首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunogenicity of equine herpesvirus type 1 (EHV-1) strain RacH was compared to a RacH virus in which gene 52 encoding glycoprotein M (gM) was interrupted by insertion of LacZ (HDeltagM-Ins) and a RacH with 75% of gene 52 was deleted and replaced by LacZ (HDeltagM-HS). HDeltagM-Ins failed to produce full-length gM, but the carboxy-terminal portion was still expressed. No gM expression was detected in HDeltagM-HS-infected cells. Mice were immunised once with 1x10(3) to 1x10(5) plaque-forming units (PFU) of RacH or mutant viruses and challenged with virulent RacL11 virus 29 days later. A dose-dependence of protection was observed in RacH-immunised mice, and following immunisation with 1x10(4) or 1x10(3) PFU body weight losses and increased virus titres in lungs were observed after challenge infection. HDeltagM-HS-immunised mice were completely protected even after immunisation with 1x10(3) PFU. Mice immunised with 1x10(3) PFU of HDeltagM-Ins but not the higher doses showed signs of disease after challenge infection.  相似文献   

2.
The genome of equine herpesvirus type 1 (EHV-1) strain RacL11, a highly virulent isolate obtained from an aborted foal, and that of the modified live vaccine strain KyA, were cloned as bacterial artificial chromosomes (BAC) in Eseherichia coli. Mini F plasmid sequences were inserted into the viral genomes by homologous recombination instead of the gene 71 (EUS4) open reading frame after co-transfection of viral DNA and recombinant plasmid pdelta71-pHA2 into RK13 cells. After isolation of recombinant viruses by three rounds of plaque purification, viral DNA was isolated from RK13 cells infected with RacL11 or KyA virus mutants expressing the green fluorescent protein (GFP), and electroporated into Escherichia coli DH10B cells. Several bacterial colonies were shown to contain high-molecular weight BAC DNA with a restriction enzyme fragment pattern indicative of the presence of full-length RacL11 or KyA genomes. Two selected BAC clones were analysed by restriction enzyme analysis and Southern blotting, and were eventually termed pRacLI I and pKyA. respectively. Upon transfection of pRacL11 or pKyA DNA into RK13 cells, GFP-expressing fluorescing virus plaques could be identified from day 1 after transfection. Infectivity after transfection of pRacL11 or pKyA could be readily propagated on RK13 or equine cells, indicating that infectious full-length DNA clones of strains RacL11 and KyA were successfully cloned in Escherichia coli as BACs. The glycoprotein 2-negative progeny reconstituted from pRacL11 and pKyA (L11deltagp2 and KyAdeltagp2) exhibited different growth properties. Whereas both L11deltagp2 and KyAdeltagp2 extracellular titres were reduced by 15- to 32-fold, plaque diameters were only markedly (50%) reduced in the case of KyAdeltagp2.  相似文献   

3.
Equine herpesvirus type 1 (EHV-1) is highly prevalent in horses and causes rhinopneumonitis, abortion, and encephalopathy. Studies on the related human herpes simplex virus and of murine models of EHV-1 suggest that chemokines play important roles in coordinating of innate and adaptive immune responses, and thus effective control of herpesvirus infection and prevention of severe clinical disease. Here, equine peripheral blood mononuclear cells (PBMC) were infected with one of three EHV-1 strains, which differ in pathogenicity (RacL11, NY03=abortogenic, Ab4=neurogenic). Changes in CCL2, CCL3, CCL5, CXCL9 and CXCL10 chemokine gene expression relative to non-infected PBMC were measured by real-time PCR. CXCL9 and CXCL10 gene expression was up-regulated 10h post infection and decreased to the level of non-infected cells after 24h. CCL2 and CCL3 were significantly down-regulated 24h post infection with NY03 and Ab4. CCL5 was up-regulated 24h after infection with RacL11. Ab4 infected PBMC had significantly lower expression of all chemokines except CCL2 24h post infection then RacL11 infected cells. While there was not a significant difference between NY03 and the other strains, there was a trend with each chemokine toward NY03 inducing less expression then RacL11 but more then Ab4. The data suggested that EHV-1 infection of PBMC induced up-regulation of inflammatory chemokines CCL5, CXCL9 and CXCL10, and down-regulation of chemotactic CCL2 and CCL3. The data also implies that different EHV-1 strains have varying effects on all five chemokines, with the nuropathogenic strain, Ab4, having the greatest suppressive potential.  相似文献   

4.
A recombinant baculovirus (Bac-EgB) containing the complete open reading frame of equine herpesvirus 1 glycoprotein B (EHV-1 gB) expressed recombinant products of 107-133 kDa, 58-75 kDa and 53-57 kDa, corresponding to EHV-1 gB precursor, large and small subunits respectively. High molecular mass products (>200 kDa) in the Bac-EgB infected insect cells were consistent with oligomerisation of the recombinant EHV-1 gB products, and analysis with tunicamycin and endoglycosidases indicated that the baculovirus-expressed gB contained N-linked sugars with high mannose and hybrid chains. N-terminal amino acid sequence analysis of the gB forms revealed identical signal and endoproteolytic cleavage sites to those of gB in EHV-1 infected mammalian cells, and authenticity of processing and transport was supported by the presence of EHV-1 gB antigen at the surface of infected insect cells. Immunogold labelling and electron microscopy of recombinant baculovirus particles indicated that the recombinant gB was also present in baculovirus envelopes. Bac-EgB infected insect cells were able to induce low levels of complement dependent virus neutralising antibody, and have been shown to evoke protective immune responses in murine models of respiratory disease and abortion.  相似文献   

5.
The genome of equine herpesvirus type 1 (EHV‐1) strain RacL11, a highly virulent isolate obtained from an aborted foal, and that of the modified live vaccine strain KyA, were cloned as bacterial artificial chromosomes (BAC) in Escherichia coli. Mini F plasmid sequences were inserted into the viral genomes by homologous recombination instead of the gene 71 (EUS4) open reading frame after co‐transfection of viral DNA and recombinant plasmid pΔ71‐pHA2 into RK13 cells. After isolation of recombinant viruses by three rounds of plaque purification, viral DNA was isolated from RK13 cells infected with RacL11 or KyA virus mutants expressing the green fluorescent protein (GFP), and electroporated into Escherichia coli DH10B cells. Several bacterial colonies were shown to contain high‐molecular weight BAC DNA with a restriction enzyme fragment pattern indicative of the presence of full‐length RacL11 or KyA genomes. Two selected BAC clones were analysed by restriction enzyme analysis and Southern blotting, and were eventually termed pRacL11 and pKyA, respectively. Upon transfection of pRacL11 or pKyA DNA into RK13 cells, GFP‐expressing fluorescing virus plaques could be identified from day 1 after transfection. Infectivity after transfection of pRacL11 or pKyA could be readily propagated on RK13 or equine cells, indicating that infectious full‐length DNA clones of strains RacL11 and KyA were successfully cloned in Escherichia coli as BACs. The glycoprotein 2‐negative progeny reconstituted from pRacL11 and pKyA (L11Δgp2 and KyAΔgp2) exhibited different growth properties. Whereas both L11Δgp2 and KyAΔgp2 extracellular titres were reduced by 15‐ to 32‐fold, plaque diameters were only markedly (50%) reduced in the case of KyAΔgp2.  相似文献   

6.
In this study, experimental canarypox virus (ALVAC) and plasmid DNA recombinant vaccines expressing the gB, gC and gD glycoproteins of EHV-1 were assessed for their ability to protect conventional ponies against a respiratory challenge with EHV-1. In addition, potential means of enhancing serological responses in horses to ALVAC and DNA vaccination were explored. These included co-administration of the antigen with conventional adjuvants, complexation with DMRIE-DOPE and co-expression of the antigen along with equine GM-CSF. Groups of EHV primed ponies were vaccinated twice intra-muscularly with one dose of the appropriate test vaccine at an interval of 5 weeks. Two to 3 weeks after the second vaccination, ponies were infected intra-nasally with the virulent Ab4 strain of EHV-1 after which they were observed clinically and sampled for virological investigations. The results demonstrated that DNA and ALVAC vaccination markedly reduced virus excretion after challenge in terms of duration and magnitude, but failed to protect against cell-associated viremia. Noteworthy was the almost complete absence of virus excretion in the group of ponies vaccinated with ALVAC-EHV in the presence of Carbopol adjuvant or DNA plasmid formulated with aluminium phosphate. The administration of the DNA vaccine in the presence of GM-CSF and formulated in DMRIE-DOPE and of the ALVAC vaccine in the presence of Carbopol adjuvant significantly improved virus neutralising antibody responses to EHV-1. These findings indicate that DNA and ALVAC vaccination is a promising approach for the immunological control of EHV-1 infection, but that more research is needed to identify the immunodominant protective antigens of EHV-1 and their interaction with the equine immune system.  相似文献   

7.
The relationship of passage-induced mutant genes 1 and 71 of an attenuated equine herpesvirus 1 (EHV-1) with virulence was analysed by constructing nine recombinant EHV-1 viruses by homologous recombination. Gene 1 or/and gene 71 of a virulent EHV-1 strain, HH1, was replaced by a mutant gene 1 or/and 71 of an attenuated HH1 strain, BK343, respectively. The beta-galactosidase gene of Escherichia coli was inserted within the gene 1 or 71 coding sequence of HH1 to inactivate the genes. Virus replications of these recombinant viruses in cell cultures were similar, but release of the gene 71-inactivated virus from infected cells was delayed compared to that of the other viruses. Plaque sizes of the recombinant viruses were similar to those of HH1, but those of BK343 were significantly smaller, indicating an effect of some unknown factor(s) on viral cell-to-cell spread. The growth abilities of the recombinant viruses with a mutant gene 1 or/and 71 in lungs of mice were similar to those of HH1, but those of gene 71-inactivated viruses were reduced to the level of BK343 and the titers were about 100-times lower than those of the other recombinant viruses. These results indicate that the mutant genes 1 and 71 of BK343 might not confer an attenuated nature to EHV-1.  相似文献   

8.
9.
Even though Newcastle disease virus (NDV) live vaccine strains can be applied to 1-day-old chickens, they are pathogenic to chicken embryos when given in ovo 3 days before hatch. Based on the reverse genetics system, we modified recombinant NDV (rNDV) established from lentogenic vaccine strain Clone 30 by introducing specific mutations within the fusion (F) and hemagglutinin-neuraminidase (HN) proteins, which have recently been suggested as being responsible for attenuation of selected vaccine variants (Mast et al. Vaccine 24:1756-1765, 2006) resulting in rNDV49. Another recombinant (rNDVGu) was generated to correct sequence differences between rNDV and vaccine strain NDV Clone 30. Recombinant viruses rNDV, rNDV49, and rNDVGu have reduced virulence compared with NDV Clone 30, represented by lower intracerebral pathogenicity indices and elevated mean death time. After in ovo inoculation, hatchability was comparable for all infected groups. However, only one chicken from the NDV Clone 30 group survived a 21-day observation period; whereas, the survival rate of hatched chicks from groups receiving recombinant NDV was between 40% and 80%, with rNDVGu being the most pathogenic virus. Furthermore, recombinant viruses induced protection against challenge infection with virulent NDV 21 days post hatch. Differences in antibody response of recombinant viruses indicate that immunogenicity is correlated to virulence. In summary, our data show that point mutations can reduce virulence of NDV. However, alteration of specific amino acids in F and HN proteins of rNDV did not lead to further attenuation as indicated by their pathogenicity for chicken after in ovo inoculation.  相似文献   

10.
Equine herpesvirus-1 (EHV-1) infection is common in young horses throughout the world, resulting in respiratory disease, epidemic abortion, sporadic myelitis, or latent infections. To improve on conventional diagnostic tests for EHV-1, a real-time polymerase chain reaction (PCR) technique was developed, using primers and probes specific for the EHV-1 gB gene. Amplification efficiencies of 100% +/- 5% were obtained for DNA isolated from a plasmid, infected peripheral blood mononuclear cells (PBMCs), and nasal secretions from infected ponies. The dynamic range of the assay was 8 log10 dilutions, and the lower limit of detection was 6 DNA copies. Fifteen ponies, seronegative for EHV-1, were experimentally infected with EHV-1, and nasal samples were used to quantify shedding of virus by both virus isolation and real-time PCR analysis. Virus isolation identified nasal shedding of EHV-1 in 12/15 ponies on a total of 25 days; real-time PCR detected viral shedding in 15/15 ponies on 75 days. Viremia was quantified using PBMC DNA, subsequent to challenge infection in 3 additional ponies. Viremia was identified in 1/3 ponies on a single day by virus isolation; real-time PCR detected viremia in 3/3 ponies on 17 days. When real-time PCR was used to analyze PBMC DNA from 11 latently infected ponies (documented by nested PCR), EHV-1 was not detected. We conclude that real-time PCR is a sensitive and quantitative test for EHV-1 nasal shedding and viremia and provides a valuable tool for EHV-1 surveillance, diagnosis of clinical disease, and investigation of vaccine efficacy.  相似文献   

11.
It has been recommended that modern equine influenza vaccines should contain an A/equi-1 strain and A/equi-2 strains of the American and European-like subtype. We describe here the efficacy of a modern updated inactivated equine influenza-herpesvirus combination vaccine against challenge with a recent American-like isolate of equine influenza (A/equine-2/Kentucky/95 (H3N8). The vaccine contains inactivated Influenza strains A-equine-1/Prague'56, A-equine-2/Newmarket-1/'93 (American lineage) and A-equine-2/ Newmarket-2/93 (Eurasian lineage) and inactivated EHV-1 strain RacH and EHV-4 strain V2252. It is adjuvanted with alhydrogel and an immunostim. Horses were vaccinated at the start of the study and 4 weeks later. Four, six and eight weeks after the first vaccination high anti-influenza antibody titres were found in vaccinated horses, whereas at the start of the study all horses were seronegative. After the challenge, carried out at 8 weeks after the first vaccination, nasal swabs were taken, rectal temperatures were measured and clinical signs were monitored for 14 days. In contrast to unvaccinated control horses, vaccinated animals shed hardly any virus after challenge, and the appearance of clinical signs of influenza such as nasal discharge, coughing and fever were reduced in the vaccinated animals. Based on these observations, it was concluded that the vaccine protected against clinical signs of influenza and, more importantly, against virus excretion induced by an American-like challenge virus strain. In a second experiment the duration of the immunity induced by this vaccine was assessed serologically. Horses were vaccinated at the start of the study and 6 and 32 weeks later. Anti-influenza antibody titres were determined in bloodsamples taken at the first vaccination, and 2, 6, 8, 14, 19, 28, 32, 37, 41, 45 and 58 weeks after the first vaccination. Vaccinated horses had high anti-influenza antibody titres, above the level for clinical protection against influenza, against all strains present in the vaccine until 26 weeks after the third vaccination.  相似文献   

12.
伪狂犬病病毒(Pseudorabies virus,PRV)变异株(JS-2012株)在Vero细胞上40℃传代培养120代后,获得了1株弱毒株(JS-2012-F120株)。该毒株UL46基因3'端有29个碱基插入,导致了130个氨基酸突变。为了研究UL46基因移码突变对PRV生物学特性的影响,本研究用JS-2012-F120的ΔUL46基因替换了JS-2012的UL46基因,构建了重组病毒JS-2012-ΔUL46,并对该重组病毒、高温传代毒株(JS-2012-F120)及其亲本强毒株(JS-2012)在细胞上的生长特性和对小鼠的毒力进行了比较分析。结果显示,与亲本毒株(JS-2012)相比,传代毒株(JS-2012-F120)病毒滴度明显提高,对小鼠的毒力明显减弱;重组病毒(JS-2012-ΔUL46)在Vero细胞上的生长趋势没有明显改变,对小鼠的毒力减弱。因此,UL46基因移码突变对PRV在Vero细胞上的复制没有明显影响,但减弱了PRV对小鼠的毒力。  相似文献   

13.
The objective of this study was to detect and characterize latent equine herpes virus (EHV)-1 and -4 from the submandibular (SMLN) and bronchial lymph (BLN) nodes, as well as from the trigeminal ganglia (TG) of 70 racing Thoroughbred horses submitted for necropsy following sustaining serious musculoskeletal injuries while racing. A combination of nucleic acid precipitation and pre-amplification steps was used to increase analytical sensitivity. Tissues were deemed positive for latent EHV-1 and/or -4 infection when found PCR positive for the corresponding glycoprotein B (gB) gene in the absence of detectable late structural protein gene (gB gene) mRNA. The EHV-1 genotype was also determined using a discriminatory real-time PCR assay targeting the DNA polymerase gene (ORF 30). Eighteen (25.7%) and 58 (82.8%) horses were PCR positive for the gB gene of EHV-1 and -4, respectively, in at least one of the three tissues sampled. Twelve horses were dually infected with EHV-1 and -4, two carried a latent neurotropic strain of EHV-1, six carried a non-neurotropic genotype of EHV-1 and 10 were dually infected with neurotropic and non-neurotropic EHV-1. The distribution of latent EHV-1 and -4 infection varied in the samples, with the TG found to be most commonly infected. Overall, non-neurotropic strains were more frequently detected than neurotropic strains, supporting the general consensus that non-neurotropic strains are more prevalent in horse populations, and hence the uncommon occurrence of equine herpes myeloencephalopathy.  相似文献   

14.
Equid herpes virus 1 (EHV-1) related isolates from a captive blackbuck (strain Ro-1) and Grevy's zebra (strain T965) behaved similarly to EHV-1 and EHV-9 in respect to their host cell range. Restriction enzyme analysis and a phylogenetic tree confirmed that Ro-1 and T965 were identical and more closely related to EHV-1 than to EHV-9. Differences from EHV-1 became obvious firstly, by amino acid alignments revealing two unique substitutions in the gB protein of Ro-1 and T965. Secondly, an EHV-1 type-specific monoclonal antibody did not detect its antigen on Ro-1, T965 or EHV-9 infected cells by immunohistochemistry. The results support the view that Ro-1 and T965 isolates represent a distinct, previously unrecognized species of equid herpesviruses.  相似文献   

15.
16.
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.  相似文献   

17.
为建立马疱疹病毒Ⅰ型(EHV-1)的检测方法,本研究以EHV-1 gB基因的一段保守区域(1207 bp~1509 bp)作为检测的目的片段设计引物,通过对其反应条件的优化,建立了特异性检测EHV-1的SYBR Green I 荧光定量PCR方法.实验结果表明:该方法检测目的基因的灵敏度下限为10拷贝/μL,比常规PCR方法高100倍;与马疱疹病毒4型(EHV-4)及其他马传染病病原体无交叉反应;组内及组间的变异系数均小于2%.该方法检测速度快及高敏感性的特点为马鼻肺炎的防制提供了有力保障,同时也为进一步开展马鼻肺炎相关的研究提供了有效的辅助检测方法技术.  相似文献   

18.
The glycoprotein gB of pseudorabies virus (PrV) was expressed in various mammalian cells by a recombinant baculovirus carrying the PrV gB gene under the control of the CAG promoter. When the recombinant baculovirus was inoculated into the stable porcine kidney cell line CPK, expression of PrV gB was detected by immunofluorescent antibody analysis and a 155 kDa of protein, which has the same molecular mass as the native PrV gB, was detected by Western blotting. High levels of expression of PrV gB were observed in BHK-21, HmLu-1 and SK-H cell lines. Furthermore, anti-PrV gB-specific antibodies against PrV gB protein were detected by the enzyme-linked immunosorbent assay in mice inoculated the recombinant baculovirus. The recombinant baculovirus containing the PrV glycoprotein gB gene under the CAG promoter could be a candidate for a pseudorabies vaccine.  相似文献   

19.
将克隆到pUC119中的传染性喉气管炎病毒(ILTV)糖蛋白gB基因,通过EcoRI位点克隆至杆状态病毒转移载体pVL1393中,构建成重组杆状病毒转移载体rpVLgB,将rpVLgB转移载体质粒与杆状态病毒DNA(Bac-N-Blue DNA)共转染Sf9昆虫细胞,经3轮蚀斑纯化,获得重组病毒并命名为rpVL-ILTVgB。PCR方法鉴定证明gB基因正确插入到杆状病毒基因组中,直接免疫荧光试验和Dot-ELISA结果均表明gB基因在重组杆状病毒感染的Sf9昆虫细胞保获得表达,表达的gB蛋白将作为鸡传染性喉气管炎的亚单位疫苗和诊断抗原。  相似文献   

20.
本研究根据伪狂犬病病毒(PrV)共有gB和疫苗株缺失的gE基因序列分别设计合成1对通用(PB1/PB2)和1对鉴别引物(PE1/PE2),以在我国广泛使用的疫苗株Bartha-K61及从国内外收集的野毒株S、SU、F、L、Y、Min-A、Shope、S(川)、SL1、10#、EA(鄂A)DNA为模板在同一反应管中同时扩增gB和gE基因序列建立了复合多聚酶链反应(PCR)方法。PCR产物经2.0%琼  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号