首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two 160-d feedlot experiments, each consisting of 20 Angus-Hereford steers (216 +/- 5 kg BW, Exp. 1; 258 +/- 5 kg BW, Exp. 2) and 20 Angus-Hereford heifers (208 +/- 5 kg BW, Exp. 1; 236 +/- 5 kg BW, Exp. 2), were used to investigate the effects of supplementing diets with either roasted soybeans (RSB, roasted at 127 degrees C for 10 min) or soybean meal (SBM) and implanting or not implanting with an estrogenic growth promoter (SYN; Synovex-S, 20 mg of estradiol benzoate plus 200 mg of progesterone or Synovex-H, 20 mg of estradiol benzoate plus 200 mg of testosterone) on performance. The cattle were fed a basal diet of 15% orchardgrass silage, 15% corn silage, and 70% corn-based concentrate. Treatments were 1) no SYN and fed a SBM-supplemented diet, 2) no SYN and fed a RSB-supplemented diet, 3) SYN and SBM, and 4) SYN and RSB. Cattle in the SYN groups were reimplanted at 80 d. Four additional Angus-Hereford steers were used in a digestion and nitrogen balance experiment conducted during the first half of Exp. 1. For the total 160-d feedlot experiments, DMI for RSB compared with SBM was lower (P < .01; 8.5 vs 9.2 kg/d, SEM = .07) and ADG/DMI tended to be higher (P < .10; 165 vs 157 g/kg, SEM = 1.3). Final BW of steers fed RSB was similar (P > .10) to that of steers fed SBM (473 vs 478 kg, SEM = 5.6), as was ADG (1.39 vs 1.43 kg/d, SEM = .02). Dry matter intake for SYN-implanted steers was higher (P < .01) than for steers not implanted (9.2 vs 8.5 kg/d). Likewise, final BW (491 vs 460 kg) and ADG (1.49 vs 1.33 kg/d) were higher (P < .01), and ADG/DMI (166 vs 157 g/kg) tended to be higher (P < .10), for SYN-implanted steers than for steers not implanted. During the more rapid muscle growth period (0 to 80 d), DMI for RSB compared with SBM was lower (P < .01; 7.8 vs 8.6 kg/d, SEM = .07) and ADG/DMI was similar (P > .10; 181 vs 172 g/kg, SEM = 1.8). Dry matter intake for SYN-implanted steers was higher (P < .05) than for steers not implanted (8.4 vs 8.0 kg/d), as was ADG/DMI (P < .01, 182 vs 171 g/kg). During this more rapid growth period, the supplement x implant interaction for ADG was significant (P < .05; 1.35, 1.36, 1.59, and 1.44 kg/d for Treatments 1, 2, 3, and 4, respectively, SEM = .04). There were no differences in digestibilities or N balance. The results suggest that there is no improvement in performance under feedlot conditions when RSB replaces SBM in the diet of beef cattle, and, in young cattle, RSB may reduce the response expected by an estrogenic growth promoter.  相似文献   

2.
Our objective was to determine if harvest in the morning (AM, 0600) vs. the afternoon (PM, 1800) affects composition and voluntary DMI of gamagrass (GG) or switchgrass (SG) stored as baleage. Iuka GG (Tripsacum dactyloides L.) and Alamo SG (Panicum virgatum L.) were cut with a mower-conditioner, immediately round-baled, wrapped in plastic, and stored as baleage. Beef steers (255 +/- 7 kg of BW) were assigned (5 steers/treatment) to GG/AM, GG/PM, SG/AM, or SG/PM. Ad libitum intake was measured for 21 d (7-d adjustment and 14-d intake estimate) followed by 7-d adjustment and 5-d digestion and N balance study. Chewing behavior was recorded during the balance study. Compared with AM, PM had more (P < 0.01) starch (9.3 vs. 4.7 g/kg of DM), total nonstructural carbohydrate (30.4 vs. 19.0 g/kg of DM), and monosaccharides (17.1 vs. 11.2 g/kg of DM). Compared with AM, PM had less (P = 0.05) acetate (13.0 vs. 18.6 g/kg of DM) and propionate (0.29 vs. 0.82 g/kg of DM) and tended (P < 0.13) to have less lactate (2.9 vs. 3.5 g/kg of DM) and butyrate (3.9 vs. 5.1 g/kg of DM). Compared with SG, GG had more (P = 0.01) DM (324 vs. 242 g/kg of baleage), CP (114 vs. 97 g/kg of DM), lactate (4.8 vs. 1.6 g/kg of DM), starch (9.4 vs. 4.7 g/kg of DM), total nonstructural carbohydrate (34.2 vs. 15.2 g/kg of DM), and monosaccharides (20.8 vs. 7.4 g/kg of DM). However, GG had a lower (P = 0.01) pH (5.32 vs.5.79) and less (P < 0.01) ethanol (18.7 vs. 27.3 g/kg of DM), acetate (12.3 vs. 19.2 g/kg of DM), propionate (0.00 vs. 1.11 g/kg of DM), and butyrate (0.6 vs. 8.4 g/kg of DM). Daily DMI (2.16 vs. 1.83% of BW) and digestible DMI (1.15 vs. 0.95% of BW) were greater (P = 0.03) for PM than AM. Plasma urea N concentrations at the end of the ad libitum intake phase were greater (P = 0.01) for AM (3.91 mM) than for PM (2.31 mM) and greater (P = 0.07) for GG (3.51 mM) than for SG (2.71 mM). Steers fed PM spent more time eating (P = 0.04) and less time resting (P = 0.01) during meals than steers fed AM. Apparent digestibility of DM and fiber components was not affected (P < 0.18) by treatment. Apparent digestibility and retention of N decreased from PM to AM for SG, but increased for GG (P = 0.05). Retention of N as a percentage of N intake or N digested decreased more from PM to AM for SG than for GG (P < 0.05). We conclude that increased nonstructural carbohydrate content of the PM harvest of these grasses stored as baleage caused increased voluntary intake and improved use of dietary N by beef steers.  相似文献   

3.
Energy density in growing diets may affect carcass quality of cattle; however, few reports have described the impact of energy source. The objectives of this research were to determine effects of source [dried distillers grains with solubles (DDGS) vs. corn] and amount (limit-fed to gain 0.9 vs. 1.4 kg of BW/d) of energy during the growing phase on feedlot performance and marbling. Angus-cross steers (144 head) were blocked by BW (average initial BW = 252 ± 36 kg), allotted within each block to 8 pens (6 steers/pen, 24 pens total), and randomly assigned to 1 of 4 feeding systems in a 2 × 2 factorial arrangement of treatments: 1) 65% DDGS fed to gain 0.9 kg of BW/d, 2) 65% DDGS fed to gain 1.4 kg of BW/d, 3) 65% corn fed to gain 0.9 kg of BW/d, and 4) 65% corn fed to gain 1.4 kg of BW/d. Fecal grab samples were collected on d 52 of the growing phase to determine digestibility of DM, ADF, NDF, ether extract (EE), and CP. After the 98-d growing phase, all steers were fed the same finishing diet. Steers were slaughtered by pen when average BW within the pen was 544, 522, and 499 kg for the large, medium, and small BW blocks, respectively. Average daily gain and DMI differed (P<0.01) by design during the growing phase. Compared with the corn-based diets, digestibilities of DM, NDF, and EE were decreased (P<0.02) when DDGS-based diets were fed during the growing phase, whereas the digestibility of N was increased (P<0.01). The ADG was greatest (P=0.02) during the finishing phase for steers fed to gain 0.9 kg of BW/d initially, but source of energy during the growing phase did not affect (P=0.24) finishing phase ADG. Steers fed to gain 0.9 kg of BW/d during the growing phase also had less backfat (P=0.08), decreased USDA yield grades (P=0.03), and greater LM area (P<0.01) than steers fed to gain 1.4 kg of BW/d. There was an interaction between energy source and amount for marbling scores (P=0.02). Steers fed corn-based diets to gain 0.9 kg of BW/d during the growing phase had the most marbling, whereas those fed to gain 0.9 kg of BW/d on DDGS had the least marbling; the remaining feeding systems were intermediate. Overall ADG and DMI were affected (P < 0.06) by both source and amount of energy fed during the growing phase. Feeding the DDGS-based diet to achieve greater ADG during the growing phase increased marbling, whereas feeding the corn-based diet to increase ADG during the growing phase decreased marbling.  相似文献   

4.
The separate and combined effects of Synovex-S (SYN) ear implants and thyroxine (T4)-5'-monodeiodinase inhibition (Trial 1) and T3 injection to create a mild elevation in circulating T3 concentrations (Trial 2) on BW gain and composition of gain were studied. Trial 1 used 24, 285-kg Angus steers in two experimental phases. Low-level feeding of propylthiouracil (PTU, 1.5 mg/kg BW daily) was used to achieve inhibition of T4-5'-monodeiodinase activity (TMA). Twelve steers received neither treatment (control) and 12 received SYN+PTU (hypothesized to maximize weight gain) from 0 to 56 d (phase 1) in a single factor treatment comparison. Subsequently, PTU was fed to six control steers and not fed to six of the original SYN+PTU steers from 56 to 175 d (phase 2) in a 2 x 2 arrangement of treatments. Trial 2 used 24, 302-kg Angus-Hereford steers. Treatments were without or with SYN and without or with sc injections of T3 in polyethylene glycol (2 micrograms/kg BW every 48 hr) in a 2 x 2 factorial arrangement of treatments. In both trials, all steers were individually fed a diet of a corn-based concentrate and silage mixture at an equal metabolizable energy intakes per unit of metabolic body weight (.25 Mcal/kg BW.75). Measurements of daily dry matter intakes, weekly BW, 28-d estimates of empty body components (measured by urea dilution), final TMA (trial 1) and plasma thyroid hormone concentrations were obtained. In both trials, SYN increased BW gain and protein accretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A digestion and N balance trial was conducted to compare effects of traditional endophyte-infected (E+), endophyte-free (E-), and nontoxic endophyte infected (NE; MaxQ; Pennington Seed, Inc., Madison, GA) Jesup tall fescue (Festuca arundinacea Schreb.) hay on digestion and N retention in steers. Hay composition (DM basis) was as follows: E+ (10.8% CP, 59.9% NDF, and 29.4% ADF), E- (11.8% CP, 58.5% NDF, and 28.4% ADF), and NE (11.6% CP, 58.6% NDF, and 28.3% ADF). Eight Polled Hereford steers (initial BW 240 +/- 9 kg) were used in a replicated, 3 x 3 Latin square design, with an extra steer allotted to each square. Steers were fed ad libitum for 14 d, followed by a 9-d adaptation to restricted intake (based on the animal with the lowest ad libitum intake for the square) and a 5-d fecal and urine collection. Water intake (20.2 L/d) and urine output (7.40 L/d) did not differ (P > 0.10) during the collection period. Plasma prolactin concentration was less (P < 0.05) for steers on the E+ hay (8.83 ng/mL) than for those on the E- hay (18.03 ng/mL) and intermediate for steers on the NE hay (12.65 ng/mL). Endophyte-infected hay differed (P < 0.05) from E- and NE in ad libitum DMI (5.02 vs. 5.62 and 5.61 kg/d, respectively) and ad libitum DMI as a percentage of BW (1.86 vs. 2.06 and 2.06%, respectively). Restricted DMI during the fecal and urine collection was lower (P < 0.05) for E+ hay than for E- (5.04 vs. 5.24 kg/d), and NE was intermediate (5.19 kg/d). Dry matter digestibility was lower (P < 0.05) for E+ compared with E- and NE (62.3 vs. 67.0 and 65.9%, respectively). Digestibility of ADF was lower (P < 0.05) for E+ than for E-, and was intermediate for NE (61.5, 66.0, and 63.9%, respectively). There were no differences for NDF, cellulose, or hemicellulose digestibilities among hay types. Crude protein digestibility was higher (P < 0.05) for E- and NE than for E+ (54.3 and 52.5 vs. 48.1%, respectively). Nitrogen retention was lower (P < 0.01) for E+ than for E- or NE (15.6 vs. 22.7 or 23.0 g/d, respectively). Hay type did not influence plasma urea N, urine urea N output, or urine urea N as a percentage of urinary N. Results from this study indicate that E+ tall fescue hay was lower in ad libitum DMI, DM digestibility, and N retention than NE or E- hays with similar chemical composition. Hay from NE and E- fescue had nearly identical composition, and did not differ for any variable measured.  相似文献   

6.
The objective of this study was to evaluate an interaction between harvest at 0600 (AM) vs. 1800 (PM) with high (HI) or low (LO) ruminal degradability of a protein supplement to change voluntary intake, digestion, or N retention by steers offered switchgrass (Panicum virgatum L.) hay. Black steers (255 +/- 14 kg of BW) were blocked by BW, and then randomly assigned (5 steers each) to AM/HI, PM/HI, AM/LO, or PM/LO treatment groups. Steers were group-housed in covered, outdoor pens with individual feeding gates. After adaptation and standardization, intake was measured for 21 d followed by a digestion trial (5 d of total collection). Steers were offered 767 (LO) or 825 (HI) g/d of supplement to provide 268 g of CP/d. Compared with AM, PM had greater (P = 0.01) concentrations of total nonstructural carbohydrate (TNC, 71 vs. 56 g/kg of DM), and lesser concentrations of NDF (760 vs. 770 g/kg of DM, P = 0.02), ADF (417 vs. 427 g/kg of DM, P = 0.02), and CP (55.9 vs. 58.6 g/ kg of DM, P = 0.07). Protein fractions A, B(2), and B(3) were similar for AM and PM, but HI contained more (P < 0.02) A (694 vs. 296 g/kg of protein) and less B(2) (174 vs. 554 g/kg of protein) fraction than LO. Harvest interacted with supplement to increase (P = 0.07) ad libitum digestible DMI for steers offered PM/HI (11.4 g/kg of BW daily) compared with steers offered PM/LO (10.2 g/kg of BW daily), but there was no difference for steers offered AM/LO or AM/HI (10.7 g/kg of BW). Apparent digestibilities of DM (594 vs. 571 g/kg of intake), NDF (591 vs. 562 g/kg of intake), ADF (585 vs. 566 g/kg of intake), and N (651 vs. 632 g/kg of intake) were greater (P < 0.04) for PM than for AM. Apparent digestibility of N was greater (P = 0.02) for HI (652 g/ kg of intake) vs. LO (631 g/kg of intake). Interactions between harvest and supplement for apparent digestibilities of NDF (P = 0.09) and ADF (P = 0.03) were due to no change or an increase in digestibility in response to increased ruminal degradability of supplement in steers offered PM harvest, whereas increased ruminal degradability of supplement decreased digestibility of NDF and ADF in steers offered AM harvest. Treatments did not affect hay intake (3.93 kg/d), N retained (15.8 g/d), or plasma urea N (5.25 mM) during ad libitum intake. Greater TNC in PM vs. AM harvest was not sufficient by itself to increase total voluntary DMI, but greater protein degradability interacted with harvest time to increase ruminal fiber digestibility and digestible DMI of beef steers offered PM vs. AM harvest.  相似文献   

7.
Decreasing dietary N inputs into beef cattle feeding operations could potentially decrease environmental concerns relating to air and water quality. Previous studies with sheep suggest that oscillating dietary CP concentrations may improve N use efficiency and thereby decrease dietary N requirements. Therefore, two studies were conducted to determine the effects of oscillating dietary CP concentrations on performance, acid-base balance, and manure characteristics of steers fed high-concentrate diets. Steers were fed to a constant backfat thickness in both studies. In the first trial, 92 steers (mean BW = 408 +/- 2.8 kg; four pens/treatment) were fed the following diets: 1) constant 12% CP, 2) constant 14% CP, and 3) 10 and 14% CP oscillated at 2-d intervals. Steer performance and carcass characteristics were measured. In the second trial, 27 steers were individually fed the same three experimental dietary regimens (nine steers/treatment). Animal performance, arterial acid-base balance, plasma metabolites, and fecal characteristics were measured. In both trials, steers fed the 14% CP diet tended (P < 0.10) to have greater ADG and gain:feed than steers fed the 12% CP diet. Steers fed the oscillating CP regimen had intermediate performance. In Trial 1, steers fed the 14% CP diet tended (P = 0.09) to have smaller longissimus area and higher quality grades than steers fed the oscillating CP regimen. Protein retentions (g/d) calculated from NRC (2000) equations were greater (P = 0.04) for steers fed the 14% CP diet than steers fed the 12% CP diet. Steers fed the oscillating CP regimen tended (P = 0.08) to have greater calculated protein retention (g/d) than steers fed the 12% CP diet. Steers fed the 14% CP diet had greater (P < 0.05) calculated urinary N excretion than steers fed the 12% CP or oscillating CP regimens. Venous plasma concentrations of urea N were greater (P < 0.001) in steers fed the 14% CP diet than in steers fed the 12% CP diet; steers fed the oscillating CP regimen were intermediate but fluctuated over days. Based on arterial blood gas concentrations, acid-base balance was not significantly affected by dietary CP regimen. Results of these trials suggest that the CP requirement of steers in these studies was greater than 12% of the diet DM, and/or that the degradable CP requirement was greater than 6.3% of diet DM. However, the effects of oscillating dietary CP were minimal.  相似文献   

8.
We investigated the influence of DM and(or) energy intake and dietary CP levels on the performance and nitrogen (N) retention of beef steers with and without growth promoter implants. In Exp. 1, four implanted (Synovex-S, 200 mg of progesterone plus 20 mg of estradiol benzoate) Angus steers and four Angus steers that were not implanted were assigned to concurrent 4 x 4 Latin squares. Initial BW averaged 296 kg. Each square consisted of moderate and moderately high DM intake treatments (4 and 6 kg/d) and low and adequate CP intake treatments (450 and 600 g/d) in a 2 x 2 factorial arrangement. Periods were 2 wk of adaptation, 5 wk of growth, and 1 wk of balance collection. Experiment 2 consisted of two replicates of 32 Hereford steers each (initial BW 324 kg). Each replicate was a 4 x 2 factorial in which steers were individually fed for 63 d. All steers had ad libitum access to a 60% corn-based concentrate diet containing either 7.9, 10.0, 12.1, or 14.6% CP (DM basis), and steers were either implanted or not implanted with Synovex-S. Experiment 3 was similar to Exp. 2 except that all steers (initial BW 315 kg) received a low-protein diet (7.6% CP) with calculated energy densities of either 1.86, 2.04, 2.22, or 2.42 Mcal ME/kg DM, and steers were limited to an equalized DM intake of 9.5 kg daily. In Exp. 1, gains for the low CP, moderate and moderately high DM intakes and the adequate CP, moderate and moderately high DM intakes were 240, 555, 208, and 730 g/d, respectively, for steers not implanted and 333, 643, 488, and 988 g/d, respectively, for implanted steers (SEM = 102 g/d). Respective values for retained N were .13, .18, .16, and .26 g/kg BW.75 and .13, .15, .22, and .29 g/kg BW.75 (SEM = .04 g/kg BW.75). Implant response was greater (CP x implant, P < .01) for both gain and retained N when adequate CP compared to low CP diets were fed. For Exp. 2, the lowest CP diet reduced ADG (.97 vs 1.27 kg/d) and efficiency of gain (100 vs 120 g gain/kg DM). Synovex-S was less effective in improving efficiency for the lowest protein diet than for the other diets (11.7 vs 20.2%). During Exp. 3, neither Synovex-S nor dietary energy influenced gain and efficiency. We concluded that adequate dietary protein is necessary to optimize the response to estrogenic growth promoters and that the low response under inadequate protein and energy intake is not improved by increasing the energy density of the diet.  相似文献   

9.
Two trials evaluated the effects of a monensin ruminal delivery device (MRDD) on steers grazing winter wheat pasture. In Trial 1, 60 Hereford steers (initial wt 238.5 kg) grazed a 21.9-ha paddock of Vona-variety winter wheat for 112 d. Steers were assigned to either MRDD or control (C) treatments in a randomized complete block design. In Trial 2, eight ruminally cannulated steers (avg wt 234.4 kg) grazed a 2.4-ha paddock of Vona-variety wheat and were assigned randomly to either MRDD or C treatments. Three 11-d collection periods were conducted during early February, early March and early April. Chromic oxide was dosed to determine fecal output, and ruminal samples were collected on d 6 of each period. Nylon bags containing ground wheat forage were incubated ruminally beginning on d 8. In Trial 1, steers with MRDD tended (P less than .11) to gain more weight than C steers (.44 vs .38 kg/d). In Trial 2, wheat forage intake, in situ DM disappearance, ruminal pH, ruminal ammonia concentrations and ruminal proportions of acetate and total VFA concentrations were not affected by treatment. Ruminal proportions of propionate were increased (P less than .05) slightly by MRDD (20.3 and 19.2 mol/100 mol for MRDD and C, respectively). Butyrate proportions in ruminal samples were decreased (P less than .05) by MRDD during March but not in other sampling periods. Ruminal fluid chlorophyll concentration was less (P less than .05) for MRDD-treated vs C steers during early March but was greater (P less than .10) for MRDD-treated steers during early April. The MRDD shows promise as a method of supplying monensin to cattle grazing winter wheat forage.  相似文献   

10.
Research was conducted to determine whether fluctuations in the amount of feed delivered and timing of feeding affect ruminal pH and growth of feedlot cattle. In Exp. 1, the effects of constant (C) vs. fluctuating (F) daily feed delivery on ruminal pH were assessed in a crossover experiment (two 28-d periods) involving six mature, ruminally cannulated steers. The diet consisted of 86.8% barley grain, 4.9% supplement, and 8.3% barley silage (DM basis) and was offered ad libitum for 2 wk to estimate DMI by individual steers. Steers in group C were offered a constant amount of feed daily equal to their predetermined DMI, whereas steers in group F were offered 10% more or less than their predetermined DMI on a rotating 3-d schedule. Ruminal pH of each steer was measured continuously via an indwelling electrode placed in the rumen during the last 6 d of each period. Mean pH tended to be lower (0.10 units) for F than C (5.63 vs. 5.73; P = 0.15), and ruminal pH of steers in group F tended to remain below 5.8 (P = 0.03) or 5.5 (P = 0.14) for greater proportions of the day than steers in group C. Inconsistent delivery of feed lowered ruminal pH, suggesting increased risk of subclinical acidosis. In Exp. 2, a 2 x 2 factorial was used to study the effects of pattern (C vs. F) and feeding time (morning [0900] vs. evening [2100]) on the feeding behavior and performance of 234 (310 +/- 23 kg) Charolais x Hereford beef steers during backgrounding and finishing phases over 209 d. One pen per treatment was equipped with a radio frequency identification (GrowSafe Systems Ltd., Airdrie, Canada) system that monitored bunk attendance by each steer throughout the trial. Pattern of feed delivery did not affect (P = 0.16) DMI (7.36 kg/d), ADG (1.23 kg/d), G:F (0.17), or time spent at the bunk (141 min/d), nor were pattern of feed delivery x time of feeding interactions observed (P = 0.18). Late feeding increased (P < 0.05) daily DMI (7.48 vs. 7.26 kg), ADG (1.28 vs. 1.00 kg/d), and G:F (0.21 vs. 0.15). These studies indicate that the risk of subclinical acidosis was increased with fluctuating delivery of feed, but the greater risk of acidosis did not impair growth performance by feedlot cattle. Consequently, daily intake fluctuations of 10% DMI or less that do not alter overall intake by feedlot cattle are unlikely to have any negative consequences on growth performance.  相似文献   

11.
The effect of altering supplementation frequency on host N balance and key N transactions in the ruminal ecosystem were monitored. Four ruminally fistulated beef steers (BW = 513 kg; SEM = 6.5) were used in a 2 x 2 crossover design with two periods and two supplementation frequency treatments. Supplementation frequencies were 2 and 7 d/wk. Steers were fed tallgrass prairie hay (73.1% NDF, 5.3% CP) ad libitum. Supplement (42% CP; DM basis) was fed at 0.36% BW/d to steers supplemented 7 d/wk. Steers supplemented 2 d/wk received the same amount of supplement per week, but it was equally split among the two supplementation events. Steers supplemented 7 d/wk had higher forage (P < 0.02) and total digestible OM intake (P < 0.06), total N intake, fecal N excretion, and N retention. Although both supplementation frequencies were characterized by positive N balance, the decrease in N retention in the steers supplemented 2 d/wk was due to higher (P < 0.01) urinary N loss. Ruminal fluid was sampled at 0, 2, 4, 6, 12, 24, 48, and 72 h after supplementation beginning on a day when both treatments were supplemented. Frequency x hour interactions (P < 0.02) were observed for ruminal N metabolism criteria. Counts of peptide- and AA-fermenting bacteria peaked at 2 h and returned to nadir by 12 h for steers supplemented 7 d/wk. Steers supplemented 2 d/wk peaked at 6 h with a greater population and returned to nadir at 48 h. Ruminal ammonia concentrations followed a similar trend. Specific activity of ammonia production was lower (P < or = 0.05) immediately after supplementation for steers supplemented 2 d/wk, but by 12 h was the same as for 7 d/wk steers. Ruminal peptides and free AA peaked at 2 h for steers supplemented 2 d/wk and were generally higher (P < or = 0.05) during the first 6 h compared with steers supplemented 7 d/wk. Total VFA concentration was not different (P = 0.35) due to supplementation frequency. Frequency x hour interactions (P < 0.01) were observed for all molar proportions of VFA. The molar proportion of acetate and acetate:propionate ratio were lower (P < 0.01) and the molar proportions of propionate and butyrate were higher for steers supplemented 2 d/wk from 4 h to 24 h. In conclusion, forage use and N balance improved with supplementation 7 d/wk, but supplementation 2 d/wk was associated with some desirable shifts in select ruminal events that may contribute to moderating potential negative impacts of supplementing infrequently.  相似文献   

12.
Two growth studies were conducted to determine the Met and Lys requirements of growing cattle. In each 84-d trial, steer calves were fed individually diets containing 44% sorghum silage, 44% corn cobs, and 12% supplement (DM basis) at an equal percentage of BW. In Trial 1, 95 crossbred steers (251 kg) were supplemented with urea or meat and bone meal (MBM). Incremental amounts of rumen-protected Met were added to MBM to provide 0, .45, .9, 1.35, 3, and 6 g/d metabolizable Met. In Trial 2, 60 steers (210 kg) were supplemented with urea or corn gluten meal (CGM). Incremental amounts of rumen-protected Lys were added to CGM to provide 0, 1, 2, 3, 4, 5, 6, 8, and 10 g/d metabolizable Lys. Supplementation with MBM and CGM increased the supply of metabolizable protein to the animal. Steers fed MBM plus 0 Met gained 49 g/d more than steers fed urea, whereas steers fed CGM plus 0 Lys gained 150 g/d more than steers fed urea. Supplementation of rumen-protected Met and Lys improved ADG in steers fed MBM and CGM, respectively (P < .10). Nonlinear analysis, comparing gain vs supplemental Met and Lys intake, predicted supplemental Met and Lys requirements of 2.9 and .9 g/d, respectively. This amount of additional Met promoted .13 kg/ d gain greater than MBM alone, and this amount of additional Lys promoted .10 kg/d gain greater than the CGM alone. Metabolizable Met and Lys requirements were predicted from Level 1 of NRC (1996) calculated metabolizable protein supply, amino acid analysis of abomasal contents, and the maximum response to supplemental AA. Steers gaining .39 kg/d required 11.6 g/ d Met or 3. 1% of the metabolizable protein requirement, whereas steers gaining .56 kg/d required 22.5 g/d Lys or 5.7% of the metabolizable protein requirement.  相似文献   

13.
Twenty-four beef steers (predominantly Angus x Hereford, 14 to 18 mo of age, 403 +/- 3 kg of BW), were housed and fed in individual pens for about 122 d. Twelve steers came from a herd that had been selected for growth (high growth; HG) and the other 12 from a herd with no selection program (low growth; LG). Another 6 steers (3 from each group) were slaughtered at the beginning to obtain the initial composition. All steers were fed the same corn-based diet (3.06 Mcal of ME/kg of DM, 13.6% CP) on an ad libitum basis. Two weeks before slaughter, total urine was collected for 5 d for estimation of 3-methylhistidine excretion and myofibrillar protein breakdown rates. Compared with LG steers, HG steers had less initial BW but greater final BW, DMI (7.52 vs. 6.37 kg/d), ADG (1.33 vs. 0.853 kg/d), G:F (0.176 vs. 0.133 kg/kg), ME intake (0.233 vs. 0.201 Mcal x kg of BW(0.75) x d(-1)), and retained energy (RE; 0.0711 vs. 0.0558 Mcal x kg of BW(0.75) x d(-1)); gained more fat (676 vs. 475 g/d); and tended to gain more whole body protein (100 vs. 72 g/d), with no difference in residual feed intake (RFI). Estimated net energetic efficiency of gain (k(g)) and ME for maintenance (ME(m)) did not differ between the 2 groups, averaging 0.62 and 0.114, respectively. The HG steers had greater HCW (350 vs. 329 kg), backfat (16.1 vs. 11.6 mm), and yield grades (3.53 vs. 2.80), with a similar dressing percent, KPH fat, LM area, and marbling score. Skeletal muscle protein gain (70.2 vs. 57.6 g/d) and fractional protein accretion rate (0.242 vs. 0.197%/d) tended to be greater in HG than in LG steers. Steers were classified into low (-0.367 kg/d) and high (0.380 kg/d) RFI classes. Compared with the high RFI steers, low RFI steers consumed less DM (6.61 vs. 7.52 kg/d) and ME (0.206 vs. 0.234 Mcal x kg of BW(0.75) x d(-1)) and tended to gain less fat (494 vs. 719 g/d), but were similar for initial and final BW, ADG, G:F, protein gain, HCW, dressing percent, backfat, KPH fat, LM area, marbling score, and yield grade, as well as for all observations related to myofibrillar protein metabolism. Residual feed intake may be positively [corrected] correlated with ME for maintenance. The maintenance energy requirement increased by 0.0166 Mcal x kg(-0.75) x d(-1) for each percentage increase in fractional protein degradation rate, confirming the importance of this process in the energy economy of the animal.  相似文献   

14.
The objectives of this experiment were to determine a NE value for pressed beet pulp and the value of concentrated separator by-product (de-sugared molasses) as a ruminal N source in growing and finishing diets for beef cattle. One hundred forty-four cross-bred beef steers (282 +/- 23 kg of initial BW) were used in 2 experiments (growing and finishing). A randomized complete block design was used, with a 3 x 2 factorial arrangement of treatments (level of pressed beet pulp and inclusion of concentrated separator by-product) for both studies. Steers were blocked by BW and allotted randomly to 1 of 6 treatments. In the growing study, the control diet contained 49.5% corn, 31.5% corn silage, 10.0% alfalfa hay, and 9.0% supplement (DM basis). Pressed beet pulp replaced corn at 0, 20, or 40% of dietary DM, and concentrated separator by-product replaced corn and urea at 10% of dietary DM. The growing study lasted for 84 d. Initial BW was an average of 2-d BW after a 3-d, restricted (1.75% of BW) feeding of 50% alfalfa hay and 50% corn silage (DM basis), and final BW was an average of 2-d BW after a 3-d, restricted (1.75% of BW) feeding of 31.5% corn silage, 10.0% alfalfa hay, 25.0% dry-rolled corn, 20.0% pressed beet pulp, 5.0% concentrated separator by-product, and 8.5% supplement (DM basis). After the growing study, the steers were weighed (415 +/- 32 kg), rerandomized, and allotted to 1 of 6 finishing diets. The control diet for the finishing study included 45% dry-rolled corn, 40% high-moisture corn, 5% brome hay, 5% pressed beet pulp, and 5% supplement. Pressed beet pulp replaced high-moisture corn at 5.0, 12.5, and 20.0% of the dietary DM, and concentrated separator by-product replaced high-moisture corn and supplement at 10.0% of diet DM. Steers were slaughtered on d 83 or 98 of the study. In the growing study, the addition of pressed beet pulp to growing diets linearly decreased (P = 0.001) DMI and ADG and inclusion of 10% concentrated separator by-product decreased (P = 0.001) G:F. Increased levels of pressed beet pulp in the finishing diets caused a linear decrease (P = 0.001) in ADG and tended (P = 0.06 and 0.07 for kg/d and % of BW, respectively) to quadratically decrease DMI, whereas addition of concentrated separator by-product increased (P = 0.02 and 0.001 for kg/d and % of BW, respectively) DMI. Apparent NEg of pressed beet pulp was 94.2% of that of corn in the growing study and 81.5% of that of corn in the finishing study.  相似文献   

15.
The brown midrib-3 (bm3) gene mutation has been incorporated into corn plants to potentially improve fiber digestibility. The objectives of this study were to determine the effect of bm3 corn silage on digestion and performance of growing beef steers and to determine whether limiting intake would further enhance fiber digestibility of bm3 corn silage. A bm3 hybrid and its isogeneic normal counterpart were harvested at three-quarters kernel milk line. Neutral detergent fiber, ADF, and ADL were 4.5, 6.9, and 1.9 units lower, respectively, and DM was 5.4 units higher for bm3 than for normal silage. In Trial 1, eight ruminally fistulated Angus crossbred steers (224 +/- 24 kg) were randomly assigned to a 2 x 2 factorial arrangement of treatments in a replicated 4 x 4 Latin square design. Steers had ad libitum feed access or were restricted to 80% of ad libitum intake of diets containing 86% normal corn silage (Control) or bm3 corn silage (BMCS). The remainder of the diets consisted of soybean meal, urea, monensin, vitamins, and minerals. Dry matter intake was greater (P < 0.01) for steers offered ad libitum access to BMCS than for those with ad libitum access to the Control diet. The BMCS treatment resulted in improved (P < 0.05) apparent total-tract digestibility of DM, OM, NDF, and ADF. Mean concentration of total VFA and molar proportions of acetate were increased (P < 0.05) by feeding BMCS. There tended to be a DMI x hybrid interaction (P = 0.16) for apparent total-tract digestibility of NDF. When diets were offered ad libitum, BMCS increased NDF digestibility by 10.5 percentage units compared with Control, but, when DMI was limited, BMCS increased NDF digestibility by 15.8 percentage units. In Trial 2, 128 steer contemporaries of those used in Trial 1 (245 +/- 13 kg) were offered ad libitum access to BMCS or Control diets as used in Trial 1. After a 112-d treatment period, concentrate in the diet was increased, and all steers were fed a common finishing diet. During the 112-d treatment period, steers receiving BMCS consumed 0.45 kg more DM/d (P < 0.05) and had similar ADG (P > 0.10), compared with those steers receiving the Control silage. This resulted in poorer (P < 0.01) feed efficiency for steers receiving BMCS. Finishing phase and overall performance of the steers was not different (P > 0.10) due to treatment. Although feeding BMCS in growth-phase diets resulted in increased daily DMI and improved digestibility of DM and fiber, it did not result in improved steer feedlot ADG compared with Control silage.  相似文献   

16.
Two hundred eighty-eight beef steers (British x Continental x Brahman) were fed a 90% concentrate diet containing either no ionophore (control), laidlomycin propionate at either 6 or 12 mg/kg of dietary DM, or monensin plus tylosin (31 and 12 mg/kg of DM, respectively). Neither of the two levels of laidlomycin propionate nor monensin plus tylosin affected (P greater than .10) ADG or feed:gain ratio. Monensin plus tylosin reduced (P less than .01) daily DMI for the 161-d trial period compared with the other three treatments. Laidlomycin propionate at 6 mg/kg increased (P less than .05) DMI relative to the control, laidlomycin propionate at 12 mg/kg, and monensin plus tylosin diets during the 2nd wk of the trial and from d 57 to 84. Treatments did not affect carcass measurements. In a second experiment, 12 ruminally cannulated steers were fed diets containing no ionophore or laidlomycin propionate at either 6 or 12 mg/kg of DM. Samples were obtained for two consecutive days while the dietary concentrate level was 75%, after which the diet was switched abruptly to 90% concentrate, and samples were collected on several days during a 21-d period. The rate at which steers consumed their daily allotment of feed was not altered markedly by laidlomycin propionate. Likewise, laidlomycin propionate did not affect total ruminal VFA concentrations or proportions. Ruminal concentrations of D-lactate were reduced (P less than .10) by 6 but not by 12 mg/kg of laidlomycin propionate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Over 2 yr, 45 Angus-sired steer offspring of Angus and Angus crossbred females were used to determine the effects of early weaning on feedlot performance, carcass characteristics, and economic return to the cow-calf enterprise. Steers were assigned by birth date to one of two weaning treatments: 1) weaned at an average age of 100 d (early weaned) or 2) weaned at an average age of 200 d (normally weaned). Within 36 d of weaning, steers were given ad libitum access to a high-concentrate diet (90% dry, wholeshelled corn). Steers were harvested when 12th-rib fat thickness averaged 1.27 cm within treatment as estimated by ultrasound. Carcass measurements were taken 48 h postmortem and rib steak tenderness was determined at 14 d postmortem by Warner-Bratzler shear force. Early-weaned steers had greater ADG from time of early weaning to normal weaning than suckling normally weaned steers (1.27 vs. 0.86 kg/d, respectively; P < 0.001). However, early-weaned steers tended to have lower ADG for the entire finishing period than did normally weaned steers (1.33 vs. 1.39 kg/d, respectively; P = 0.08). Compared with normally weaned steers, early-weaned steers had lower daily DMI (7.40 vs. 5.95 kg/d, respectively; P < 0.001) and lower total DMI for the finishing period (1,618 vs 1,537 kg, respectively; P < 0.05). Early-weaned steers had greater gain:feed for the finishing period than normally weaned steers (0.223 vs 0.189, respectively; P < 0.001). Carcass weights were lighter for early-weaned steers than for normally weaned steers (277.9 vs. 311.2 kg, respectively; P < 0.001). There was no difference in yield grade (3.1 vs. 3.2; P < 0.10) between treatments. All carcasses graded Low-Choice or greater, and there was no difference in the percentage of carcasses grading Mid-Choice or greater (94.5 vs 83.9% for early- and normally-weaned, respectively; P > 0.10). Warner-Bratzler shear force values were similar between treatments. Early-weaned steers had a lower cost of gain than normally weaned steers ($ 0.82 vs. 0.91/kg, respectively; P < 0.001). However, due to lighter carcass weights, early-weaned steers generated less return to the cow-calf enterprise than normally weaned steers ($ 380.89 vs 480.08/steer; P < 0.001). The early weaning of steers at 100 d of age decreased total DMI, improved gain:feed, and lowered the cost of gain; however, return to the cow-calf enterprise was decreased due to lighter carcass weights.  相似文献   

18.
Metabolic demand for sulfur-containing AA increases during inflammation in nonruminants. Therefore, Met supplementation may alleviate the negative effects of infection on N balance. Effects of gram-negative bacterial lipopolysaccharide (LPS) and supplemental dietary Met on N balance, serum hormones and haptoglobin, and plasma urea-N and AA were evaluated in 20 Angus-cross steers (BW = 262 +/- 6.3 kg). Treatments (2 x 2 factorial) were infusion of no LPS (-LPS) or a prolonged low dose of LPS (+LPS) and dietary supplementation of no (-MET) or 14 g/d (+MET) of rumen-protected Met (providing 7.9 g/d of dl-Met). Steers were adapted to a roughage-based diet (DMI = 1.4% of BW daily) and supplemental Met for 14 d, and were then infused (1 mL/min via intravenous catheter) with LPS on d 1 (2 microg/kg of BW) and 3 (1 microg/kg of BW) of a 5-d collection period. Blood was collected on d 1, before LPS infusion, and at 2, 4, 6, 8, 10, 12, and 24 h after LPS challenge. Diet samples, feed refusals, feces, and urine were collected daily for 5 d. Rectal temperature and serum concentrations of cortisol, prolactin, tumor necrosis factor-alpha, and haptoglobin increased, whereas thyroxine and triiodothyronine decreased for +LPS vs. -LPS steers (LPS x h; P < 0.01). Plasma urea-N was greater for +LPS than -LPS steers (LPS; P = 0.03), and serum IGF-1 was not affected (P > or = 0.26) by LPS or Met. Plasma concentrations of Thr, Lys, Leu, Ile, Phe, Trp, Asn, Glu, and Orn decreased, plasma Ala increased, and Gly and Ser initially increased, then declined in +LPS vs. -LPS steers (LPS x h; P < or = 0.04). Plasma Met was greater for +MET than -MET steers before LPS infusion, but declined in +MET steers after LPS infusion (LPS x Met x h; P < 0.01). By design, DMI was not different, but DM digested was less (P = 0.04) for +LPS than -LPS steers. Infusion of LPS did not affect (P > or = 0.24) N intake, fecal N excretion, or N digested, but resulted in greater (P < 0.01) urinary N excretion and less (P < 0.01) N retention. The absence of an LPS x Met interaction (P = 0.26) for N retention indicates that supplemental Met does not improve the N utilization of growing beef steers exposed to a gram-negative bacterial endotoxin. Decreases in plasma concentrations of several essential AA in +LPS steers suggest that metabolic demand for these AA likely increased in steers exposed to endotoxin.  相似文献   

19.
Six experiments were conducted to evaluate dietary cation-anion difference (DCAD) in concentrate diets on urinary pH, feedlot performance, and N mass balance. In Exp. 1, 15 wether lambs (33.5 ± 3.0 kg) in five 3 × 3 Latin squares were fed a basal diet of 82.5% dry-rolled corn (DRC), 7.5% alfalfa hay, 5% molasses, and 5% supplement with different proportions of anionic and cationic salts. The DCAD was -45, -24, -16, -8, 0, +8, +16, +24, +32, and +40 mEq per 100 g of DM with the control basal diet (DCAD = +8) included in each square. Urinary pH increased (cubic, P < 0.01) as DCAD increased and DMI increased linearly (P < 0.01) with increasing DCAD. In Exp. 2 and 3, 8 Holstein steers (312 ± 24 kg) were used in 2 consecutive 4 × 4 Latin squares. Steers were fed either the same basal diet as Exp. 1 or a basal diet with 20% wet distillers grains (WDGS) replacing DRC. In Exp. 2, DCAD was adjusted to -2, -12, and -22 mEq per 100 g of DM from the basal diet (DCAD = +8) and DCAD was adjusted in Exp. 3 to -12, -22, and -32 mEq per 100 g of DM from the basal WDGS diet (DCAD = -2). Urinary pH decreased linearly as DCAD decreased (P < 0.01) in both experiments, whereas DMI decreased linearly in Exp. 2 (P = 0.02) but not Exp. 3 (P = 0.96). In Exp. 4, 6 crossbred steers (373 ± 37 kg) were used in a 2-period crossover design. Steers were fed the same basal diet as Exp. 3 with DCAD of -16 (NEG) and +20 (POS) mEq per 100 g of DM. Urinary pH and DMI (P < 0.05) were less for cattle fed the NEG diet compared with POS. In 2 experiments, steers (n = 96 each) were fed NEG or POS as calves (260 ± 22 kg of BW) for 196 d from November to May (Exp. 5) or as yearlings (339 ± 32 kg of BW) for 145 d from June to October (Exp. 6). Final BW, DMI, ADG, and HCW were not different (P > 0.11) among treatments in either experiment. Efficiency of BW gain was increased (P = 0.05) for steers fed NEG compared with POS in Exp. 5 but was not different (P = 0.11) in Exp. 6. Amount of N intake, retention, excretion, and manure N (kg/steer) were not different (P > 0.11) among treatments in either experiment. Manure pH (soil, feces, and urine) was decreased (P < 0.01) in pens fed NEG compared with POS in both experiments. Amount of N lost (kg/steer) was not different (P = 0.44) in Exp. 5, but tended (P = 0.09) to be 10.6% greater for POS compared with NEG in Exp. 6. Urinary pH was decreased by reducing DCAD, but this had minimal effect on N losses in open feedlot pens in these experiments.  相似文献   

20.
Because roughage in feedlot diets is one of the most expensive ingredients on an energy basis, regimens that minimize roughage usage are of interest. Crossbred steers of British breeds (n = 112, initial BW = 405 kg) were used to compare the feeding of diets containing 2% roughage from d 22 through 84 and 10% roughage from d 85 to finish (d 133; 2/10%) to the feeding of 10% roughage throughout the finishing period (10/10%); all diets were based on steam-flaked sorghum grain and contained monensin and tylosin. When the 2% roughage diet was fed, steers consumed less feed (6.8 vs 7.8 kg/d, P less than .01), tended to gain less (1.11 vs 1.20 kg/d, P = .13), and were numerically more efficient (16.5 vs 15.5 kg of gain/100 kg of DMI, P greater than .2) than steers fed the 10% roughage diet (10/10%). After the roughage content was increased from 2 to 10% on d 85 (all steers fed 10% roughage), steers fed the 2/10% regimen had greater DMI (8.4 vs 8.0 kg/d, P = .08) and ADG (1.29 vs 1.09 kg, P = .06), and tended to be more efficient (15.4 vs 13.6 kg of gain/100 kg of DMI, P = .10) than steers fed the 10/10% regimen. Steers fed the two regimens had similar (P greater than .2) overall gain performance. The 2/10% regimen tended to have a greater percentage of Choice carcasses (58 vs 42%, P = .14) and numerically more liver abscesses (24 vs 15%, P greater than .2) than the 10/10% regimen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号