首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

To determine the means and variations in CH4 uptake and N2O emission in the dominant soil and vegetation types to enable estimation of annual gases fluxes in the forest land of Japan, we measured monthly fluxes of both gases using a closed-chamber technique at 26 sites throughout Japan over 2 years. No clear seasonal changes in CH4 uptake rates were observed at most sites. N2O emission was mostly low throughout the year, but was higher in summer at most sites. The annual mean rates of CH4 uptake and N2O emission (all sites combined) were 66 (2.9–175) µg CH4-C m?2 h?1 and 1.88 (0.17–12.5) µg N2O-N m?2 h?1, respectively. Annual changes in these fluxes over the 2 years were small. Significant differences in CH4 uptake were found among soil types (P < 0.05). The mean CH4 uptake rates (µg CH4-C m?2 h?1) were as follows: Black soil (95 ± 39, mean ± standard deviation [SD]) > Brown forest soil (60 ± 27) ≥ other soils (20 ± 24). N2O emission rates differed significantly among vegetation types (P < 0.05). The mean N2O emission rates (µg N2O-N m?2 h?1) were as follows: Japanese cedar (4.0 ± 2.3) ≥ Japanese cypress (2.6 ± 3.4) > hardwoods (0.8 ± 2.2) = other conifers (0.7 ± 1.4). The CH4 uptake rates in Japanese temperate forests were relatively higher than those in Europe and the USA (11–43 µg CH4-C m?2 h?1), and the N2O emission rates in Japan were lower than those reported for temperate forests (0.23–252 µg N2O-N m?2 h?1). Using land area data of vegetation cover and soil distribution, the amount of annual CH4 uptake and N2O emission in the Japanese forest land was estimated to be 124 Gg CH4-C year?1 with 39% uncertainty and 3.3 Gg N2O-N year?1 with 76% uncertainty, respectively.  相似文献   

3.
 Potential effects of earthworms (Lumbricus terrestris L.) inoculated into soil on fluxes of CO2, CH4 and N2O were investigated for an untreated and a limed soil under beech in open topsoil columns under field conditions for 120 days. Gas fluxes from L. terrestris, beech litter and mineral soil from soil columns were measured separately in jars at 17  °C. The inoculation with L. terrestris and the application of lime had no effect on cumulative CO2 emissions from soil. During the first 3–4 weeks earthworms significantly (P<0.05) increased CO2 emissions by 16% to 28%. In contrast, significantly lower (P<0.05) CO2 emission rates were measured after 11 weeks. The data suggest that earthworm activity was high during the first weeks due to the creation of burrows and incorporation of beech litter into the mineral soil. Low cumulative CH4 oxidation rates were found in all soil columns as a result of CH4 production and oxidation processes. L. terrestris with fresh feces and the beech litter produced CH4 during the laboratory incubation, whereas the mineral soil oxidised atmospheric CH4. Inoculation with L. terrestris led to a significant reduction (P<0.02) in the CH4 oxidation rate of soil, i.e. 53% reduction. Liming had no effect on cumulative CH4 oxidation rates of soil columns and on CH4 fluxes during the laboratory incubation. L. terrestris significantly increased (P<0.001) cumulative N2O emissions of unlimed soil columns by 57%. The separate incubation of L. terrestris with fresh feces resulted in rather high N2O emissions, but the rate strongly decreased from 54 to 2 μg N kg–1 (dry weight) h–1 during the 100 h of incubation. Liming had a marked effect on N2O formation and significantly (P<0.001) reduced cumulative N2O emissions by 34%. Although the interaction of liming and L. terrestris was not significant, N2O emissions of limed soil columns with L. terrestris were 8% lower than those of the control. Received: 2 September 1999  相似文献   

4.
Pit and mound micro-relief(resultant microsites from trees uprooted by windthrow) could have regimes of microclimate and soil features that differ from areas of undisturbed soil. In an attempt to provide a comprehensive evaluation of the significance of pits and mounds on soil features and also the dynamics of greenhouse gas(GHG) fluxes at local scale, this study was carried out in a reserved area of Darabkola forest in Mazandaran Province, northern Iran. The age of a pit and mound was considered equal to the degree of decay of the blown down tree. Three microsites were distinguished, consisting of pit bottom(PB), mound top(MT) and undisturbed area(UA). Soil samples were taken at 0–15 and 15–30 cm depths from all microsites and analysed for soil physical, chemical and biological features. Our findings suggested that in context of forest ecology, pits and mounds following windthrow events should be considered as an effective factor influencing soil features(i.e., density, texture, water content, p H, organic C, total N, available nutrients and earthworm density/biomass) and especially GHG fluxes. Results showed that MT acted as a sink for N2O(-0.010 mg N2 O m-2d-1) and CH4(-0.257 mg CH4m-2d-1) fluxes and also produced lower CO2 concentrations(0.095 mg CO2 m-2d-1) than PB(0.207 mg CO2 m-2d-1) and UA(0.098 mg CO2 m-2d-1). As a consequence, a separation into pits/mounds would be important for a precise budgeting of greenhouse gases.  相似文献   

5.
The annual carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) dynamics were measured with static chambers on two organic agricultural soils with different soil characteristics. Site 1 had a peat layer of 30 cm, with an organic matter (OM) content of 74% in the top 20 cm. Site 2 had a peat layer of 70 cm but an OM content of only 40% in the top 20 cm. On both sites there were plots under barley and grass and also plots where the vegetation was removed. All soils were net sources of CO2 and N2O, but they consumed atmospheric CH4. Soils under barley had higher net CO2 emissions (830 g CO2-C m−2 yr−1) and N2O emissions (848 mg N2O-N m−2 yr−1) than those under grass (395 g CO2-C m−3 yr−1 and 275 mg N2O-N m−2 yr−1). Bare soils had the highest N2O emissions, mean 2350 mg N2O-N m−2 yr−1. The mean CH4 uptake rate from vegetated soils was 100 mg CH4-C m−3 yr−1 and from bare soils 55 mg CH4-C m−2 yr−1. The net CO2 emissions were higher from Site 2, which had a high peat bulk density and a low OM content derived from the addition of mineral soil to the peat during the cultivation history of that site. Despite the differences in soil characteristics, the mean N2O emissions were similar from vegetated peat soils from both sites. However, bare soils from Site 2 with mineral soil addition had N2O emissions of 2-9 times greater than those from Site 1. Site 1 consumed atmospheric CH4 at a higher rate than Site 2 with additional mineral soil. N2O emissions during winter were an important component of the N2O budget even though they varied greatly, ranging from 2 to 99% (mean 26%) of the annual emission.  相似文献   

6.
Grazing animals highly influence the nutrient cycle by a direct return of 80% of the consumed N in form of dung and urine. In the autumn‐winter period, N uptake by the sward is low and rates of seepage water in sandy soils are high, hence high mineral‐N contents in soil and in seepage water as well as large losses of N2O are expected after cattle grazing in autumn. The objective of this study was the quanitfication of N loss deriving from urine and dung leaching and by N2O emission. Therefore the deposition of urine and dung patches was simulated in maximum rates excreted by cows by application of 15N‐labeled cow urine and dung (equivalent to 1030 kg N ha–1 and 1052 kg N ha–1, respectively) on a sandy pasture soil in N Germany. Leachate was collected in weekly intervals from free‐draining lysimeters, and 15N‐NO , 15N‐NH , and 15N‐DON (dissolved organic N) were monitored over 171 d. Furthermore, the 15N‐N2O emission rates and the dynamics of inorganic 15N in the upper soil layer were monitored in a field trial, adjacent to the lysimeters. After 10 d following the urine application, the urea was completely hydrolyzed, shown by a 100% recovery of urine‐N in the soil NH . The following decrease of 15N‐NH in the soil was higher than the increase of 15N‐NO , and some N loss was explained by leaching. Amounts of 51% and 2.5% of the applied 15N were found in leachate as inorganic N, 2.4% and 0.7% as DON derived from urine and dung, respectively. Release of N2O from urine and dung patches applied to the pasture was low, with losses of 0.05% and 0.33% of the applied 15N, respectively. Overall loss of dung‐derived N was very low, but as the bulk dung N remained in the soil, N loss after mineralization of the dung needs to be investigated.  相似文献   

7.
8.
Earthworms modify the soil environment through their feeding, casting, and burrowing activities, which may lead to more decomposition and respiration in aerobic microsites and more denitrification in anaerobic microsites. The objective of this study was to determine whether earthworms increase CO2 and N2O fluxes from an unfertilized corn agroecosystem. Earthworm populations within field enclosures (2.9 m2) were reduced by repeatedly applying carbaryl insecticide, then single and mixed populations of Lumbricus terrestris L. and Aporrectodea caliginosa (Savigny) were added. Gas samples were collected once a week for 14 weeks, from June to September 2005. Carbaryl applications reduced, but did not eliminate earthworms from enclosures. The CO2 and N2O fluxes were affected by the sampling date, with peak gas fluxes after rainfall events. Mean CO2 and N2O fluxes during the study period tended to be greater from enclosures with added earthworms than the control (no earthworms added), but were not significantly affected by earthworm treatments due to the low survival rate of introduced earthworms. Better control of earthworm populations in the field is required to fully assess the impact of earthworms on CO2 and N2O fluxes from temperate agroecosystems.  相似文献   

9.
Spatial variability in carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) emissions from soil is related to the distribution of microsites where these gases are produced. Porous soil aggregates may possess aerobic and anaerobic microsites, depending on the water content of pores. The purpose of this study was to determine how production of CO2, N2O and CH4 was affected by aggregate size and soil water content. An air-dry sandy loam soil was sieved to generate three aggregate fractions (<0.25 mm, 0.25–2 mm and 2–6 mm) and bulk soil (<2 mm). Aggregate fractions and bulk soil were moistened (60% water-filled pore space, WFPS) and pre-incubated to restore microbial activity, then gradually dried or moistened to 20%, 40%, 60% or 80% WFPS and incubated at 25 °C for 48 h. Soil respiration peaked at 40% WFPS, presumably because this was the optimum level for heterotrophic microorganisms, and at 80% WFPS, which corresponded to the peak N2O production. More CO2 was produced by microaggregates (<0.25 mm) than macroaggregate (>0.25 mm) fractions. Incubation of aggregate fractions and soil at 80% WFPS with acetylene (10 Pa and 10 kPa) and without acetylene showed that denitrification was responsible for 95% of N2O production from microaggregates, while nitrification accounted for 97–99% of the N2O produced by macroaggregates and bulk soil. This suggests that oxygen (O2) diffusion into and around microaggregates was constrained, whereas macroaggregates remained aerobic at 80% WFPS. Methane consumption and production were measured in aggregates, reaching 1.1–6.4 ng CH4–C kg−1 soil h−1 as aggregate fractions and soil became wetter. For the sandy-loam soil studied, we conclude that nitrification in aerobic microsites contributed importantly to total N2O production, even when the soil water content permitted denitrification and CH4 production in anaerobic microsites. The relevance of these findings to microbial processes controlling N2O production at the field scale remains to be confirmed.  相似文献   

10.
11.
We observed that soil cores collected in the field containing relatively high NH inf4 sup+ and C substrate levels produced relatively large quantities of N2O. A series of laboratory experiments confirmed that the addition of NH inf4 sup+ and glucose to soil increase N2O production under aerobic conditions. Denitrifying enzyme activity was also increased by the addition of NH inf4 sup+ and glucose. Furthermore, NH inf4 sup+ and glocose additions increased the production of N2O in the presence of C2H2. Therefore, we concluded that denitrification was the most likely source of N2O production. Denitrification was not, however, directly affected by NH inf4 sup+ in anaerobic soil slurries, although the use of C substrate increased. In the presence of a high substrate C concentration, N2O production by denitrifiers may be affected by NO inf3 sup- supplied from NH inf4 sup+ through nitrification. Alternatively, N2O may be produced during mixotrophic and heterotrophic growth of nitrifiers. The results indicated that the NH inf4 sup+ concentration, in addition to NO inf3 sup- , C substrate, and O2 concentrations, is important for predicting N2O production and denitrification under field conditions.  相似文献   

12.
13.
 CH4 production in a flooded soil as affected by elevated atmospheric CO2 was quantified in a laboratory incubation study. CH4 production in the flooded soil increased by 19.6%, 28.2%, and 33.4% after a 2-week incubation and by 38.2%, 62.4%, and 43.0% after a 3-week incubation under atmospheres of 498, 820, and 1050 μl l–1 CO2, respectively, over that in soil under the ambient CO2 concentration. CH4 production in slurry under 690, 920, and 1150 μl l–1 CO2 increased by 2.7%, 5.5%, and 5.0%, respectively, after a 3-day incubation, and by 6.7%, 12.8%, and 5.4%, respectively, after a 6-day incubation over that in slurry under the ambient CO2 concentration. The increase in CH4 production in the soil slurry under elevated CO2 concentrations in a N2 atmosphere was more pronounced than that under elevated CO2 concentrations in air. These data suggested that elevated atmospheric CO2 concentrations could promote methanogenic activity in flooded soil. Received: 2 March 1998  相似文献   

14.
There are no reports on the effects of elevated carbon dioxide [CO2] on the fluxes of N2O, CO2 and CH4 from semi-arid wheat cropping systems. These three soil gas fluxes were measured using closed chambers under ambient (420 ± 18 μmol mol−1) and elevated (565 ± 37 μmol mol−1) at the Free-Air Carbon dioxide Enrichment experimental facility in northern China. Measurements were made over five weeks on a wheat crop (Triticum aestivum L. cv. Zhongmai 175). Elevated [CO2] increased N2O and CO2 emission from soil by 60% and 15%, respectively, but had no significant effect on CH4 flux. There was no significant interaction between [CO2] and N application rate on these gas fluxes, probably because soil N was not limiting. At least 22% increase in C storage is required to offset the observed increase in greenhouse gas emissions under elevated [CO2].  相似文献   

15.
Abstract

To develop an advanced method for estimating nitrous oxide (N2O) emission from an agricultural watershed, we used a closed-chamber technique to measure seasonal N2O and nitric oxide (NO) fluxes in cornfields, grassland, pastures and forests at the Shizunai Experimental Livestock Farm (467 ha) in southern Hokkaido, Japan. From 2000 to 2004, N2O and NO fluxes ranged from –137 to 8,920 µg N m?2 h?1 and from –12.1 to 185 µg N m?2 h?1, respectively. Most N2O/NO ratios calculated on the basis of these N2O and NO fluxes ranged between 1 and 100, and the log-normal N2O/NO ratio was positively correlated with the log-normal N2O fluxes (r 2 = 0.346, P < 0.01). These high N2O fluxes, therefore, resulted from increased denitrification activity. Annual N2O emission rates ranged from –1.0 to 81 kg N ha?1 year?1 (average = 6.6 kg N ha?1). As these emission values varied greatly and included extremely high values, we divided them into two groups: normal values (i.e. values lower than the overall average) and high values (i.e. values higher than average). The normal data were significantly positively correlated with N input (r 2 = 0.61, P < 0.01) and the “higher” data from ungrazed fields were significantly positively correlated with N surplus (r 2 = 0.96, P < 0.05). The calculated probability that a high N2O flux would occur was weakly and positively correlated with precipitation from May to August. This probability can be used to represent annual variation in N2O emission rates and to reduce the uncertainty in N2O estimation.  相似文献   

16.
17.
18.
Independent soil microcosm experiments were used to investigate the effects of the fungicides mancozeb and chlorothalonil, and the herbicide prosulfuron, on N2O and NO production by nitrifying and denitrifying bacteria in fertilized soil. Soil cores were amended with NH4NO3 or NH4NO3 and pesticide, and the N2O and NO concentrations were monitored periodically for approximately 48 h following amendment. Nitrification is the major source of N2O and NO in these soils at soil moistures relevant to those observed at the field site where the cores were collected. At pesticide concentrations from 0.02 to 10 times that of a standard single application on a corn crop, N2O and NO production was inhibited by all three pesticides. Generally N2O production was inhibited by the pesticides from 10 to 62% and 20 to 98% at the lowest and highest dosages, respectively. Nitric oxide production was generally inhibited from about 5 to 47% and by 20 to 97% at the lowest and highest dosages, respectively. Nitrous oxide and nitric oxide production by nitrification was more susceptible to inhibition by these pesticides than denitrification. Production of both N2O and NO by nitrification was inhibited by as much as 99%, at the highest concentration of pesticide applied. The net production of N2O increased as soil moisture increased. The rate of NO production was greatest at the intermediate moistures investigated, between 14 and 19% gravimetric soil moisture, suggestive that nitrification is the dominant source of NO.  相似文献   

19.
Urine patches are significant hot‐spots of C and N transformations. To investigate the effects of urine composition on C and N turnover and gaseous emissions from a Danish pasture soil, a field plot study was carried out in September 2001. Cattle urine was amended with two levels of 13C‐ and 15N‐labeled urea, corresponding to 5.58 and 9.54 g urea‐N l–1, to reflect two levels of protein intake. Urine was then added to a sandy‐loam pasture soil equivalent to a rate of 23.3 or 39.8 g urea‐N m–2. Pools and isotopic labeling of nitrous oxide (N2O) and CO2 emissions, extractable urea, ammonium (NH4+), and nitrate (NO3), and plant uptake were monitored during a 14 d period, while ammonia (NH3) losses were estimated in separate plots amended with unlabeled urine. Ammonia volatilization was estimated to account for 14% and 12% of the urea‐N applied in the low (UL) and high (UH) urea treatment, respectively. The recovery of urea‐derived N as NH4+ increased during the first several days, but isotopic dilution was significant, possibly as a result of stress‐induced microbial metabolism. After a 2 d lag phase, nitrification proceeded at similar rates in UL and UH despite a significant difference in NH4+ availability. Nitrous oxide fluxes were low, but generally increased during the 14 d period, as did the proportion derived from urea‐N. On day 14, the contribution from urea was 23% (UL) and 13% (UH treatment), respectively. Cumulative total losses of N2O during the 14 d period corresponded to 0.021% (UL) and 0.015% (UH) of applied urea‐N. Nitrification was probably the source of N2O. Emission of urea‐derived C as CO2 was only detectable within the first 24 h. Urea‐derived C and N in above‐ground plant material was only significant at the first sampling, indicating that uptake of urine‐C and N via the leaves was small. Urine composition did not influence the potential for N2O emissions from urine patches under the experimental conditions, but the importance of site conditions and season should be investigated further.  相似文献   

20.
Our previous research showed large amounts of nitrous oxide (N2O) emission (>200?kg?N?ha?1?year?1) from agricultural peat soil. In this study, we investigated the factors influencing relatively large N2O fluxes and the source of nitrogen (N) substrate for N2O in a tropical peatland in central Kalimantan, Indonesia. Using a static chamber method, N2O and carbon dioxide (CO2) fluxes were measured in three conventionally cultivated croplands (conventional), an unplanted and unfertilized bare treatment (bare) in each cropland, and unfertilized grassland over a three-year period. Based on the difference in N2O emission from two treatments, contribution of the N source for N2O was calculated. Nitrous oxide concentrations at five depths (5–80?cm) were also measured for calculating net N2O production in soil. Annual N fertilizer application rates in the croplands ranged from 472 to 1607?kg?N?ha?1?year?1. There were no significant differences in between N2O fluxes in the two treatments at each site. Annual N2O emission in conventional and bare treatments varied from 10.9 to 698 and 6.55 to 858?kg?N?ha?1?year?1, respectively. However, there was also no significant difference between annual N2O emissions in the two treatments at each site. This suggests most of the emitted N2O was derived from the decomposition of peat. There were significant positive correlations between N2O and CO2 fluxes in bare treatment in two croplands where N2O flux was higher than at another cropland. Nitrous oxide concentration distribution in soil measured in the conventional treatment showed that N2O was mainly produced in the surface soil down to 15?cm in the soil. The logarithmic value of the ratio of N2O flux and nitrate concentration was positively correlated with water filled pore space (WEPS). These results suggest that large N2O emission in agricultural tropical peatland was caused by denitrification with high decomposition of peat. In addition, N2O was mainly produced by denitrification at high range of WFPS in surface soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号