聚类划分,从而得到棉花叶片分割结果。按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。试验结果表明:该算法对于晴天、阴天和雨天图像中目标(棉花叶片)分割准确率分别达到92.39%、93.55%、88.09%,总体平均分割精度为91.34%,并与传统K均值算法比较,总体平均分割精度提高了5.41%。分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像实现准确分割,为棉花叶片的特征提取与病虫害识别等后续处理提供支持。 相似文献
2.
针对原木图像存在年轮、锯痕以及原木之间紧密接触的问题,提出两阶段分割方法,即依据原木目标和背景的颜色差异应用K均值算法进行聚类得到相互紧密接触的原木目标分割结果;然后应用分水岭分割算法将粘连的原木目标加以分离.结果表明:与直接用分水岭算法和K均值算法相比,本方法能够有效地分割出原木目标. 相似文献
3.
复杂背景下黄瓜病害叶片的分割方法研究 总被引:2,自引:0,他引:2
利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用基于laplacian of gaussia(LOG)算子的方法对待分割的叶片进行区域检测,然后进行基于形状上下文(shape context)的模板匹配和分割。为了提高匹配速度,先检测叶片的生长点和叶尖,以确定叶片的位置、尺寸和方向;然后使用基于超像素(superpixel)的最优匹配搜索方法来减少搜索的复杂度。对20幅黄瓜叶部病害图像进行分割测试,并与人工分割法进行对比,结果表明,本文所采用的分割算法能较好地从复杂背景下提取出黄瓜叶部病害图像,分割准确率达94.7%,为后期黄瓜病斑的特征提取等工作奠定了良好的基础。 相似文献
4.
为解决自然条件下棉花叶片因其轮廓几何边缘长势不均匀所导致的叶片目标提取不精准问题,提出一种基于改进C-V模型的棉花病害叶部目标提取方法。在传统C-V模型的基础上,将长度惩罚项和符号距离函数的约束能量项引入能量模型中,以达到对演化曲线长度变化的约束目的,从而完成对整幅图像目标特征的提取。本研究算法先对待分割的图像设置初始曲线,并利用高斯滤波算子对待分割图像进行平滑滤波处理,然后根据图像全局灰度信息和局部二值匹配信息建立能量方程,根据其离散化形式,对水平集函数进行演化,并从中提取演化曲线,最后根据水平集函数演化过程所满足的终止条件,输出图像分割结果。按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。试验结果表明:本研究算法对于晴天、阴天和雨天图像中目标(棉花叶片)轮廓提取准确率分别达到82.23%、82.73%和84.60%。分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像目标特征轮廓实现准确提取。 相似文献
5.
作物系数是计算作物需水量和农田蒸散量必要的参数,作物系数的遥感获取对于农田生态系统的水分平衡研究具有重要意义。利用Landsat ETM 遥感影像及Penman-Montieth方程,通过计算不同生长状况下棉花的作物需水量和参考作物蒸散量,实现棉花作物系数的遥感获取;在此基础上进一步分析作物系数对反照率、气象因子和植被生长参数等的敏感性。结果表明:1)利用遥感获取作物系数的空间分布是有效可行的;2)作物系数主要受植被生长状况的影响,反照率和气象因子对作物系数的影响相对次要;3)作物系数随气温、大气压、空气湿度和风速等气象因素的增大而增大,并且这种正效应随着植被覆盖度的增大而增大;4)作物系数与作物生长状况直接相关,仅仅根据作物生长阶段确定作物系数存在不合理性。 相似文献