首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Articular cartilage is a critical joint tissue and its evaluation remains a diagnostic challenge in horses. Coupled with a poor capacity for healing, early degenerative changes in articular cartilage are difficult to characterise using routine diagnostic imaging evaluations. Both computed tomography (CT) and magnetic resonance imaging (MRI) provide volumetric joint assessment and highlight morphological and quantitative properties of articular cartilage, improving assessment of this essential tissue. While the use of CT and MRI for joint evaluation is not new, there still remains a shortage of literature and scientific studies on the ability of these methods to evaluate articular cartilage in the horse. This review article summarises current CT and MRI techniques capable of characterising equine articular cartilage, highlights recent advances in these techniques and discusses the numerous methods studied in human subjects that have been minimally investigated in horses. Imaging techniques are presented in terms of their capabilities of offering morphological and quantitative evaluation along with a discussion of their benefits and limitations. Finally, it summarises the current state‐of‐the‐art approaches and identifies unmet clinical imaging needs to propel the advancement of articular cartilage and joint imaging in the horse.  相似文献   

2.
The purpose of this study was to determine whether delayed gadolinium‐enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping are accurate techniques for measuring cartilage thickness in the metacarpus3/metatarsus3 (Mc3/Mt3) of Thoroughbred racehorses. Twenty‐four Mc3/Mt3 cadaver specimens were acquired from six healthy racehorses. Cartilage thickness was measured from postintra‐articular Gd‐DTPA2? images acquired using short tau inversion recovery (STIR), and proton density weighted (PDw) sequences, and compared with cartilage thickness measured from corresponding histologic images. Two observers performed each histologic measurement twice at three different sites, with measurement times spaced at least 5 days apart. Histologic cartilage thickness was measured at each of the three sites from the articular surface to the bone–cartilage interface, and from the articular surface to the mineralized cartilage interface (tidemark ) . Intra‐observer repeatability was good to moderate for dGEMRIC where Mc3/Mt3 cartilage was not in contact with the proximal phalanx. Where the Mc3/Mt3 cartilage was in contact with the proximal phalanx cartilage, dGEMRIC STIR and T2 mapping PDw cartilage thicknesses of Mc3/Mt3 could not be measured reliably. When measured from the articular surface to the bone–cartilage interface, histologic cartilage thickness did not differ from STIR or PDw cartilage thickness at the site where the Mc3/Mt3 cartilage surface was separated from the proximal phalanx cartilage (P > 0.05). Findings indicated that dGEMRIC STIR and T2 mapping PDw are accurate techniques for measuring Mc3/Mt3 cartilage thickness at locations where the cartilage is not in direct contact with the proximal phalanx cartilage.  相似文献   

3.
Osteoarthritis of the metacarpo/metatarsophalangeal joints is one of the major causes of poor performance in horses. Delayed gadolinium‐enhanced magnetic resonance imaging of cartilage (dGEMRIC) may be a useful technique for noninvasively quantifying articular cartilage damage in horses. The purpose of this study was to describe dGEMRIC characteristics of the distal metacarpus3/metatarsus3 (Mc3/Mt3) articular cartilage in 20 cadaver specimens collected from normal Thoroughbred horses. For each specimen, T1 relaxation time was measured from scans acquired precontrast and at 30, 60, 120, and 180 min post intraarticular injection of Gd‐DTPA2‐ (dGEMRIC series). For each scan, T1 relaxation times were calculated using five regions of interest (sites 1–5) in the cartilage. For all sites, a significant decrease in T1 relaxation times occurred between precontrast scans and 30, 60, 120, and 180 min scans of the dGEMRIC series (P < 0.0001). A significant increase in T1 relaxation times occurred between 60 and 180 min and between 120 and 180 min post Gd injection for all sites. For sites 1–4, a significant increase in T1 relaxation time occurred between 30 and 180 min postinjection (P < 0.05). Sites 1–5 differed significantly among one another for all times (P < 0.0001). Findings from this cadaver study indicated that dGEMRIC using intraarticular Gd‐DTPA2‐ is a feasible technique for measuring and mapping changes in T1 relaxation times in equine metacarpo/metatarsophalangeal joint cartilage. Optimal times for postcontrast scans were 60–120 min. Future studies are needed to determine whether these findings are reproducible in live horses.  相似文献   

4.
The articular cartilage covering the ulnar trochlear notch (UTN) of both elbow joints from 25 adult canine cadavers was demonstrated by the use of high-field magnetic resonance imaging (MRI) with a fat-suppressed, three-dimensional, spoiled gradient echo sequence. The dogs used for this study were divided into five groups: giant, large, mid-sized, small, and chondrodystrophic breeds. The distribution of articular cartilage of the UTN was assessed on MR images. The joints were then opened, and the distribution of the articular cartilage of the UTN was verified. In 29/50 joints, there was good agreement between gross findings of the distribution of the articular cartilage of the UTN and MRI interpretation. Reasons for the poor results in small and chondrodystrophic breeds were decreased thickness of the articular cartilage, small size of the articular surface and of its structural features, and the frequent inability to visualize the joint space.  相似文献   

5.
6.
OBJECTIVE: To evaluate a modified digital imaging technique for quantitative assessment of the grade of osteoarthritis across the proximal articular surface of the first phalanx in horses. SAMPLE POPULATION: 6 metacarpophalangeal (fet-lock) joint specimens from 6 horses with various stages of osteoarthritis. PROCEDURE: First phalanx specimens, together with 4 gray scale reference calibration targets, were positioned in a bath with the proximal articular cartilage surface submerged in saline (0.9% NaCl) solution. Digital images were obtained from the articular surface before and after staining with Indian ink. Computer-controlled gray level analysis of the nonstained and Indian ink-stained cartilage surfaces and gray scale reference calibration targets was performed by use of the mean pixel value (based on 255-gray scale). An increase in the mean pixel value after staining was used to calculate the cartilage degeneration index (CDI). RESULTS: The CDI of the proximal articular cartilage surface of the first phalanx specimens ranged from 9.2 +/- 5.7 (early stage osteoarthritis) to 41.5 +/- 3.6% (late stage osteoarthritis). The effect of repeating the measurement 6 times in nonstained (including repositioning) and stained specimens (including repositioning and restaining) was not significant. Up to 10 measurements of nonstained specimens could be made without refreshing the bath solution. In stained specimens, mean gray level increased significantly after the sixth measurement. CONCLUSIONS AND CLINICAL RELEVANCE: The modified digital imaging technique allowed quantitative assessment of cartilage degeneration across the articular cartilage surface. The CDI is the first quantitative measure for osteoarthritis-induced cartilage degeneration over an entire joint surface in horses.  相似文献   

7.
The suitability of low‐field magnetic resonance (MR) imaging for assessment of articular cartilage has been questioned, based on insufficient image quality. The purposes of this study were to describe the MR anatomy of the normal distal interphalangeal (DIP) cartilage, and to evaluate the sensitivity and accuracy of low‐field MR imaging for identification of cartilage erosions that were created ex vivo. Imaging sequences included sagittal and dorsal multiple‐oblique T1‐weighted gradient‐recalled echo (GRE) and sagittal dual echo sequences. In the thickest regions, normal cartilage appeared as a trilaminar structure on high‐resolution T1‐weighted GRE sequences. All 8 mm large full‐thickness erosions were correctly identified (100% sensitivity and accuracy) using T1‐weighted GRE sequences. Sensitivity and accuracy ranged from 80% to 100% and 10% to 80%, respectively, for detecting focal full‐thickness erosions and from 35% to 80% and 35% to 60%, respectively, for detecting partial thickness erosions, using T1‐weighted GRE sequences. Superficial irregularities were not diagnosed using any sequence. Overall, fewer cartilage alterations were detected with sagittal dual echo sequences than with sagittal T1‐weighted GRE sequences. The dorsal multiple‐oblique plane was useful to detect linear dorsopalmar erosions. A combination of T1‐weighted GRE sequences in two planes has potential for identification of severe DIP cartilage erosion in anesthetized horses using low‐field MR imaging.  相似文献   

8.
OBJECTIVE: To determine if fatigue microdamage is associated with fragmented medial coronoid process (FMCP). STUDY DESIGN: Prospective study. ANIMALS: Thirty-eight dogs were admitted for subtotal coronoid ostectomy as treatment for FMCP. Surgical specimens of medial coronoid process (MCP) were retrieved from treated dogs. Normal MCP were collected from 5 age- and breed-matched dogs and 2 age-matched research beagles that were euthanatized for reasons other than elbow disease. METHODS: MCP specimens from affected elbows were classified into 4 groups based on disease severity. Specimens were bulk-stained for microdamage using 1% basic fuchsin, embedded in polymethylmethacrylate and sectioned at 130 microm. Specimens were evaluated using epifluorescent microscopy (425-440 excitation, 475 nm barrier filter) for diffuse damage (D.DX), osteocyte loss, and porosity. Cartilage thickness was evaluated using bright field microscopy. Qualitative observations were also made. RESULTS: MCP specimens from affected elbows had increased D.Dx, increased osteocyte loss, and greater porosity than normal groups. Specimens classified as severe FMCP (Classes 3, 4) had the most fatigue microdamage. Some Class 1 specimens, defined as having no visible fissuring of the articular cartilage (AC), had large microcracks in trabecular bone. CONCLUSIONS: Accumulation of subchondral fatigue microdamage, is associated with MCP fragmentation. Fissuring occurs in the subchondral bone before gross fibrillation of articular cartilage develops. CLINICAL RELEVANCE: Accumulation of fatigue microdamage in the MCP is important in the pathogenesis of FMCP. The underlying cause of this microdamage accumulation must be identified before treatment plans that will prevent further osteoarthritis of the elbow joint can be designed.  相似文献   

9.
Articular cartilage defects are prevalent in metacarpo/metatarsophalangeal (MCP/MTP) joints of horses. The aim of this study was to determine and compare the sensitivity and specificity of 3-Tesla magnetic resonance imaging (3-T MRI) and computed tomography arthrography (CTA) to identify structural cartilage defects in the equine MCP/MTP joint. Forty distal cadaver limbs were imaged by CTA (after injection of contrast medium) and by 3-T MRI using specific sequences, namely, dual-echo in the steady-state (DESS), and sampling perfection with application-optimised contrast using different flip-angle evolutions (SPACE). Gross anatomy was used as the gold standard to evaluate sensitivity and specificity of both imaging techniques.CTA sensitivity and specificity were 0.82 and 0.96, respectively, and were significantly higher than those of MRI (0.41 and 0.93, respectively) in detecting overall cartilage defects (no defect vs. defect). The intra and inter-rater agreements were 0.96 and 0.92, respectively, and 0.82 and 0.88, respectively, for CT and MRI. The positive predictive value for MRI was low (0.57). CTA was considered a valuable tool for assessing cartilage defects in the MCP/MTP joint due to its short acquisition time, its specificity and sensitivity, and it was also more accurate than MRI. However, MRI permits assessment of soft tissues and subchondral bone and is a useful technique for joint evaluation, although clinicians should be aware of the limitations of this diagnostic technique, including reduced accuracy.  相似文献   

10.
Ultrasonographic (US), magnetic resonance (MR) and computed tomographic (CT) images of normal canine stifle joints were obtained and compared with plastinated cross-sectional slices of cadaver specimens from the same dogs. The bony and articular structures were identified and correlated with the three diagnostic imaging modalities. These results provide an atlas of normal cross-sectional US, MR and CT anatomy of the canine stifle, which can be used for the interpretation of stifle images from any of these imaging modalities.  相似文献   

11.
Various magnetic resonance (MR) imaging techniques have been used to assess lumbar spinal abnormalities in people. Four, young adult, clinically normal dogs were used to compare images of the spinal cord acquired using conventional spin-echo and rapid acquisition relaxation-enhanced (RARE), commonly called fast spin-echo (FSE), magnetic resonance imaging techniques. Lateral myelograms were made as an anatomic control. The T2-weighted FSE technique was characterized by better image quality than the T2-weighted conventional spin-echo technique. The short acquisition time with the FSE technique allowed increases in the matrix size and number of excitations, thus improving resolution and signal-to-noise ratio. In canine lumbar spinal MR imaging, use of a FSE technique is recommended to reduce the overall time for imaging and to improve image quality.  相似文献   

12.
The cervical spine of 21 dogs with clinical signs of cervical stenotic myelopathy was evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2 and gradient echo T2 weighted images were obtained with a 1.5 Tesla magnet in 12 dogs and a 1.0 Tesla magnet in 9 dogs. Sagittal or parasagittal T1W and T2W images were helpful in determining the presence of spinal cord compression or degenerative disease of the articular processes. Transverse T1W and T2W images were the most useful for the identification of dorsolateral spinal cord compression secondary to soft tissue and ligament hypertrophy, as well as synovial cysts, associated with the articular processes. The MR imaging findings were consistent with the surgical findings in all 14 dogs that underwent surgery. Magnetic resonance imaging provided a safe, non-invasive method of evaluating the cervical spine in dogs suspected of having cervical stenotic myelopathy. Veterinary  相似文献   

13.
The distal row of carpal bones (C2, C3, and C4) from eight left intercarpal joints--four from Standardbred Trotters and four from Swedish Warmblood horses--were used to assess the potential of magnetic resonance (MR) imaging to detect cartilage and bone lesions. The joints used in the study were classified by macroscopic and radiographic examinations as having normal, mild, moderate, or severe articular cartilage lesions and bone sclerosis. Those classifications correlated well with the appearance of the MR images. Bone sclerosis in the MR images was observed as regions of decreased signal intensity. Upon quantitative analysis of the MR images there was a significant difference (p < 0.0001) in the MR signal intensity from areas where radiographic bone sclerosis was observed compared to areas of radiographic nonsclerotic bone. In addition, the MR images were used to pilot the location of histology slices through areas of interest that were then examined microscopically; hence, the lesions found from the MR imaging examination were verified microscopically. It was concluded that cartilage lesions and cartilage loss are related to the sclerotic state of the underlying bone. The MR protocols developed in this study were applied on five intact cadaveric carpal joints, and it was concluded that MR imaging could successfully be used in the intact joint to detect minor cartilage and bone lesions not visualized by either radiography or macroscopic examination. Hence, MR imaging can be used to delineate interactions between articular cartilage and subchondral bone over time and in vivo.  相似文献   

14.
OBJECTIVE: To develop an antibody that specifically recognizes collagenase-cleaved type-II collagen in equine articular cartilage. SAMPLE POPULATION: Cartilage specimens from horses euthanatized for problems unrelated to the musculoskeletal system. PROCEDURE: A peptide was synthesized representing the carboxy- (C-) terminus (neoepitope) of the equine type-II collagen fragment created by mammalian collagenases. This peptide was used to produce a polyclonal antibody, characterized by western analysis for reactivity to native and collagenase-cleaved equine collagens. The antibody was evaluated as an antineoepitope antibody by ELISA, using peptides +/- an amino acid at the C-terminus of the immunizing peptide. Collagen cleavage was assayed from equine articular cartilage cultured with interleukin-1 (IL-1), +/- a synthetic MMP inhibitor, BAY 12-9566. Cartilage specimens from osteoarthritic and nonarthritic joints were compared for antibody staining. RESULTS: An antibody, 234CEQ, recognized only collagenase-generated 3/4-length fragments of equine type-II collagen. This was a true antineoepitope antibody, as altering the C-terminus of the immunizing peptide significantly decreased competition for binding in an inhibition ELISA. The IL-1-induced release of type-II collagen fragments from articular cartilage was prevented with the MMP inhibitor. Cartilage from an osteoarthritic joint of a horse had increased staining with the 234CEQ antibody, compared with normal articular cartilage. CONCLUSIONS AND CLINICAL RELEVANCE: We generated an antineoepitope antibody recognizing collagenase-cleaved type-II collagen of horses. This antibody detects increases in type-II collagen cleavage in diseased equine articular cartilage. The 234CEQ antibody has the potential to aid in the early diagnosis of arthritis and to monitor treatment responses.  相似文献   

15.
The sensitivity of low‐field magnetic resonance (MR) T2* images for predicting the presence of meniscal lesions was determined in 12 dogs with naturally‐occurring cranial cruciate ligament rupture and three control dogs, using histopathology as the reference standard. Previously published grading systems were used to grade the severity of meniscal lesions on MR images, gross inspection and histopathology. Focal areas of increased signal intensity were detected in 11/12 symptomatic dogs and 3/3 control dogs. Lesions mimicking meniscal tears (pseudotears) were identified at junctions between meniscal margins and adjacent connective tissue in control dogs and dogs with naturally occurring disease. Histopathologic lesions were present in all menisci of both symptomatic and control dogs, including the menisci from two affected dogs that appeared grossly normal but were removed and submitted based on MR imaging findings. Histopathologic lesions identified included hyaline cartilage metaplasia and changes in the amount of ground substance and cellularity. The sensitivity of MR imaging for detecting the presence of meniscal histopathologic lesions was 90% in symptomatic dogs and 91% in control dogs. However, agreement between severity scores for the different tests was poor. Low‐field MR imaging is a sensitive test for predicting the presence but not severity of meniscal histopathologic lesions in dogs with naturally‐occurring cranial cruciate ligament rupture. Findings also supported previous studies indicating that histopathologic lesions can be present in dogs with grossly normal menisci. An improved grading system for comparing MR images and histopathologic severity of meniscal lesions in dogs is needed.  相似文献   

16.
REASONS FOR PERFORMING STUDY: The equine metacarpophalangeal (MCP) and metatarsophalangeal (MTP) joints, although having virtually the same geometrical appearance, differ in the prevalence of joint pathologies, such as osteochondral fragmentation, and in biomechanical behaviour. The recently developed cartilage degeneration index (CDI) technique offers a possibility to assess quantitatively differences in cartilage degeneration between these joints and to compare these with known differences in biomechanics and clinical observations. OBJECTIVES: To compare the topographical distribution of articular cartilage degeneration across the proximal articular surface of the proximal phalanx (P1) in the equine fore- and hindlimb. METHODS: In 24 distal hindlimbs from 24 horses, articular cartilage degeneration of the proximal articular surface of P1 was quantified using the CDI. Overall CDI value (CDI(P1)) and CDI values of 6 areas of interest were determined: the medial dorsal surface (mds), lateral dorsal surface (lds), medial central fovea (mcf), lateral central fovea (lcf), medial plantar surface (mps) and lateral plantar surface (lps). The joints were divided into 4 equally sized groups of increasing CDI(P1) values. From an existing CDI database of MCP joints, 24 joints were selected with matching CDI(P1) values to the MTP joints and CDI values for the same areas of interest were determined. RESULTS: In both the MCP and MTP joints, highest CDI values were determined at the dorsal articular surfaces. Values were not significantly different between fore- and hindlimbs. In contrast to the MCP joint, CDI values at the plantar joint margin were significantly higher compared to CDI values in the central sites in the MTP joint. CDI values for the plantar surfaces of P1 were significantly higher than those for the palmar surfaces in the forelimb in joints with advanced stages of OA; and values for the central regions of P1 were significantly lower in the hindlimb compared with the forelimb in joints with severe OA. CONCLUSIONS: In both fore- and hindlimbs, initial cartilage degeneration started at the dorsal articular margin of P1. There was a major difference in the spread of cartilage degeneration; in the forelimb both the central and palmar parts are about equally involved, whereas in the hindlimb the plantar parts were significantly more and the central parts significantly less involved. These differences can be linked to differences in biomechanical loading reported elsewhere. POTENTIAL RELEVANCE: This study supports the hypothesis that differences in biokinematics between fore- and hindlimbs are associated with differences in the development of cartilage degeneration and other joint pathologies such as osteochondral fragmentation in the MCP and MTP joints. This information is indispensable for a better understanding of the dynamic nature and progression of these joint disorders and may be of help when monitoring the effects of therapeutic interventions and preventative measures.  相似文献   

17.
OBJECTIVE: To assess 2 methods of RNA purification by use of different quality metrics and identify the most useful metric for quality assessment of RNA extracted from articular cartilage from dogs with osteoarthritis. SAMPLE POPULATION: 40 articular cartilage specimens from the femoral heads of 3 clinically normal dogs and 37 dogs with osteoarthritis. PROCEDURES: RNA was extracted from articular cartilage by 2 purification methods. Quality metrics of each sample were determined and recorded by use of a UV spectrophotometer (Spec I; to determine the 260 to 280 nm absorbance ratio [A(260):A(280) ratio]), a second UV spectrophotometer (Spec II; to determine A(260):A(280) and A(260):A(230) absorbance ratios), and a microfluidic capillary electrophoresis analyzer (to determine the ribosomal peak ratio [RR], degradation factor [DF], and RNA integrity number [RIN]). The RNA was extracted from affected (osteoarthritic) articular cartilage and assessed with the same quality metrics. Metric results were compared with visual analysis of the electropherogram to determine the most useful RNA quality metric. RESULTS: No differences in methods of RNA purification were determined by use of quality metrics. The RNA extracted from unaffected (normal) cartilage was of higher quality than that extracted from affected (osteoarthritic) cartilage, as determined by the RIN and Spec II A(260):A(230) ratio. The RIN and RR were the most sensitive metrics for determining RNA quality, whereas the DF was most specific. A significant proportion (32%) of RNA extracted from osteoarthritic articular cartilage specimens was determined as being of low quality. CONCLUSIONS AND CLINICAL RELEVANCE: No single metric provided a completely sensitive and specific assessment of the quality of RNA recovered from articular cartilage.  相似文献   

18.
Objective— To evaluate after 12 weeks the effects of caudal medial meniscal release (MR) in the cranial cruciate ligament-intact canine stifle.
Study Design— Blinded, prospective in vivo study.
Animals— Purpose-bred hound dogs (n=10).
Methods— Either MR (n=5) or a sham (SH) surgery (n=5) was performed via arthroscopy. Orthopedic examination and subjective lameness evaluation were performed in each dog preoperatively and at 4, 8, and 12 weeks after surgery. Twelve weeks postoperatively, ultrasonographic, radiographic, and arthroscopic examinations were performed on the operated stifles. Gross pathology of the articular cartilage, cruciate ligaments, and menisci was assessed. India ink staining of the femoral and tibial articular surfaces was performed to determine the percent area of articular cartilage damage.
Results— At 8 and 12 weeks after surgery, MR dogs were lamer than SH dogs. At 12 weeks, the degree of radiographic OA was significantly higher in MR stifles than in SH stifles. Gross and sonographic meniscal pathology was more severe in MR stifles compared with SH stifles. MR stifles had significantly more severe articular cartilage pathology compared with SH stifles 12 weeks after surgery; pathology was most severe in the medial compartment.
Conclusions— MR alone is associated with articular cartilage loss, further meniscal pathology, degenerative joint disease, and lameness.
Clinical Relevance— Subsequent osteoarthritis and dysfunction of the stifle joint should be considered when making clinical decisions regarding MR in dogs.  相似文献   

19.
OBJECTIVE: To assay concentrations of cartilage oligomeric matrix protein (COMP) in canine sera and synovial fluid (SF), to compare COMP concentrations in clinically normal dogs and dogs with joint disease, and to analyze changes in COMP concentrations in dogs with experimentally induced acute synovitis. ANIMALS: 69 control dogs without joint disease, 23 dogs with naturally occurring aseptic arthropathy, and 6 dogs with experimentally induced synovitis. PROCEDURE: Serum (n = 69) and SF (36) were obtained from control dogs. Samples of serum (n = 23) and SF (13) were obtained from dogs with naturally occurring aseptic arthropathy with or without radiographic features of osteoarthritis (OA). Serum and SF were obtained before and 1, 2, 3, and 7 days after induction of synovitis. The COMP concentrations were determined by use of an inhibition ELISA that had canine cartilage COMP and monoclonal antibody against human COMP. RESULTS: Concentrations of COMP in serum and SF of control dogs were 31.3+/-15.3 and 298.7+/-124.7 microg/ml, respectively. In naturally occurring OA, COMP concentrations in serum (44.9+/-177 microg/ml) and SF (401.7+/-74.3 microg/ml) were significantly higher than corresponding concentrations in control dogs. The COMP concentration in SF peaked 24 and 48 hours after induction of synovitis, whereas concentration in serum peaked on day 3. CONCLUSIONS AND CLINICAL RELEVANCE: These results supported the hypothesis that COMP concentration in serum and SF of dogs may be altered after cartilage degradation or synovitis. Measurement of COMP concentrations can be useful when differentiating arthropathies in dogs.  相似文献   

20.
REASONS FOR PERFORMING STUDY: The equine fetlock joint has the largest number of traumatic and degenerative lesions of all joints of the appendicular skeleton. OBJECTIVE: To gain insight into the distribution of cartilage degeneration across the articular surface in relation to age in order better to understand the dynamic nature and progression of osteoarthritis (OA). HYPOTHESIS: That there would be a specific age-related distribution pattern of cartilage degeneration in the equine metacarpophalangeal joint. METHODS: The proximal articular cartilage surfaces of the first phalanges (P1) of 73 slaughter horses (age range 0.4-23 years) with different stages of osteoarthritis were scored semiquantitatively on a 0 to 5 scale and also assessed quantitatively using the cartilage degeneration index (CDI(P1)), which ranges from 0 to 100%. Furthermore, CDI values were determined for special areas of interest; medial dorsal surface (CDI(mds)), lateral dorsal surface (CDI(lds)), medial central fovea (CDI(mcf)) and lateral central fovea (CDI(lcf)). Correlations were calculated for CDI(P1) values and CDI values at the specific areas of interest with macroscopic scores and with age. RESULTS: There was a high correlation between the semiquantitative macroscopic score and the quantitative CDI(P1) values (r = 0.92; P < 0.001). A macroscopic score of 0 (i.e. no obvious cartilage degeneration) corresponded with a CDI(P1) mean +/- s.e. value of 25 +/- 2.8% and a macroscopic score of 5 (i.e. severe cartilage degeneration in localised areas) with a mean +/- s.e. value of 38.1 +/- 7.9%. There was a moderate but highly significant correlation between the CDI(P1) value and the age of the horses (r = 0.41; P < 0.001). Highest CDI values were calculated for the medial dorsal surface (from 10.6 +/- 2.8% at macroscopic Grade 0 to 63.1 +/- 8.4% at Grade 5). At the lateral dorsal surface, these values were 5.9 +/- 1.4% and 47.2 +/- 10.4%, respectively. The CDI(mcf) and CDI(lcf) were significantly lower (P < 0.05) than the CDI(mds) and CDI(lds) at all grades. The CDI(mcf) ranged from 1.0 +/- 2.9% at Grade 0 to 43.7 +/- 9.1% at Grade 5; laterally, these values were 1.5 +/- 2.6% and 15.2 +/- 6.2%, respectively. CONCLUSIONS: CDI grading increased from lateral to medial and from central to dorsal. This specific distribution pattern confirms the heterogeneous nature of the OA process and strongly supports an important role for biomechanical loading, superimposed on age-related changes, in the spread of the disorder over the joint. POTENTIAL RELEVANCE: Knowledge of the development of OA across the articular surface is essential for understanding the dynamic nature and progression of the disease and can form a basis for improvements in diagnostic and therapeutic approaches to degenerative joint disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号