首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of coastal systems has led to increased impacts from hurricanes and storm surges and is of concern for coastal endemics species. Understanding the influence of disturbance on coastal populations like the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) is important to understanding long-term dynamics and for recovery planning. We evaluated the effect of disturbance on the rabbits by determining which patch, habitat, and landscape characteristics influenced habitat use following Hurricane Wilma. We determined patch-level occurrence 6–9 months prior to Hurricane Wilma, within 6 months following the hurricane, and 2 years after the storm to quantify rates of patch abandonment and recurrence. We observed high patch abandonment (37.5% of used patches) 6 months after Hurricane Wilma and low rates of recurrence (38.1% of abandoned patches) 2 years after the storm, an indication that this storm further threatened marsh rabbit viability. We found the proportion of salt-tolerant (e.g., mangroves and scrub mangroves) and salt-intolerant (e.g., freshwater wetlands) vegetation within LKMR patches were negatively and positively correlated with probability of patch abandonment, respectively. We found patch size and the number of used patches surrounding abandoned patches were positively correlated with probability of recurrence. We suggest habitat use following this hurricane was driven by the differential response of non-primary habitats to saline overwash and habitat loss from past development that reduced the size and number of local populations. Our findings demonstrate habitat use studies should be conducted following disturbance and should incorporate on-going effects of development and climate change.  相似文献   

2.
Habitat management is essential for safeguarding important flora and fauna. Further, habitat connectivity is a crucial component for maintaining biodiversity given that it is known to have implications for species persistence. However, damage to habitat due to natural and human induced hazards can alter spatial relationships between habitats, potentially impacting biodiversity. Therefore, the susceptibility of spatial relationships to patch loss and associated connectivity degradation is obviously an important factor in maintaining existing or planned habitat networks. Identifying patches vital to connectivity is critical both for effectively prioritizing protection (e.g., enhancing habitat connectivity) and establishing disaster mitigation measures (e.g., stemming the spread of habitat loss). This paper presents a methodology for characterizing connectivity associated with habitat networks. Methods for evaluating habitat network connectivity change are formalized. Examples are presented to facilitate analysis of connectivity in the management of biodiversity.
Alan T. MurrayEmail:
  相似文献   

3.
The discipline of landscape ecology recognizes the importance of measuring habitat suitability variables at spatial scales relevant to specific organisms. This paper uses a novel multi-scale hierarchical patch delineation method, PatchMorph, to measure landscape patch characteristics at two distinct spatial scales and statistically relate them to the presence of state-listed endangered yellow-billed cuckoos (Coccyzus americanus occidentalis) nesting in forest patches along the Sacramento River, California, USA. The landscape patch characteristics calculated were: patch thickness, area of cottonwood forest, area of riparian scrub, area of other mixed riparian forest, and total patch area. A third, regional spatial variable, delineating the north and south portions of study area was also analyzed for the effect of regional processes. Using field surveys, the landscape characteristics were related to patch occupancy by yellow-billed cuckoos. The area of cottonwood forest measured at the finest spatial scale of patches was found to be the most important factor determining yellow-billed cuckoo presence in the forest patches, while no patch characteristics at the larger scale of habitat patches were important. The regional spatial variable was important in two of the three analysis techniques. Model validation using an independent data set of surveys (conducted 1987–1990) found 76–82% model accuracy for all the statistical techniques used. Our results show that the spatial scale at which habitat characteristics are measured influences the suitability of forest patches. This multi-scale patch and model selection approach to habitat suitability analysis can readily be generalized for use with other organisms and systems.  相似文献   

4.
Habitat fragmentation is considered a major cause of biodiversity loss, both on terrestrial and marine environments. Understanding the effects of habitat fragmentation on the structure and dynamics of natural communities is extremely important to support management actions for biodiversity conservation. However, the effects of habitat fragmentation on marine communities are still poorly understood. Here we evaluated whether habitat fragmentation affects the structure of epifaunal communities in the sublittoral zone, in the northern coast of São Paulo state, Brazil. Five experimental landscapes were constructed, each one forming a large continuous patch. After 4 weeks, each landscape was cut on three patches of different sizes. Epifaunal macroinvertebrate communities were sampled at the edge and interior of experimental landscapes before manipulation to evaluate edge effects. After four more weeks, communities from the three patch sizes were also sampled to evaluate patch size effects. We compared the diversity of communities at different levels of fragmentation by total abundance, rarefied taxon richness, Shannon–Wiener diversity index, Simpson’s dominance index, and abundance of dominant taxa. Higher taxon richness and gastropod abundance were recorded in the patch edges, but no significant differences were found among patch sizes. We found a significant effect of habitat fragmentation, with lower abundances of Gammaridea (the dominant taxon), Ophyuroidea, and Pycnogonida after the experimental fragmentation. Lower abundances of dominant taxa resulted in higher diversity and lower dominance in fragmented landscapes when compared to integral, pre-manipulation landscapes. Our results suggest that fragmentation of landscapes in the system studied can reduce dominance, and that even small patch sizes can be important for the conservation of macroinvertebrate diversity.  相似文献   

5.
Coops  N.C.  Catling  P.C. 《Landscape Ecology》2002,17(2):173-188
We present an approach that allows current, retrospective and future relative abundances of mammal species to be predicted across landscapes. A spatial generalized regression model of species relative abundance based on habitat quality and time since disturbance was combined with coverages of the spatial distribution of habitat quality derived from a simulation model which predicts the historical and future spatial arrangement of forest habitat. The strength of this approach is that the input habitat data can be derived as part of a standard forest inventory mapping program with the addition of high spatial resolution remote sensing imagery. Furthermore, it operates at the scale used for wildlife management in Australia, which makes it widely applicable. To demonstrate the approach we use data collected over 20 years on the long-nosed potoroo (Potorous tridactylus) and the large wallabies (red-necked wallaby, Macropus rufogriseus, and swamp wallaby, Wallabia bicolor) and their habitats following wildfire. Results indicate the relative abundance of the potoroo has increased, from initially sparse numbers of less than 0.5 % of plot-night occurrences to close to 3% approximately twenty years after a major fire event. The large wallabies by contrast decreased in relative abundance from about 20% since the major fire event. Presently the relative abundance of large wallabies was modelled at 2% of plot-nights with tracks which was very low. Predictions of future relative abundance without additional disturbance were low, with the region likely to be unsuitable for the species in the next 5 years. These models offer tools for investigating the current and historical abundances of key species which can provide data to forest managers for wildlife management thereby translating current scientific understanding into tools suitable for every-day use by forest managers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We evaluated the effects of aspen patch area and orientation (relative to North and an elevational gradient) on the early breeding season abundance and species richness of migratory and resident birds in the northern ungulate winter range of the Yellowstone ecosystem, USA. Using an information-theoretic model selection approach, we found patch area and basal area of aspen to be the most important covariates for long distance migrants, and patch orientation relative to elevational gradient the most important covariate for residents/short-distance migrants. Basal area of live aspen and aspen snags was marginally important for both migratory strategies, likely because aspen snags are an important habitat for most cavity-nesting species. Landscape ecological theory postulates passive interception of dispersing or migrating organisms by patches of suitable habitat. Our results suggest that residents/short-distance migrants are intercepted by patches that are oriented perpendicular to the elevational gradient of our study region resulting in greater abundances and species richness in those patches. However, long-distance migrants appear to use aspen patches without regard to orientation, but rather to patch area.  相似文献   

7.
Tick density and population dynamics are important factors in the ecological processes involved in pathogen circulation in a habitat. These characteristics of tick populations are closely linked to habitat suitability, which reflects the limiting ecological factors and landscape features affecting tick populations; however, little work has been done on the regional assessment of habitat suitability. In this study, a regional model for the distribution and abundance of the tick Ixodes ricinus in central Spain is developed. An occurrence and an abundance model were constructed; climate and vegetation variables were found to be the main predictors of both occurrence and density in a relatively homogeneous matrix of habitat patches, whereas topographical variables were found to have small contributions and were therefore discarded. The residuals of the abundance model showed good correlation with the isolation of each patch. The predictive power of the abundance model was greatly enhanced by inclusion of the traversability (a measure of the permeability of each patch to the propagules of the metapopulation) and recruitment (an index of the relative importance of each patch to the traffic through the entire habitat network). The removal from the landscape of the patches whose recruitment values were in the top 10% has a critical effect on tick density, an effect not observed when patches are removed at random. These results indicate that permanent tick populations can be sustained only in landscapes containing a minimum network of viable sites. Graph theory and measurements of patch isolation should prove to be important elements in the forecasting of tick abundance and the management of the features underlying the landscape ecology of tick populations and pathogen circulation in the field.  相似文献   

8.
Island biogeographers have predicted that in oceanic systems, oblong islands oriented perpendicular to the dispersal paths of organisms should intercept more species and individuals than (1) circular islands of the same size, and (2) oblong islands of equal area oriented parallel to the direction of travel. Landscape ecologists expect similar relations with habitat patches in a terrestrial matrix. Yet in neither situation is there adequate empirical information to permit conclusions about the prevalence of such effects. To test the hypothesis that intercept-related patch variables influence community structure on the landscape scale, we studied relations between the richness and abundance of cavity-nesting birds and patch shape, size, and orientation relative to a northerly migration path. The influences of other patch features on nest abundances were removed analytically. Multiple regression indicated that the mean and total number of nesting species, and nest abundances for migrants were significantly associated with patch orientation or a patch area x orientation interaction, but not patch shape. Nest abundances for permanent residents were not associated with patch shape or orientation, although area effects, possibly reflecting dispersal interception, were evident. These results are consistent with the hypothesis that stochastic interception of migrating or dispersing organisms influences patch community structure. In addition to richness and abundance effects apparent in this analysis, the sex ratio, age structure, growth rate, social structure, and genetic features of patch populations may also be influenced. The interception of moving organisms by patches may thus be a key factor influencing population and community persistence in reserves. If so, landscape structure could be manipulated to maximize the interception of dispersing or migrating organisms, or minimize it if the effects are undesirable.  相似文献   

9.
Landscape analysis and delineation of habitat patches should take into account organism-specific behavioral and perceptual responses to landscape structure because different organisms perceive and respond to landscape features over different ranges of spatial scales. The commonly used methods for delineating habitat based on rules of contiguity do not account for organism-specific responses to landscape patch structure and have undesirable properties, such as being dependent on the scale of base map used for analysis. This paper presents an improved patch delineation algorithm, “PatchMorph,” which can delineate patches across a range of spatial scales based on three organism-specific thresholds: (1) land cover density threshold, (2) habitat gap maximum thickness (gap threshold), and (3) habitat patch minimum thickness (spur threshold). This algorithm was tested on an “idealized” landscape with landscape gaps and spurs of known size, and delineated patches as expected. It was then applied to delineate patches from a neutral random fractal landscape, which showed that as the input gap and spur thickness thresholds were increased, the number of patches decreased from 59 (low thresholds) patches to 1 (high thresholds). The algorithm was then applied to model western yellow-billed cuckoo (Coccyzus americanus occidentalis) nesting habitat patches based on spur and gap thresholds specific to this organism. Both these analyses showed that fewer patches were delineated by PatchMorph than by rules of contiguity, and those patches were larger, had smoother edges, and had fewer gaps within the patches. This algorithm has many applications beyond those presented in this paper, including habitat suitability analysis, spatially explicit population modeling, and habitat connectivity analysis.  相似文献   

10.
The understanding and prediction of the responses of animal populations to habitat fragmentation is a central issue in applied ecology. The identification of habitat variables associated to patch occupancy is particularly important when habitat quality is affected by human activities. Here, we analyze the influence of patch and landscape characteristics on patch occupancy by the subterranean herbivorous rodent Ctenomys porteousi. Patch occupancy was monitored in a network of 63 habitat patches identified by satellite imagery analysis which extends along almost the whole distributional range for C. porteousi. Suitable habitat for the occurrence of C. porteousi is highly fragmented and represents <10% of the total area in its distributional range. The distribution of C. porteousi in the patch network is affected not only by characteristics of the habitat patches, but also by those of the surrounding landscape matrix. Significant differences between occupied and empty patches were found in several environmental variables. Overall, occupied patches were larger, less vegetated, more connected, and had larger neighbor patches than empty patches. A stepwise procedure on a generalized linear model selected four habitat variables that explain patch occupancy in C. porteousi; it included the effects of habitat quality in the matrix surrounding the patch, average vegetation cover in the patch, minimum vegetation cover in the matrix surrounding the patch, and the area of the nearest neighbor patch. These results indicate that patch occupancy in C. porteousi is strongly influenced by the availability and quality of habitat both in the patch and in the surrounding landscape matrix.  相似文献   

11.
Studies investigating animal response to habitat in marine systems have mainly focused on habitat preference and complexity. This study is one of the first to investigate the affect of benthic habitat corridors and their characteristics on dispersal and colonization by estuarine macrofuana. In this study, mark-recapture field experiments using artificial seagrass units (ASUs) assessed the effects of seagrass corridors, interpatch distance (5 m vs. 10 m), and the ratio of corridor width to patch width (0.5 m:1 m vs. 0.25 m:1 m) on dispersal of two benthic organisms: the highly mobile grass shrimp, Palaemonetes sp., and the less mobile bay scallop, Argopecten irradians, in two estuarine systems in southeastern North Carolina (NC). The presence of a seagrass corridor, interpatch distance, and corridor width to patch width ratios did not significantly affect shrimp or scallop dispersal to receiver patches. Bay scallop dispersal to receiver patches was significantly higher at one site (Drum Shoals) with relatively high flow, compared to a second site (Middle Marsh) with lower flow. We then examined colonization of estuarine macrofauna to seagrass patches with and without corridors to determine which, if any, taxonomic groups respond positively to corridors at scales of 10 m and over 1 month. Colonization of estuarine macrofauna to seagrass patches was enhanced in the presence of corridors at a relatively large interpatch distance (10 m), which was statistically significant for relatively slow moving polychaete worms. Thus, although benthic habitat corridors may facilitate dispersal of relatively slow moving estuarine animals between otherwise isolated seagrass patches, several common seagrass fauna such as grass shrimp and bay scallops apparently use water currents to rapidly disperse across the seagrass/sand landscape.  相似文献   

12.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Patch geometry and habitat quality among patches are widely recognized as important factors affecting population dynamics in fragmented landscapes. Little is known, however, about the influence of within-patch habitat quality on population dynamics. In this paper, we investigate the relative importance of patch geometry and within-patch habitat quality in determining population dynamics using a spatially explicit, agent-based model. We simulate two mobile species that differ in their species traits: one resembles a habitat specialist and the other a habitat generalist. Habitat quality varies continuously within habitat patches in space (and time). The results show that spatial variation in within-patch quality, together with patch area, controls population abundance of the habitat specialist. In contrast, the population size of the generalist species depends on patch area and isolation. Temporal variation in within-patch quality is, however, less influential in driving the population resilience of both species. We conclude that specialist species are more sensitive than generalist species to within-patch variation in habitat quality. The patch area-isolation paradigm, developed in metapopulation theory, should incorporate variation in within-patch habitat quality, particularly for habitat specialists.  相似文献   

14.
A computer simulation model was used to derive estimates of the probability of extinction of populations of the endangered species, Leadbeater's Possum (Gymnobelideus leadbeateri), inhabiting ensembles of habitat patches within two wood production forest blocks in central Victoria, south-eastern Australia. Data on the habitat patches were extracted from forest inventory information that had been captured in the database of a Geographic Information System (GIS). Our analyses focussed on a range of issues associated with the size, number and spatial configuration of patches of potentially suitable habitat that occur within the Ada and Steavenson Forest Blocks. The sensitivity of extinction risks in these two areas to variations in the movement capability ofG. leadbeateri was also examined.Our analyses highlighted major differences in the likelihood of persistence of populations ofG. leadbeateri between the Ada and Steavenson Forest Blocks. These were attributed to differences in the spatial distribution and size of remnant old growth habitat patches as well as the impacts of wildfires. In addition, simulation modelling revealed a different relative contribution of various individual patches, and ensembles of patches, to metapopulation persistence in the two study areas. In those scenarios for the Ada Forest Block in which the impacts of wild-fires were not modelled, our analyses indicated that a few relatively large, linked patches were crucial for the persistence of the species and their loss elevated estimates of the probability of extinction to almost 100%. A different outcome was recorded from simulations of the Steavenson Forest Block which, in comparison with the Ada Forest Block, is characterized by larger and more numerous areas of well connected patches of old growth forest and where we included the impacts of wildfires in the analysis. In this case, metapopulation persistence was not reliant on any single patch, or small set of patches, of old growth forest. We found that in some circumstances the probability that a patch is occupied whilst the metapopulation is extant may be a good measure of its value for metapopulation viability. Another important outcome from our analyses was that estimates of extinction probability were influenced both by the size and the spatial arrangement of habitat patches. This result emphasizes the importance for modelling metapopulation dynamics of accurate spatial information on habitat patchiness, such as the data used in this study which were derived from a GIS.The values for the predicted probability of extinction were significantly influenced by a range of complex inter-acting factors including: (1) the occurrence and extent of wildfires, (2) the addition of logging exclusion areas such as forest on steep and rocky terrain to create a larger and more complex patch structure, (3) estimates of the quality of the habitat within the logging exclusion areas, and (4) the movement capability ofG. leadbeateri. Very high values for the probability of extinction of populations ofG. leadbeateri were recorded from many of the simulations of the Ada and Steavenson Forest Blocks. This finding is the result of the limited areas of suitable old growth forest habitat for the species in the two areas that were targeted for analysis. Hence, there appears to be insufficient old growth forest in either of the two forest blocks to be confident that they will support populations ofG. leadbeateri in the long-term, particularly if a wildfire were to occur in the next 150 years.The results of sensitivity analyses indicated that estimates of the probability of extinction ofG. leadbeateri varied considerably in response to differences in the values for movement capability modelled. This highlighted the need for data on the dispersal behaviour of the species.  相似文献   

15.
The distribution and abundance of a species may be simultaneously influenced by both local-scale habitat features and the broader patch and landscape contexts in which these populations occur. Different factors may influence patch occupancy (presence–absence) versus local abundance (number of individuals within patches), and at different scales, and thus ideally both occupancy and abundance should be investigated, especially in studies that seek to understand the consequences of land management on species persistence. Our study evaluated the relative influences of variables associated with the local habitat patch, hillside (patch context), and landscape context on patch occupancy and abundance of the collared lizard (Crotaphytus collaris) within tallgrass prairie managed under different fire and grazing regimes in the northern Flint Hills of Kansas, USA. Using a multi-model information-theoretic approach that accounted for detection bias, we found that collared lizard abundance and occupancy was influenced by factors measured at both the local habitat and landscape scales. At a local scale, collared lizard abundance was greatest on large rock ledges that had lots of crevices, high vegetation complexity, and were located higher up on the hillslope. At the landscape scale, collared lizard abundance and occupancy were both higher in watersheds that were burned frequently (1–2 year intervals). Interestingly, grazing only had a significant effect on occupancy and abundance within less frequently burned (4-year burn interval) watersheds. Our results suggest that, in addition to the obvious habitat needs of this species (availability of suitable rock habitat), land-management practices have the potential to influence collared lizard presence and abundance in the grasslands of the Flint Hills. Thus, mapping the availability of suitable habitat is unlikely to be sufficient for evaluating species distributions and persistence in such cases without consideration of landscape management and disturbance history.  相似文献   

16.
Habitat fragmentation, patch quality and landscape structure are important predictors for species richness. However, conservation strategies targeting single species mainly focus on habitat patches and neglect possible effects of the surrounding landscape. This project assesses the impact of management, habitat fragmentation and landscape structure at different spatial scales on the distribution of three endangered butterfly species, Boloria selene, Boloria titania and Brenthis ino. We selected 36 study sites in the Swiss Alps differing in (1) the proportion of suitable habitat (i.e., wetlands); (2) the proportion of potential dispersal barriers (forest) in the surrounding landscape; (3) altitude; (4) habitat area and (5) management (mowing versus grazing). Three surveys per study site were conducted during the adult flight period to estimate occurrence and density of each species. For the best disperser B. selene the probability of occurrence was positively related to increasing proportion of wetland on a large spatial scale (radius: 4,000 m), for the medium disperser B. ino on an intermediate spatial scale (2,000 m) and for the poorest disperser B. titania on a small spatial scale (1,000 m). Nearby forest did not negatively affect butterfly species distribution but instead enhanced the probability of occurrence and the population density of B. titania. The fen-specialist B. selene had a higher probability of occurrence and higher population densities on grazed compared to mown fens. The altitude of the habitat patches affected the occurrence of the three species and increasing habitat area enhanced the probability of occurrence of B. selene and B. ino. We conclude that, the surrounding landscape is of relevance for species distribution, but management and habitat fragmentation are often more important. We suggest that butterfly conservation should not focus only on a patch scale, but also on a landscape scale, taking into account species-specific dispersal abilities.  相似文献   

17.
We tested whether size of habitat patches and distance between patches are sufficient to predict the distribution of the mountain vizcacha Lagidium viscacia a large, rock-dwelling rodent of the Patagonian steppe Argentina, or whether information on other patch and landscape characteristics also is required. A logistic regression model including the distance between rock crevices and depth of crevices, distance between a patch and the nearest occupied patch, and whether or not there was a river separating it from the nearest occupied patch was a better predictor of patch occupancy by mountain vizcachas than was a model based only on patch size and distance between patches. Our results indicate that a simple metapopulation analysis based on size of habitat patches and distance between patches may not provide an accurate representation of regional population dynamics if patches vary in habitat quality independently of patch size and features in the matrix alter connectivity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Birds living in fragmented habitat may occupy territories comprising more than one patch. This paper uses a theoretical model to investigate the costs (in terms of time and energy) of crossing gaps between patches for birds feeding young in the nest, using the great tit (Parus major) as an example. When the proportion of foraging trips involving gap-crossing was small (25%), gaps of about 300–550 m (depending on body mass and flight speed) could be crossed without exceeding likely maximum sustainable daily energy expenditure (DEEmax). However, a penalty of time lost in crossing gaps of about one hour was incurred. For more gap-crossing (due to larger brood size and/or a greater proportion of gap-crossing trips), distances that could be crossed decreased rapidly to about 50–100 m and time lost increased to more than six hours. Crossing gaps at maximum range speed, rather than at the slower minimum power speed, reduced flight times by 42% and slightly reduced overall daily energy expenditure because the higher flight costs per minute were more than off-set by the shorter flight times. Smaller body mass (17 g versus 19 g) was advantageous for gap-crossing, the distances which could be crossed without exceeding DEEmax being almost doubled for the smaller mass. The influence of changes in wing morphology, fat load and prey load size on the energetics of gap-crossing were also considered. Although the model was constructed for a woodland bird, problems of time and energy expenditure associated with gap-crossing will affect many species which exploit patchy resources, especially when the spacing of the patches increases, for example due to habitat loss and modification. In landscapes where semi-natural habitat is highly fragmented and most surviving patches are small (e.g., many farming landscapes) the costs of multiple patch use may represent another mechanism by which habitat fragmentation reduces the reproductive potential of the inhabitants of habitat patches which are of acceptable or even good quality, but are small.  相似文献   

19.
Rippel  Tyler M.  Mooring  Eric Q.  Tomasula  Jewel  Wimp  Gina M. 《Landscape Ecology》2020,35(10):2179-2190
Context

Habitat fragmentation is known to be one of the leading causes of species extinctions, however few studies have explored how habitat fragmentation impacts ecosystem functioning and carbon cycling, especially in wetland ecosystems.

Objectives

We aimed to determine how habitat fragmentation, defined by habitat area and distance from habitat edge, impacts the above-ground carbon cycling and nutrient stoichiometry of a foundation species in a coastal salt marsh.

Methods

We conducted our research in a salt marsh in the Mid-Atlantic United States, where the foundation grass species Spartina patens is being replaced by a more flood-tolerant grass, leading to highly fragmented habitat patches. We quantified decomposition rates, live biomass, and litter accumulation of S. patens at patch edges and interiors. Additionally, we measured relevant characteristics (e.g., habitat area, elevation, microclimate) of S. patens patches.

Results

Habitat edge effects, and not habitat area effects, had distinct impacts on ecosystem functioning. Habitat edges had less litter accumulation, faster decomposition rates, a warmer and drier microclimate, and lower elevations than patch interiors. Patches with low elevation edges had the fastest decomposition rates, while interiors of patches at any elevation had the slowest decomposition rates. Notably, these impacts were not driven by changes in primary production.

Conclusion

Habitat fragmentation impacts the above-ground carbon cycling of S. patens in coastal wetlands by altering litter decomposition, but not primary production, through habitat edge effects. Future research should investigate whether this pattern scales across broader landscapes and if it is observable in other wetland ecosystems.

  相似文献   

20.
Bosco  Laura  Wan  Ho Yi  Cushman  Samuel A.  Arlettaz  Raphaël  Jacot  Alain 《Landscape Ecology》2019,34(1):105-117
Context

Herbicide treatments in viticulture can generate highly contrasting mosaics of vegetated and bare vineyards, of which vegetated fields often provide better conditions for biodiversity. In southern Switzerland, where herbicides are applied at large scales, vegetated vineyards are limited in extent and isolated from one another, potentially limiting the distribution and dispersal ability of organisms.

Objectives

We tested the separate and interactive effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework, along with additional environmental factors. We identified which variables at which scales were most important in predicting patterns of invertebrate abundance.

Methods

We used a factorial design to sample across a gradient of habitat amount (area of vegetated vineyards, measured as percentage of landscape PLAND) and fragmentation (number of vegetated patches, measured as patch density PD). Using 10 different spatial scales, we identified the factors and scales that most strongly predicted invertebrate abundance and tested potential interactions between habitat amount and fragmentation.

Results

Habitat amount (PLAND index) was most important in predicting invertebrate numbers at a field scale (50 m radius). In contrast, we found a negative effect of fragmentation (PD) at a broad scale of 450 m radius, but no interactive effect between the two.

Conclusions

The spatial scales at which habitat amount and fragmentation affect invertebrates differ, underpinning the importance of spatially explicit study designs in disentangling the effects between habitat amount and configuration. We showed that the amount of vegetated vineyards has more influence on invertebrate abundance, but that fragmentation also contributed substantially. This suggests that efforts for augmenting the area of vegetated vineyards is more beneficial for invertebrate numbers than attempts to connect them.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号