首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When challenged with atypical Aeromonas salmonicida subsp. salmonicida, exposure of the common carp (Cyprinus carpio L.) to different humic‐rich compounds resulted in a significant reduction in infection rates. Specifically, in fish exposed to (i) humic‐rich water and sludge from a recirculating system, (ii) a synthetic humic acid, and (iii) a Leonardite‐derived humic‐rich extract, infection rates were reduced to 14.9%, 17.0% and 18.8%, respectively, as compared to a 46.8% infection rate in the control treatment. An additional set of experiments was performed to examine the effect of humic‐rich components on the growth of the bacterial pathogen. Liquid culture medium supplemented with either humic‐rich water from the recirculating system, the synthetic humic acid or the Leonardite humic‐rich extract resulted in a growth reduction of 41.1%, 45.2% and 61.6%, respectively, as compared to the growth of the Aeromonas strain in medium devoid of humic substances. Finally, in a third set of experiments it was found that while the innate immune system of the carps was not affected by their exposure to humic‐rich substances, their acquired immune system was affected. Fish, immunized against bovine serum albumin, displayed elevated antibody titres as compared to immunized carps which were not exposed to the various sources of humic substances.  相似文献   

2.
Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is the aetiological agent of furunculosis in marine and freshwater fish. Once A. salmonicida invade the fish host through skin, gut or gills, it spreads and colonizes the head kidney, liver, spleen and brain. A. salmonicida infects leucocytes and exhibits an extracellular phase in the blood of the host; however, it is unknown whether A. salmonicida have an intraerythrocytic phase. Here, we evaluate whether A. salmonicida infects Atlantic salmon (Salmo salar) erythrocytes in vitro and in vivo. A. salmonicida did not kill primary S. salar erythrocytes, even in the presence of high bacterial loads, but A. salmonicida invaded the S. salar erythrocytes in the absence of evident haemolysis. Naïve Atlantic salmon smolts intraperitoneally infected with A. salmonicida showed bacteraemia 5 days post‐infection and the presence of intraerythrocytic A. salmonicida. Our results reveal a novel intraerythrocytic phase during A. salmonicida infection.  相似文献   

3.
Aeromonas salmonicida strains are roughly classified into two categories, typical and atypical strains. The latter mainly regroup isolates that present unusual phenotypes or hosts, comparatively to the typical strains that belong to the salmonicida subspecies. This study focuses on an uncharacterized atypical strain, M18076‐11, isolated from lumpfish (Cyclopterus lumpus) and not part of the four recognized Aeromonas salmonicida subspecies. This isolate presents an unreported phenotype in the A. salmonicida species: the formation of large granular aggregates. Granules are formed of a heterogeneous mix of live and dead cells, with live cells composing the majority of the population. Even if no mechanism was determined to cause cellular aggregation, small globular structures at the cell surface were observed, which might affect granular formation. Pan‐genome phylogenetic analysis indicated that this strain groups alongside the masoucida subspecies. However, phenotypic tests showed that these strains have diverging phenotypes, suggesting that M18076‐11 might belong to a new subspecies. Also, a pAsal1‐like plasmid, which was only reported in strains of the subspecies salmonicida, was discovered in M18076‐11. This study sheds light on unsuspected diversity in A. salmonicida subspecies and stresses the need of thorough identification when a new strain is encountered, as unique traits might be discovered.  相似文献   

4.
5.
A real‐time PCR assay using a molecular beacon was developed and validated to detect the vapA (surface array protein) gene in the fish pathogen, Aeromonas salmonicida. The assay had 100% analytical specificity and analytical sensitivities of 5 ± 0 fg (DNA), 2.2 × 104 ± 1 × 104 CFU g?1 (without enrichment) and 40 ± 10 CFU g?1 (with enrichment) in kidney tissue. The assay was highly repeatable and proved to be robust following equivalency testing using a different real‐time PCR platform. Following analytical validation, diagnostic specificity was determined using New Zealand farmed Chinook salmon, Oncorhynchus tshawytscha (Walbaum), (n = 750) and pink shubunkin, Carassius auratus (L.) (n = 157). The real‐time PCR was run in parallel with culture and all fish tested were found to be negative by both methods for A. salmonicida, resulting in 100% diagnostic specificity (95% confidence interval). The molecular beacon real‐time PCR system is specific, sensitive and a reproducible method for the detection of A. salmonicida. It can be used for diagnostic testing, health certification and active surveillance programmes.  相似文献   

6.
Furunculosis, a septicaemic infection caused by the bacterium Aeromonas salmonicida subsp. salmonicida, currently causes problems in Danish seawater rainbow trout production. Detection has mainly been achieved by bacterial culture, but more rapid and sensitive methods are needed. A previously developed real‐time PCR assay targeting the plasmid encoded aopP gene of A. salmonicida was, in parallel with culturing, used for the examination of five organs of 40 fish from Danish freshwater and seawater farms. Real‐time PCR showed overall a higher frequency of positives than culturing (65% of positive fish by real‐time PCR compared to 30% by a culture approach). Also, no real‐time PCR‐negative samples were found positive by culturing. A. salmonicida was detected by real‐time PCR, though not by culturing, in freshwater fish showing no signs of furunculosis, indicating possible presence of carrier fish. In seawater fish examined after an outbreak and antibiotics treatment, real‐time PCR showed the presence of the bacterium in all examined organs (1–482 genomic units mg?1). With a limit of detection of 40 target copies (1–2 genomic units) per reaction, a high reproducibility and an excellent efficiency, the present real‐time PCR assay provides a sensitive tool for the detection of A. salmonicida.  相似文献   

7.
A bacteria–parasite challenge model was used to study the role of sea lice, Lepeophtheirus salmonis (Copepoda), as a vector of Aeromonas salmonicida subsp. salmonicida. Three hypotheses were tested: (i) L. salmonis can acquire A. salmonicida subsp. salmonicida via water bath exposure; (ii) L. salmonis can acquire the bacteria via parasitizing infected Atlantic salmon, Salmo salar; and (iii) L. salmonis can transmit the bacteria to naïve Atlantic salmon via parasitism. Adult L. salmonis exposed to varying A. salmonicida subsp. salmonicida suspensions (101–107 cells mL?1) for 1.0, 3.0 or 6.0 h acquired the bacteria externally (12.5–100%) and internally (10.0–100%), with higher prevalences associated with the highest concentrations and exposures. After exposure to 107 cells mL?1, viable A. salmonicida subsp. salmonicida could be isolated from the external carapace of L. salmonis for 120 h. Lepeophtheirus salmonis also acquired the bacteria externally and internally from parasitizing infected fish. Bacterial transmission was observed only when L. salmonis had acquired the pathogen internally via feeding on ‘donor fish’ and then by parasitizing smaller (<50 g) ‘naive’ fish. Under specific experimental conditions, L. salmonis can transfer A. salmonicida subsp. salmonicida via parasitism; however, its role as a mechanical or biological vector was not defined.  相似文献   

8.
Michigan's fisheries rely primarily upon the hatchery propagation of salmonid fish for release in public waters. One limitation on the success of these efforts is the presence of bacterial pathogens, including Aeromonas salmonicida, the causative agent of furunculosis. This study was undertaken to determine the prevalence of A. salmonicida in Michigan fish, as well as to determine whether biochemical or gene sequence variability exists among Michigan isolates. A total of 2202 wild, feral and hatchery‐propagated fish from Michigan were examined for the presence of A. salmonicida. The examined fish included Chinook salmon, Oncorhynchus tshawytscha (Walbaum), coho salmon, O. kisutcha (Walbaum), steelhead trout, O. mykiss (Walbaum), Atlantic salmon, Salmo salar L., brook trout, Salvelinus fontinalis (Mitchill), and yellow perch, Perca flavescens (Mitchill). Among these, 234 fish yielded a brown pigment‐producing bacterium that was presumptively identified as A. salmonicida. Further phenotypic and phylogenetic analyses identified representative isolates as Aeromonas salmonicida subsp. salmonicida and revealed some genetic and biochemical variability. Logistic regression analyses showed that infection prevalence varied according to fish species/strain, year and gender, whereby Chinook salmon and females had the highest infection prevalence. Moreover, this pathogen was found in six fish species from eight sites, demonstrating its widespread nature within Michigan.  相似文献   

9.
Skin ulcerations rank amongst the most prevalent lesions affecting wild common dab (Limanda limanda) with an increase in prevalence of up to 3.5% in the Belgian part of the North Sea. A complex aetiology of these ulcerations is suspected, and many questions remain on the exact factors contributing to these lesions. To construct the aetiological spectrum of skin ulcerations in flatfish, a one‐day monitoring campaign was undertaken in the North Sea. Fifteen fish presented with one or more ulcerations on the pigmented and/or non‐pigmented side. Pathological features revealed various stages of ulcerations with loss of epidermal and dermal tissue, inflammatory infiltrates and degeneration of the myofibers bordering the ulceration, albeit in varying degrees. Upon bacteriological examination, pure cultures of Vibrio tapetis were retrieved in high numbers from five fish and of Aeromonas salmonicida in one fish. The V. tapetis isolates showed cross‐reactivity with the sera against the representative strain of serotype O2 originating form a carpet‐shell clam (Ruditapes descussatus). Moreover, the A. salmonicida isolates displayed a previously undescribed vapA gene sequence (A‐layer type) with possible specificity towards common dab. Further research is necessary to pinpoint the exact role of these agents in the development of skin ulcerations in common dab.  相似文献   

10.
Due to increasing resistance to chemical therapeutants, the use of ‘cleaner fish’ (primarily wrasse, Labridae, species) has become popular in European salmon farming for biocontrol of the salmon louse, Lepeophtheirus salmonis (Krøyer). While being efficient de‐licers, cleaner fish mortality levels in salmon cages are commonly high, and systemic bacterial infections constitute a major problem. Atypical furunculosis, caused by Aeromonas salmonicida A‐layer types V and VI, is among the most common diagnoses reached in clinical investigations. A previously described real‐time PCR (qPCR), targeting the A. salmonicida A‐layer gene (vapA), was modified and validated for specific and sensitive detection of all presently recognized A‐layer types of this bacterium. Before stocking and during episodes of increased mortality in salmon cages, cleaner fish (primarily wild‐caught wrasse) were sampled and screened for A. salmonicida by qPCR and culture. Culture indicated that systemic bacterial infections are mainly contracted after salmon farm stocking, and qPCR revealed A. salmonicida prevalences of approximately 4% and 68% in pre‐ and post‐stocked cleaner fish, respectively. This underpins A. salmonicida's relevance as a contributing factor to cleaner fish mortality and emphasizes the need for implementation of preventive measures (e.g. vaccination) if current levels of cleaner fish use are to be continued or expanded.  相似文献   

11.
In non‐salmonid fish, Aeromonas salmonicidacan cause local infections with severe skin ulcerations, known as atypical furunculosis. In this study, we present a systemic infection by a virulent A. salmonicidain European perch (Perca fluviatilis).This infection was diagnosed in a Swiss warm water recirculation aquaculture system. The isolate of A.  salmonicida encodes a type three secretion system (TTSS) most likely located on a plasmid similar to pAsa5/pASvirA, which is known to specify one of the main virulence attributes of the species A. salmonicida. However, the genes specifying the TTSS of the perch isolate show a higher temperature tolerance than strains isolated from cold‐water fish. The function of the TTSS in virulence was verified in a cytotoxicity test using bluegill fry and epithelioma papulosum cyprinid cells.  相似文献   

12.
Diseases caused by motile aeromonads in freshwater fish have been generally assumed to be linked with mainly Aeromonas hydrophila while other species were probably overlooked. Here, we identified two isolates of non‐A. hydrophila recovered from Nile tilapia exhibiting disease and mortality after exposed to transport‐induced stress and subsequently confirmed their virulence in artificial infection. The bacterial isolates were identified as Aeromonas jandaei and Aeromonas veronii based on phenotypic features and homology of 16S rDNA. Experimental infection revealed that the high dose of A. jandaei (3.7 × 106 CFU fish?1) and A. veronii (8.9 × 106 CFU fish?1) killed 100% of experimental fish within 24 h, while a 10‐fold reduction dose killed 70% and 50% of fish, respectively. When the challenge dose was reduced 100‐fold, mortality of the fish exposed to A. jandaei and A. veronii decreased to 20% and 10%, respectively. The survivors from the latter dose administration were rechallenged with respective bacterial species. Lower mortality of rechallenged fish (0%–12.5%) compared to the control groups receiving a primary infection (37.5%) suggested that the survivors after primary infection were able to resist secondary infection. Fish exposed to either A. jandaei or A. veronii exhibited similar clinical signs and histological manifestation.  相似文献   

13.
Recent development of imaging tools has facilitated studies of pathogen infections in vivo in real time. This trend can be exemplified by advances in bioluminescence imaging (BLI), an approach that helps to visualize dissemination of pathogens within the same animal over several time points. Here, we employ bacterial BLI for examining routes of entry and spread of Aeromonas salmonicida susbp. salmonicida in rainbow trout. A virulent Danish A. salmonicida strain was tagged with pAKgfplux1, a dual‐labelled plasmid vector containing the mutated gfpmut3a gene from Aequorea victoria and the luxCDABE genes from the bacterium Photorhabdus luminescens. The resulting A. salmonicida transformant exhibited growth properties and virulence identical to the wild‐type A. salmonicida, which made it suitable for an experimental infection, mimicking natural conditions. Fish were infected with pAKgfplux1 tagged A. salmonicida via immersion bath. Colonization and subsequent tissue dissemination was followed over a 24‐h period using the IVIS spectrum imaging workstation. Results suggest the pathogen's colonization sites are the dorsal and pectoral fin and the gills, followed by a progression through the internal organs and an ensuing exit via the anal opening. This study provides a tool for visualizing colonization of A. salmonicida and other bacterial pathogens in fish.  相似文献   

14.
Rainbow trout, Oncorhynchus mykiss (Walbaum), are able to raise a protective immune response against Aeromonas salmonicida subsp. salmonicida (AS) following injection vaccination with commercial vaccines containing formalin‐killed bacteria, but the protection is often suboptimal under Danish mariculture conditions. We elucidated whether protection can be improved by increasing the concentration of antigen (formalin‐killed bacteria) in the vaccine. Rainbow trout juveniles were vaccinated by intraperitoneal (i.p.) injection with a bacterin of Aeromonas salmonicida subsp. salmonicida strain 090710‐1/23 in combination with Vibrio anguillarum serotypes O1 and O2a supplemented with an oil adjuvant. Three concentrations of AS antigens were applied. Fish were subsequently challenged with the homologous bacterial strain administered by perforation of the tail fin epidermis and 60‐s contact with live A. salmonicida bacteria. The infection method proved to be efficient and could differentiate efficacies of different vaccines. It was shown that protection and antibody production in exposed fish were positively correlated to the AS antigen concentration in the vaccine.  相似文献   

15.
In August 2017, a serious disease causing high mortality occurred in a Myxocyprinus asiaticus aquaculture farm. According to necropsy findings, bacteriology experiments and phylogenetic analysis based on 16S rRNA, cpn60, gyrB and rpoB genes and concatenated alignment sequences (cpn60, gyrB and rpoB genes), two isolates, that is, BBAh1 and BBAv1, were identified as Aeromonas hydrophila and Aeromonas veronii respectively. Artificial infection experiments were carried out, showing that the BBAh1 and BBAv1 strains can cause similar symptoms and have LD50 values of 1.93×105 and 8.77×105 cfu/g respectively. In addition, some virulent genes coding for AerA, Alt, Ast, AscV, AexT, AspA, HlyA, OmpA, Lip and FlaA were detected in the two strains. Furthermore, BBAh1 and BBAv1 showed the same sensitivities to 28 antibiotics, some of which, such as cefotaxime, aztreonam, ceftriaxone and tetracycline, may be used to control the disease. However, the strains were also resistant to many antibiotics. These results provide a scientific reference for the diagnosis, prevention and treatment of motile Aeromonas septicaemia caused by A. hydrophila or A. veronii in cultured Chinese sucker.  相似文献   

16.
17.
Precise deletion of genes related to virulence can be used as a strategy to produce attenuated bacterial vaccines. Here, we study the deletion of the cyclic‐3′,5′‐adenosine monophosphate (cAMP) receptor protein (Crp) in Aeromonas salmonicida, the aetiologic agent of furunculosis in marine and freshwater fish. The Crp protein is a conserved global regulator, controlling physiology processes, like sugar utilization. Deletion of the crp gene has been utilized in live attenuated vaccines for mammals, birds and warm water fish. Here, we characterized the crp gene and reported the effect of a crp deletion in A. salmonicida virulent and non‐virulent isolates. We found that A. salmonicida Δcrp was not able to utilize maltose and other sugars, and its generation time was similar to the wild type. A. salmonicida ?crp showed a higher ability of cell invasion compared to the wild type. Fish challenges showed that A. salmonicida ?crp is ~6 times attenuated in Oncorhynchus mykiss and conferred protective immunity against the intraperitoneal challenge with A. salmonicida wild type. We concluded that deletion of A. salmonicida crp influences sugar utilization, cell invasion and virulence. Deletion of crp in A. salmonicida could be considered as part of an effective strategy to develop immersion live attenuated vaccines against furunculosis.  相似文献   

18.
Phytotherapy can replace antibiotic administration as an alternative to control Aeromonas hydrophila, one of the main bacteria involved in the aetiology of farmed fish diseases. Given that plants of the Lippia spp. genus show biological potential for antimicrobial activity, this study evaluated the chemical composition of essential oils extracted from Lippia alba, Lippia origanoides and Lippia sidoides and their activity against A. hydrophila. The oils were obtained by steam distillation in a Clevenger‐type apparatus and their composition determined by gas chromatography and mass spectrometry (CG/MS). Antibacterial activity was assessed by calculating the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using broth microdilution method. The main compounds identified were geranial (25.4%) and neral (16.6%) in L. alba oil, carvacrol (40.4%) and p‐cymene (11.4%) in L. origanoides oil and thymol (76.6%) and ortho‐cymene (6.3%) in L. sidoides oil. The three Lippia species showed bacteriostatic and bactericidal action against A. hydrophila, with MICs and MBCs ranging from 1250 to 5000 μg mL?1. Of the species tested, the best performance was obtained with essential oil of L. sidoides.  相似文献   

19.
We present a study on the effect of water temperature on immunization of Atlantic lumpfish. In total, 360 fish were vaccinated with either 50 μl of an oil‐based injection vaccine (VAX), with Aeromonas salmonicida and Vibrio salmonicida antigens, or PBS. Fish were vaccinated at three different water temperatures, 5°C, 10°C and 15°C, and sorted into six groups (N = 60). Lumpfish were weighed every 3 weeks after vaccination, sampled at 3, 6, 9 and 18 weeks post‐immunization (wpi) and evaluated by modified Speilberg score, ELISA and immunoblotting. Vaccinated fish showed low antibody response against V. salmonicida. Fish vaccinated at 5°C showed significantly lower antibody response against A. salmonicida throughout the study. At higher temperatures, vaccinated fish showed significantly increased antibody responses, at 18 wpi for 10°C and at 6 and 18 wpi for 15°C. Immunoblotting demonstrated specific response against the LPS antigen of A. salmonicida in the 10°C and 15°C VAX groups. Mean body weight increased in all groups throughout the study. Vaccinated fish had low Speilberg scores with no melanization of abdominal tissue. Our results show that vaccinating lumpfish at a lower water temperature may lead to a low antibody response against A. salmonicida.  相似文献   

20.
Survival in host macrophages is an effective strategy for pathogenic bacteria to spread. Aeromonas hydrophila has been found to survive in fish macrophages, but the mechanisms remain unknown. In this paper, the roles and possible mechanisms of IcmF in bacterial survival in fish macrophages were investigated. First, a stable silencing strain icmF‐RNAi was constructed by shRNA and RT‐qPCR confirmed the expression of icmF was down‐regulated by 94.42%. The expression of Hcp, DotU and VgrG was also decreased in icmF‐RNAi. The intracellular survival rate of the wild‐type strain was 92.3%, while the survival rate of icmF‐RNAi was only 20.58%. The escape rate of the wild‐type strain was 20%, while that of the icmF‐RNAi was only 7.5%. Further studies indicated that the expression of icmF can significantly affect the adhesion, biofilm formation, motility and acid resistance of A. hydrophila, but has no significant effect on the growth of A. hydrophila even under the stress of H2O2. The results indicated that IcmF of A. hydrophila not only acts as a structural protein which participates in virulence‐related characteristics such as bacterial motility, adhesion and biofilm formation, but also acts as a key functional protein which participates in the interaction between bacteria and host macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号