首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Material structures of reduced dimensions exhibit electrical and mechanical properties different from those in the bulk. Measurements of room-temperature electronic transport in pulled metallic nanowires are presented, demonstrating that the conductance characteristics depend on the length, lateral dimensions, state and degree of disorder, and elongation mechanism of the wire. Conductance during the elongation of short wires (length l approximately 50 angstroms) exhibits periodic quantization steps with characteristic dips, correlating with the order-disorder states of layers of atoms in the wire predicted by molecular dynamics simulations. The resistance R of wires as long as l approximately 400 angstroms exhibits localization characteristics with In R(l) approximately l(2).  相似文献   

2.
Formation of catalytic metal-molecule contacts   总被引:1,自引:0,他引:1  
We describe a new strategy for the in situ growth of molecular wires predicated on the synthesis of a trifunctional "primed" contact formed from metal-carbon multiple bonds. The ruthenium-carbon pi bond provides structural stability to the molecular linkages under ambient conditions, and density functional calculations indicate the formation of an efficient conduit for charge carriers to pass between the metal and the molecule. Moreover, the metal-carbon pi bond provides a chemically reactive site from which a conjugated molecular wire can be grown in situ through an olefin metathesis reaction.  相似文献   

3.
We demonstrate electron-stimulated migration for carbon monoxide (CO) molecules adsorbed on the Pd(110) surface, which is initiated by the excitation of a high-frequency (HF) vibrational mode (C-O stretching mode) with inelastic tunneling electrons from the tip of scanning tunneling microscopy. The hopping phenomenon, however, cannot be detected for CO/Cu(110), even though the hopping barrier is lower than in the CO/Pd(110) case. A theoretical model, which is based on the anharmonic coupling between low-frequency modes (the hindered-translational mode related to the lateral hopping) and the HF mode combined with electron-hole pair excitation, can explain why the hopping of CO is observed on Pd(110) but not on Cu(110).  相似文献   

4.
Silicon microstructures only a few hundred atoms wide can be fabricated and used to study electron transport in narrow channels. Spatially localized voltage probes as close together as 0.1 micrometer can be used to investigate a variety of physical phenomena, including velocity saturation due to phonon emission, the local potentials caused by scattering from a single trapped electron, and quantum tunneling or hopping among very few electron states.  相似文献   

5.
Carbon monoxide molecules were arranged in atomically precise configurations, which we call "molecule cascades," where the motion of one molecule causes the subsequent motion of another, and so on in a cascade of motion similar to a row of toppling dominoes. Isotopically pure cascades were assembled on a copper (111) surface with a low-temperature scanning tunneling microscope. The hopping rate of carbon monoxide molecules in cascades was found to be independent of temperature below 6 kelvin and to exhibit a pronounced isotope effect, hallmarks of a quantum tunneling process. At higher temperatures, we observed a thermally activated hopping rate with an anomalously low Arrhenius prefactor that we interpret as tunneling from excited vibrational states. We present a cascade-based computation scheme that has all of the devices and interconnects required for the one-time computation of an arbitrary logic function. Logic gates and other devices were implemented by engineered arrangements of molecules at the intersections of cascades. We demonstrate a three-input sorter that uses several AND gates and OR gates, as well as the crossover and fan-out units needed to connect them.  相似文献   

6.
We observed negative Coulomb drag for parallel coupled quantum wires, in which electrons flow in the opposite directions between the wires. This only occurred under the conditions of strong correlation in the wires, that is, low density, high magnetic field, and low temperature, and cannot be addressed by a standard theory of momentum transfer. We propose a Coulomb drag model in which formation of a Wigner crystal state in the drag wire and a particle-like state in the drive wire is taken into account.  相似文献   

7.
Feng M  Zhao J  Petek H 《Science (New York, N.Y.)》2008,320(5874):359-362
The atomic electron orbitals that underlie molecular bonding originate from the central Coulomb potential of the atomic core. We used scanning tunneling microscopy and density functional theory to explore the relation between the nearly spherical shape and unoccupied electronic structure of buckminsterfullerene (C60) molecules adsorbed on copper surfaces. Besides the known pi* antibonding molecular orbitals of the carbon-atom framework, above 3.5 electron volts we found atomlike orbitals bound to the core of the hollow C60 cage. These "superatom" states hybridize like the s and p orbitals of hydrogen and alkali atoms into diatomic molecule-like dimers and free-electron bands of one-dimensional wires and two-dimensional quantum wells in C60 aggregates. We attribute the superatom states to the central potential binding an electron to its screening charge, a property expected for hollow-shell molecules derived from layered materials.  相似文献   

8.
Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO(2) or NH(3), the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.  相似文献   

9.
Much current experimental research on transport in molecular junctions focuses on finite voltages, where substantial polarization-induced nonlinearities may result in technologically relevant device-type responses. Because molecules have strong polarization responses to changing charge state or external field, molecules isolated between electrodes can show strongly nonlinear current-voltage responses. For small applied voltages (up to approximately 0.3 volt), weak interaction between transporting electrons and molecular vibrations provides the basis for inelastic electron tunneling spectroscopy. At higher voltages and for certain time scale regimes, strong coupling effects occur, including Coulomb blockade, negative differential resistance, dynamical switching and switching noise, current hysteresis, heating, and chemical reactions. We discuss a general picture for such phenomena that arise from charging, strong correlation, and polarization (electronic and vibrational) effects in the molecule and at the interface.  相似文献   

10.
Molecular electronics is often limited by the poorly defined nature of the contact between the molecules and the metal surface. We describe a method to wire molecules into gaps in single-walled carbon nanotubes (SWNTs). Precise oxidative cutting of a SWNT produces carboxylic acid-terminated electrodes separated by gaps of 相似文献   

11.
We report on measurements of quantum many-body modes in ballistic wires and their dependence on Coulomb interactions, obtained by tunneling between two parallel wires in an GaAs/AlGaAs heterostructure while varying electron density. We observed two spin modes and one charge mode of the coupled wires and mapped the dispersion velocities of the modes down to a critical density, at which spontaneous localization was observed. Theoretical calculations of the charge velocity agree well with the data, although they also predict an additional charge mode that was not observed. The measured spin velocity was smaller than theoretically predicted.  相似文献   

12.
We measured rate constants of thermal, interfacial electron transfer through oligophenylenevinylene bridges between a gold electrode and a tethered redox species in contact with an aqueous electrolyte using the indirect laser-induced temperature jump technique. Analysis of the distance dependence indicates that, unlike other bridges studied to date, the rate constants are not limited by electronic coupling for bridges up to 28 angstroms long. The energy levels of the bridges relative to those of the redox species rule out hopping through the bridge. We conclude that, out to 28 angstroms, the transfer is limited by structural reorganization and that electron tunneling occurs in less than 20 picoseconds, suggesting that oligophenylenevinylene bridges could be useful for wiring molecular electronic elements.  相似文献   

13.
High-intensity lasers are opening up a new realm of light-matter interactions. In his Perspective, Yamanouchi reviews recent progress in this field, focusing on two intensity regimes: the Coulombic regime, which mostly deforms molecular structures and causes tunneling ionization, and the relativistic regime, where high-intensity lasers produce x-rays and high-energy particles and may cause nuclear fusion reactions. Efforts are under way to increase laser intensity further for accessing the next frontier.  相似文献   

14.
基于动力学的钢丝绳断丝数检测方法初探   总被引:1,自引:0,他引:1  
钢丝绳是由许多优质碳素钢丝捻制成股,再由若干股围绕绳芯捻制成绳。由于钢丝绳结构的特殊性决定了它具有较好的力学性能,同时在工作可靠性和结构多样性等方面也表现出独特的优点,被广泛应用于众多工程领域。钢丝绳的设计、制造、使用和维护等方面还存在着相当多的技术难题,甚至还不能给出钢丝绳在使用过程中真正意义上的安全系数.以至于钢丝绳工程结构时常出现意外安全事故。针对钢丝绳无损检测问题展开了研究.用弦振动方程建立钢丝绳断丝数检测方程。利用该方程对悬索钢丝绳的断丝数进行了探索性试验研究。结果表明,钢丝绳断丝数较少.负载较小时,对基频的影响较小;当钢丝绳断丝数较多,负载较大时,对基频的影响较为明显。因此。该方法为钢丝绳无损检测技术提供了一种的新的检测手段.具备一定的可行性。图4表1参11  相似文献   

15.
The electronic properties of single-walled carbon nanotubes are shown here to be extremely sensitive to the chemical environment. Exposure to air or oxygen dramatically influences the nanotubes' electrical resistance, thermoelectric power, and local density of states, as determined by transport measurements and scanning tunneling spectroscopy. These electronic parameters can be reversibly "tuned" by surprisingly small concentrations of adsorbed gases, and an apparently semiconducting nanotube can be converted into an apparent metal through such exposure. These results, although demonstrating that nanotubes could find use as sensitive chemical gas sensors, likewise indicate that many supposedly intrinsic properties measured on as-prepared nanotubes may be severely compromised by extrinsic air exposure effects.  相似文献   

16.
We have measured the quantum yield for exciting the motion of a single Co atom in CoCu(n) linear molecules constructed on a Cu(111) surface. The Co atom switched between two lattice positions during electron excitation from the tip of a scanning tunneling microscope. The tip location with highest probability for inducing motion was consistent with the position of an active state identified through electronic structure calculations. Atom motion within the molecule decreased with increased molecular length and reflected the corresponding variation in electronic structure.  相似文献   

17.
We report the observation of unusually strong and systematic changes in the electron transport in metallic single-walled carbon nanotubes that are undergoing collisions with inert gas atoms or small molecules. At fixed gas temperature and pressure, changes in the resistance and thermopower of thin films are observed that scale as roughly M(1/3), where M is the mass of the colliding gas species (He, Ar, Ne, Kr, Xe, CH4, and N2). Results of molecular dynamics simulations are also presented that show that the maximum deformation of the tube wall upon collision and the total energy transfer between the colliding atom and the nanotube also exhibit a roughly M(1/3) dependence. It appears that the transient deformation (or dent) in the tube wall may provide a previously unknown scattering mechanism needed to explain the atom collision-induced changes in the electrical transport.  相似文献   

18.
Molybdenum nanowires by electrodeposition   总被引:1,自引:0,他引:1  
Zach MP  Ng KH  Penner RM 《Science (New York, N.Y.)》2000,290(5499):2120-2123
Metallic molybdenum (Mo(o)) wires with diameters ranging from 15 nanometers to 1.0 micrometers and lengths of up to 500 micrometers (0.5 millimeters) were prepared in a two-step procedure. Molybdenum oxide wires were electrodeposited selectively at step edges and then reduced in hydrogen gas at 500 degrees C to yield Mo(o). The hemicylindrical wires prepared by this technique were self-uniform, and the wires prepared in a particular electrodeposition (in batches of 10(5) to 10(7)) were narrowly distributed in diameter. Wires were obtained size selectively because the mean wire diameter was directly proportional to the square root of the electrolysis time. The metal nanowires could be embedded in a polystyrene film and lifted off the graphite electrode surface. The conductivity and mechanical resiliency of individual embedded wires were similar to those of bulk molybdenum.  相似文献   

19.
Energy flow in biological structures often requires submillisecond charge transport over long molecular distances. Kinetics modeling suggests that charge-transfer rates can be greatly enhanced by multistep electron tunneling in which redox-active amino acid side chains act as intermediate donors or acceptors. We report transient optical and infrared spectroscopic experiments that quantify the extent to which an intervening tryptophan residue can facilitate electron transfer between distant metal redox centers in a mutant Pseudomonas aeruginosa azurin. Cu(I) oxidation by a photoexcited Re(I)-diimine at position 124 on a histidine(124)-glycine(123)-tryptophan(122)-methionine(121) beta strand occurs in a few nanoseconds, fully two orders of magnitude faster than documented for single-step electron tunneling at a 19 angstrom donor-acceptor distance.  相似文献   

20.
The collective excitation spectrum of interacting electrons in one dimension has been measured by controlling the energy and momentum of electrons tunneling between two closely spaced, parallel quantum wires in a GaAs/AlGaAs heterostructure while measuring the resulting conductance. The excitation spectrum deviates from the noninteracting spectrum, attesting to the importance of Coulomb interactions. An observed 30% enhancement of the excitation velocity relative to noninteracting electrons with the same density, a parameter determined experimentally, is consistent with theories on interacting electrons in one dimension. In short wires, 6 and 2 micrometers long, finite size effects, resulting from the breaking of translational invariance, are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号