首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Various protocols using different doses of recombinant human thyrotropin (rhTSH) in TSH stimulation testing have been described. However, the influence of TSH dosage on thyroxine (T4) concentration has not yet been evaluated in suspected hypothyroid dogs.
Objective: To evaluate the effectiveness of 2 doses of rhTSH.
Animals: Fifteen dogs with clinical signs consistent with hypothyroidism and abnormal stimulation results with 75 μg rhTSH and 18 clinically healthy dogs.
Methods: All dogs were stimulated with 75 and 150 μg rhTSH IV in a 1st and 2nd stimulation test, respectively. Blood samples were taken before and 6 hours after rhTSH administration for determination of total T4 concentration.
Results: Using the higher dose led to a normal test interpretation in 9 of the 15 dogs, in which stimulation had been abnormal using the lower dose. Based on follow-up information, hypothyroidism was excluded in 7 of these 9 dogs. In all 6 dogs with a blunted response to the higher dose, hypothyroidism could be confirmed. Healthy dogs showed significantly higher post-TSH T4 concentrations with the higher compared with the lower dose. Post-TSH T4 concentrations after TSH stimulation were not related to dogs' body weight in either healthy or diseased dogs.
Conclusions and Clinical Relevance: TSH dose significantly influenced test interpretation in suspected hypothyroid dogs. Differentiation between primary hypothyroidism and nonthyroidal disease was improved with 150 μg rhTSH. Because this effect was independent of the dogs' body weight, the higher dose is recommended in dogs that have concurrent disease or are receiving medication.  相似文献   

2.
Canine thyroid-stimulating hormone (cTSH), total thyroxine (T4) and free T4 by equilibrium dialysis (fT4d) were measured in serum samples from 107 dogs with clinical signs suggestive of hypothyroidism in which the diagnosis was either confirmed (n = 30) or excluded (n = 77) by exogenous TSH response testing. Median serum total T4 and fT4d concentrations were significantly lower and cTSH significantly higher (P < 0.001) in hypothyroid compared with euthyroid dogs. Differential positive rate analysis determined optimal cut-off values of less than 14.9 nmol/litre (total T4), less than 5.42 pmol/litre (fT4d), greater than 0.68 ng/ml (cTSH), less than 17.3 (T4 to cTSH ratio), and less than 7.5 (fT4d to cTSH ratio) for hypothyroidism. These had a sensitivity and specificity of 100 and 75.3 per cent, 80 and 93.5 per cent, 86.7 and 81.8 per cent, 86.7 and 92.2 per cent, and 80 and 97.4 per cent, respectively, for diagnosing hypothyroidism. Corresponding areas under the receiver operating characteristic curves were 0.92, 0.93, 0.87, 0.93 and 0.93. Unexpectedly low cTSH values in hypothyroid dogs may have resulted from concurrent non-thyroidal illness. Unexpectedly high serum cTSH values in the euthyroid dogs might have resulted from recovery from illness or concurrent potentiated sulphonamide therapy. Measurement of endogenous cTSH concentration is a valuable diagnostic tool for canine hypothyroidism if used in association with assessment of T4. Estimation of fT4d added only limited additional information over total T4 measurement.  相似文献   

3.
The purpose of this study was to determine the usefulness of free thyroxine (FT4) measured by chemiluminescence in evaluating thyroid function in dogs. Total thyroxine (TT4) concentration measured by radioimmunoassay (RIA) and FT4 measured by chemiluminescence were evaluated in 30 healthy dogs, 60 euthyroid dogs with concurrent dermatopathies, and 30 hypothyroid dogs before and after intravenous stimulation with 1 or 2 IU of thyrotropin (TSH). Median basal TT4 and median TT4 concentrations at 4 h post-TSH administration were not significantly different (P < 0.0001) between healthy dogs and euthyroid dogs with dermatopathies, but were significantly higher than those in hypothyroid dogs. In healthy dogs, the median TT4 concentrations at 4 and 6 h post-TSH administration were not significantly different. Median basal FT4 and median FT4 concentrations at 4 h post-TSH administration in healthy dogs were significantly lower (P < 0.0001) than those in euthyroid dogs with dermatopathies, but significantly higher than the same parameters in hypothyroid dogs. There was a significant difference between the median FT4 concentrations at 4 h post-TSH administration and median basal FT4 concentrations for healthy dogs and euthyroid dogs with dermatopathies, but not for hypothyroid dogs. Lastly, in healthy dogs, median FT4 concentrations at 4 and 6 h post-TSH administration were not significantly different. Free thyroxine measured by chemiluminescence was highly correlated (P < 0.0001; Spearman r = 0.91) with FT4 measured by the reference method for free hormone analysis, namely, equilibrium dialysis, when sera from 56 dogs were used.  相似文献   

4.
Canine thyroid-stimulating hormone (cTSH) was measured in a variety of clinical cases (n= 72). The cases were classified as euthyroid, sick euthyroid, hypothyroid or hypothyroid on non-thyroidal therapy on the basis of their history, clinical signs, laboratory results (including total thyroxine concentrations and, where indicated, thyroid-releasing hormone [TRH] stimulation tests) and response to appropriate therapy. Additional samples were taken during some of the TRH stimulation tests to measure the response of cTSH concentrations following TRH administration. A reference range (0 to 0–41 ng/ml) was calculated from the basal concentrations of cTSH in a group of 41 euthyroid dogs. Six of nine cases of confirmed hypothyroidism had basal cTSH concentrations above the reference range, whereas the remainder were within the normal range. One of these three remaining cases was a pituitary dwarf and did not show a rise in cTSH concentration following TRH stimulation. In contrast, only one of a group of six hypothyroid dogs that had been on non-thyroidal treatment within the previous four weeks had increased concentrations of basal cTSH. This study also found that five of a group of 16 dogs with sick euthyroid syndrome had increased cTSH concentrations. It was concluded that cTSH measurements are a useful additional diagnostic test in cases of suspected hypothyroidism in dogs but that dynamic testing is still required to confirm the diagnosis of hypothyroidism.  相似文献   

5.
To determine whether measurement of canine thyrotropin (cTSH) would aid in the diagnosis of hypothyroidism, serum samples of 65 dogs with clinical signs suggestive of hypothyroidism were evaluated. Diagnosis was confirmed in 26 dogs and excluded in 39 dogs based on TSH-stimulation testing. Total thyroxine (T4) was significantly lower and cTSH significantly higher in hypothyroid dogs compared to euthyroid dogs. Canine TSH was above (> 0.6 ng/ml) in 15 (57.7%) and below the upper limit of the reference range in 11 (42.3%) of the hypothyroid dogs. All of the euthyroid dogs had a cTSH < 0.6 ng/ml. In all dogs with a cTSH above the upper limit of the reference range hypothyroidism could be confirmed. Therefore, our results show that measurement of cTSH has an excellent specificity (100%) and is a valuable tool in confirming canine hypothyroidism. However, due to the low sensitivity of cTSH assays (60%), it can not be recommended to exclude the disease.  相似文献   

6.
Thyroid function was assessed in euthyroid dogs (n = 20), dogs suffering from canine recurrent flank alopecia (CRFA, n = 18), and hypothyroid dogs (n = 21). Blood samples obtained from all dogs in each group were assayed for total thyroxine (TT4), thyrotropin (TSH), and thyroglobulin autoantibody (TgAA) serum concentrations. Total T4 and TSH serum concentrations were significantly decreased and increased, respectively, in the hypothyroid group compared with the other 2 groups. No significant differences in TT4 and TSH serum values were found between the euthyroid and CRFA groups. Thyroglobulin autoantibodies were detected in 10, 11.1, and 61.9% of euthyroid dogs, dogs with CRFA, and hypothyroid dogs, respectively. In conclusion, dogs suffering from CRFA have a normal thyroid function, and the determination of TT4 and TSH serum concentrations allows differentiation of these dogs from dogs with hypothyroidism, in most cases. Occasionally, the 2 diseases can be concomitant.  相似文献   

7.
Fifty-eight dogs with generalized dermatologic disease that had not been given glucocorticoids systemically or topically within 6 weeks of entering the study were evaluated for thyroid function by use of the thyrotropin-response test. Dogs were classified as euthyroid or hypothyroid on the basis of test results and response to thyroid hormone replacement therapy. Baseline serum thyroxine (T4), free T4 (fT4), and triiodothyronine (T3) concentrations were evaluated in the 58 dogs. Serum T4, fT4, and T3 concentrations were evaluated in 200 healthy dogs to establish normal values. Hormone concentrations were considered low if they were less than the mean -2 SD of the values for control dogs. Specificity of T4 and fT4 concentrations was 100% in predicting hypothyroidism; none of the euthyroid dogs with generalized skin disease had baseline serum T4 or fT4 concentration in the low range. Sensitivity was better for fT4 (89%) than for T4 (44%) concentration. Significant difference was not observed in serum T4 and fT4 concentrations between euthyroid dogs with generalized skin disease and healthy control dogs without skin disease. Serum T3 concentration was not accurate in predicting thyroid function; most of the euthyroid and hypothyroid dogs with skin disease had serum T3 concentration within the normal range.  相似文献   

8.
OBJECTIVE: To evaluate whether use of recombinant human (rh) thyroid-stimulating hormone (TSH) induces equivalent stimulation, compared with bovine TSH (bTSH), and to evaluate activity of rhTSH in dogs of various large breeds. ANIMALS: 18 healthy research Beagles and 20 healthy client-owned dogs of various breeds with body weight > 20 kg. PROCEDURES: The 18 Beagles were randomly assigned to 3 groups, and each dog received either 75 microg of rhTSH, IM or IV, or 1 unit of bTSH, IM, respectively, in a crossover design. The 20 client-owned dogs received 75 microg of rhTSH, IV. Blood samples were taken before and 6 hours after TSH administration for determination of total serum thyroxine (T(4)) concentration. Additional blood samples were taken after 2 and 4 hours in Beagles that received rhTSH, IM. RESULTS: There was a significant increase in T(4) concentration in all dogs, but there were no differences between values obtained after administration of bTSH versus rhTSH or IV versus IM administration of rhTSH. Although there was a significant difference in age and body weight between Beagles and non-Beagles, there was no difference in post-TSH simulation T(4) concentration between the 2 groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated an equivalent biological activity of rhTSH, compared with bTSH. Use of 75 microg of rhTSH, IV, did not induce a different magnitude of stimulation in large-breed dogs, compared with Beagles. Euthyroidism was confirmed if post-TSH simulation T(4) concentration was > or = 2.5 microg/dL and at least 1.5 times basal T(4) concentration.  相似文献   

9.
OBJECTIVE: To evaluate thyroid function in healthy Greyhounds, compared with healthy non-Greyhound pet dogs, and to establish appropriate reference range values for Greyhounds. ANIMALS: 98 clinically normal Greyhounds and 19 clinically normal non-Greyhounds. PROCEDURES: Greyhounds were in 2 groups as follows: those receiving testosterone for estrus suppression (T-group Greyhounds) and those not receiving estrus suppressive medication (NT-group Greyhounds). Serum thyroxine (T4) and free thyroxine (fT4) concentrations were determined before and after administration of thyroid-stimulating hormone (TSH) and thyroid-releasing hormone (TRH). Basal serum canine thyroid stimulating hormone (cTSH) concentrations were determined on available stored sera. RESULTS: Basal serum T4 and fT4 concentrations were significantly lower in Greyhounds than in non-Greyhounds. Serum T4 concentrations after TSH and TRH administration were significantly lower in Greyhounds than in non-Greyhounds. Serum fT4 concentrations after TSH and TRH administration were significantly lower in NT-group than T-group Greyhounds and non-Greyhounds. Mean cTSH concentrations were not different between Greyhounds and non-Greyhounds. CONCLUSIONS AND CLINICAL RELEVANCE: Previously established canine reference range values for basal serum T4 and fT4 may not be appropriate for use in Greyhounds. Greyhound-specific reference range values for basal serum T4 and fT4 concentrations should be applied when evaluating thyroid function in Greyhounds. Basal cTSH concentrations in Greyhounds are similar to non-Greyhound pet dogs.  相似文献   

10.
OBJECTIVE: To evaluate effects of trimethoprim-sulfamethoxazole (T/SMX) on thyroid function in dogs. ANIMALS: 6 healthy euthyroid dogs. PROCEDURE: Dogs were administered T/SMX (14.1 to 16 mg/kg, PO, q 12 h) for 3 weeks. Blood was collected weekly for 6 weeks for determination of total thyroxine (TT4), free thyroxine (fT4), and canine thyroid-stimulating hormone (cTSH) concentrations. Schirmer tear tests were performed weekly. Blood was collected for CBC prior to antimicrobial treatment and at 3 and 6 weeks. RESULTS: 5 dogs had serum TT4 concentrations equal to or less than the lower reference limit, and 4 dogs had serum fT4 less than the lower reference limit after 3 weeks of T/SMX administration; cTSH concentrations were greater than the upper reference limit in 4 dogs. All dogs had TT4 and fT4 concentrations greater than the lower reference limit after T/SMX administration was discontinued for 1 week, and cTSH concentrations were less than reference range after T/SMX administration was discontinued for 2 weeks. Two dogs developed decreased tear production, which returned to normal after discontinuing administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of T/SMX at a dosage of 14.1 to 16 mg/kg, PO, every 12 hours for 3 weeks caused decreased TT4 and fT4 concentrations and increased cTSH concentration, conditions that would be compatible with a diagnosis of hypothyroidism. Therefore, dogs should not have thyroid function evaluated while receiving this dosage of T/SMX for >2 weeks. These results are in contrast to those of a previous study of trimethoprim-sulfadiazine.  相似文献   

11.

Background

Thyrotropin (TSH) can be increased in humans with primary hypoadrenocorticism (HA) before glucocorticoid treatment. Increase in TSH is a typical finding of primary hypothyroidism and both diseases can occur concurrently (Schmidt's syndrome); therefore, care must be taken in assessing thyroid function in untreated human patients with HA.

Objective

Evaluate whether alterations in cTSH can be observed in dogs with HA in absence of primary hypothyroidism.

Animals

Thirty dogs with newly diagnosed HA, and 30 dogs in which HA was suspected but excluded based on a normal ACTH stimulation test (controls) were prospectively enrolled.

Methods

cTSH and T4 concentrations were determined in all dogs and at selected time points during treatment (prednisolone, fludrocortisone, or DOCP) in dogs with HA.

Results

cTSH concentrations ranged from 0.01 to 2.6 ng/mL (median 0.29) and were increased in 11/30 dogs with HA; values in controls were all within the reference interval (range: 0.01–0.2 ng/dL; median 0.06). There was no difference in T4 between dogs with increased cTSH (T4 range 1.0‐2.1; median 1.3 μg/dL) compared to those with normal cTSH (T4 range 0.5‐3.4, median 1.4 μg/dL; P=0.69) and controls (T4 range 0.3‐3.8, median 1.8 μg/dL; P=0.35). After starting treatment, cTSH normalized after 2–4 weeks in 9 dogs and after 3 and 4 months in 2 without thyroxine supplementation.

Conclusions and Clinical Relevance

Evaluation of thyroid function in untreated dogs with HA can lead to misdiagnosis of hypothyroidism; treatment with glucocorticoids for up to 4 months can be necessary to normalize cTSH.  相似文献   

12.
Bovine thyrotropin (bTSH) stimulation testing has long been considered the gold standard for diagnosis of canine hypothyroidism. Unfortunately, bTSH is no longer commercially available. Recently, the use of recombinant human thyrotropin (rhTSH) to perform thyroid-stimulating hormone (TSH) stimulation testing in dogs was described. The cost of an rhTSH vial (1.1 mg) limits the practical use of this product. The study reported here was performed to determine the effects of storing rhTSH on the post-TSH increase of serum total (TT4) and free (FT4) thyroxine concentrations during TSH stimulation testing in 12 euthyroid Beagles in a crossover trial. Three TSH tests with recombinant human thyrotropin (rhTSH; 91.5 microg IV) were performed on each dog during 3 different periods: 1 with freshly reconstituted rhTSH (fresh); 1 with rhTSH, reconstituted and stored at 4 degrees C for 4 weeks (refrigerated); and 1 with rhTSH, reconstituted and frozen at -20 degrees C for 8 weeks (frozen). Blood samples for determination of TT4 and FT4 concentrations were collected before and 4 and 6 hours after rhTSH administration. There was no significant difference in TT4 or FT4 concentration after stimulation with fresh, refrigerated, and frozen rhTSH. Furthermore, there was no significant difference between TT4 or FT4 serum concentration observed 4 and 6 hours after rhTSH administration. In conclusion, reconstituted rhTSH can be stored at 4 degrees C for 4 weeks and at -20 degrees C for 8 weeks without loss of biological activity, allowing clinicians to perform more TSH response tests per vial.  相似文献   

13.
During the years of 1996-2001, hypothyroidism was diagnosed at the clinic for small animal internal medicine, University of Zurich, in 32 dogs. Most of the dogs were large breeds. The most frequent clinical characteristics observed were exercise intolerance, obesity, dermatological, neurological and gastrointestinal signs. Predominant laboratory abnormalities were a low red blood cell count, increased concentration of cholesterol, triglycerides and fructosamin. 29 dogs had a T4 below the reference range (< 1.5 micrograms/dl), one dog had a T4 at the lower limit thereof (1.6 micrograms/dl). One dog had a T4 within the reference range (3.4 micrograms/dl), another had a very high T4 of 206.8 micrograms/dl; the results of the latter 2 dogs were interpreted as incorrectly increased T4 values due to in vitro interference with T4-autoantibodies. Diagnosis was confirmed in all of the dogs based on TSH-stimulation testing. Endogenous TSH (cTSH) measured parallelly, was elevated in only 60% of the dogs. In about 67% of the dogs, hypothyroidism was associated with thyroglobulin-autoantibodies. Canine hypothyroidism is a rather rare endocrine disorder in Switzerland. The TSH-stimulation test remains the gold standard in confirming the disease; a definitive diagnosis can be challenging for practitioners because bovine TSH, used for the TSH-stimulation test is not licensed for use in dogs. Since assessment of cTSH using current assays shows normal values in a high percentage of hypothyroid dogs, the diagnostic value is only limited. In most of the hypothyroid dogs T4 is decreased, with the presence of autoantibodies to T4, it can be normal or increased.  相似文献   

14.
The stability of reconstituted, refrigerated thyrotropin was evaluated. Thyrotropin (TSH) was reconstituted at the start of the study and stored at 4 degrees C. A TSH stimulation test was performed in eight healthy, euthyroid dogs at weekly intervals for 1 month. In seven of eight dogs, there was no significant difference (P less than 0.05) between the post-TSH T3 concentrations and the post-TSH T4 concentrations for the duration of the study. For one dog, the post-TSH T4 concentration was below the normal post-TSH T4 range following the administration of reconstituted TSH that had been stored 4 weeks. The T3 response to the TSH, however, was normal. This dog responded normally to freshly reconstituted TSH. The results of this study suggest that reconstituted bovine TSH can be stored at 4 degrees C for at least 3 weeks without loss of biologic activity in the dog.  相似文献   

15.
Recombinant human thyroid-stimulating hormone (rhTSH) was evaluated for the diagnosis of canine hypothyroidism, using TSH response tests. Phase I stimulation tests were performed in 6 healthy dogs weighing over 20 kg, using 50 and then 100 microg of freshly reconstituted rhTSH administered intravenously. In phase II, the same dogs were stimulated by using 100 microg of rhTSH frozen for 3 months at -20 degrees C. Phase III stimulation tests were performed by using 50 or 100 microg of freshly reconstituted or frozen rhTSH in healthy (n = 14), euthyroid sick (n = 11) and hypothyroid dogs (n = 9). A dose of 100 microg of rhTSH was judged more appropriate for dogs weighing more than 20 kg. Biological activity of rhTSH after freezing at -20 degrees C for up to 12 weeks was maintained. When stimulated, significant (P < 0.05) increases in total thyroxine concentration were observed only in healthy and euthyroid sick dogs. Results of this study show that the rhTSH stimulation test is able to differentiate euthyroidism from hypothyroidism in dogs.  相似文献   

16.
OBJECTIVE: To determine whether nonthyroidal disease of various causes and severity is associated with abnormalities in baseline serum concentrations of total thyroxine (T4), triiodothyronine (T3), free T4, or thyrotropin (thyroid-stimulating hormone [TSH]) in dogs believed to be euthyroid. DESIGN: Case-control study. ANIMALS: 223 dogs with confirmed nonthyroidal diseases and presumptive normal thyroid function, and 150 clinically normal dogs. PROCEDURE: Serum total T4, total T3, free T4, and TSH concentrations were measured in dogs with confirmed nonthyroidal disease. Reference ranges for hormone concentrations were established on the basis of results from 150 clinically normal dogs. RESULTS: In dogs with nonthyroidal disease, median serum concentrations of total T4, total T3, and free T4 were significantly lower than those in clinically normal dogs. Median serum TSH concentration in sick dogs was significantly greater than that of clinically normal dogs. When stratified by severity of disease (ie, mild, moderate, and severe), dogs with severe disease had low serum concentrations of total T4, total T3, or free T4 more commonly than did dogs with mild disease. In contrast, serum TSH concentrations were more likely to remain within the reference range regardless of severity of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that serum total T4, free T4, and total T3 concentrations may be low (ie, in the hypothyroid range) in dogs with moderate to severe nonthyroidal disease. Serum TSH concentrations are more likely to remain within the reference range in sick dogs.  相似文献   

17.
In as many as one third of dogs with primary hypothyroidism a plasma thyrotropin (TSH) concentration within the reference range for euthyroid dogs is found. To determine whether this is due to fluctuations in the release of TSH, the plasma profiles of TSH were analyzed in 7 beagle bitches by collecting blood samples every 10 min for 6 hr, both before and after induction of primary hypothyroidism. After induction of primary hypothyroidism, a 37-fold increase in mean basal plasma TSH concentration and a 34-fold increase in mean area under the curve for TSH were found. Analysis by the Pulsar program demonstrated pulsatile secretion of TSH in the hypothyroid state, characterized by relatively low amplitude pulses (mean [+/-SEM]) amplitude 41 +/- 3% of basal plasma TSH level) and a mean pulse frequency of 2.0 +/- 0.5 pulses/6 hr. In the euthyroid state, significant TSH pulses were identified in only 2 dogs. The mean basal plasma TSH level correlated positively (r = 0.84) with the mean amplitude of the TSH pulses, and correlated negatively (r = -0.88) with the TSH pulse frequency. The results of this study demonstrate pulsatile secretion of TSH in dogs during hypothyroidism and only small fluctuations in plasma TSH concentrations during euthyroidism. The findings also suggest that the low TSH values occasionally found in dogs with spontaneous primary hypothyroidism may in some cases in part be the result of ultradian fluctuations.  相似文献   

18.
Autoantibodies against thyroxin (T4AA) and triiodothyronine (T3AA) are present in dogs with autoimmune thyroiditis and have been reported to interfere with immunoassays. The objectives of this study were to determine the frequency of autoantibodies and to determine whether interference occurs by T4AA, using a non-immunological method (high performance liquid chromatography, HPLC) for thyroxin (T4) measurement. Based on clinical symptoms, T4 and thyroid stimulating hormone (TSH) concentration, 1,339 dogs were divided into six groups: Group 1: hypothyroid (n = 149); Group 2: subclinical thyroiditis (n = 110); Group 3: suspicious for non thyroidal illness (n = 691); Group 4: biochemical euthyroid (n = 138); Group 5: hypothyroid dogs under substitution therapy (n = 141); Group 6: healthy dogs (n = 110). The incidence of T4AA and T3AA, determined using radiometric assay, was low (0.5% and 3.8%) and higher in hypothyroid dogs compared to dogs suspicious for hypothyroidism (Group 2-4) (p<0.05). T4AA was not detected in dogs with normal T4 and elevated TSH. T4 concentrations of T4AA positive samples determined using HPLC were comparable to results obtained by chemiluminescence immunoassay. These findings indicate that the probability of interference of T4AA leading to falsely elevated T4 concentration in the T4 assay seems to be low.  相似文献   

19.
The aim of this case controlled study was to determine whether dogs with behavioral problems have evidence of abnormal thyroid function on routine screening tests for hypothyroidism. The hypothesis of the study was that thyroid function, as assessed by serum total thyroxine (TT4) and serum thyroid stimulating hormone (thyrotropin) (TSH) concentrations, is normal in most dogs with behavioral problems. Concentrations of TT4 and TSH in 39 dogs with behavior problems presenting to a veterinary behavior referral clinic (abnormal behavior group), were compared with TT4 and TSH concentrations in 39 healthy control dogs without behavior problems presenting to 5 community veterinary practices (control group). Dogs in the control group were matched for age and breed with the abnormal behavior group. Dogs with behavioral problems had higher TT4 concentrations than dogs without behavioral problems (t-test: t = 2.77, N = 39, P = 0.009), however none of the TT4 values were outside the reference range. There was no significant difference in TSH concentration between the 2 groups. Two dogs with behavior problems and 1 dog without behavior problems had results suggestive of hypothyroidism. All other dogs were considered to be euthyroid. There was no evidence to support a diagnosis of hypothyroidism in the majority of dogs with behavior problems in this study. The higher concentration of TT4 in dogs with behavior problems suggests, however, that alteration in thyroid hormone production or metabolism may occur in some dogs with behavior problems. Further studies that include additional indicators of thyroid status such as serum total triiodothyronine, serum, free thyroxine, and anti-thyroid antibody concentrations are necessary to further evaluate the significance of this finding.  相似文献   

20.
The diagnosis of canine hypothyroidism and its differentiation from euthyroid sick syndrome still is a major diagnostic challenge. In this study, ultrasonography was shown to be an effective tool for the investigation of thyroid gland diseases. Healthy control dogs (n = 87), dogs with euthyroid sick syndrome (n = 26), thyroglobulin autoantibody-positive (TgAA-positive, n = 30) hypothyroid dogs, and TgAA-negative (n = 23) hypothyroid dogs were examined by thyroid ultrasonography. Maximal cross sectional area (MCSA), thyroid volume, and echogenicity were measured. Statistical analysis identified highly significant (P < .001) differences between euthyroid and hypothyroid dogs both in thyroid volume and in MCSA, whereas no significant differences in thyroid size were detected between healthy euthyroid dogs and dogs with euthyroid sick syndrome. In euthyroid and euthyroid sick dogs, parenchymal echotexture was homogeneous and hyperechoic, whereas relative thyroid echogenicity of both TgAA-positive and TgAA-negative hypothyroid dogs was significantly lower (P < .001). When using arbitrarily chosen cutoff values for relative thyroid volume, MCSA, and echogenicity, thyroid volume especially was found to have highly specific predictive value for canine hypothyroidism. In summary, the data reveal that thyroid sonography is an effective ancillary diagnostic tool to differentiate between canine hypothyroidism and euthyroid sick syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号