共查询到10条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
为了提高三轴车辆在极限工况下的稳定性,充分考虑轮胎的非线性特点以及车辆转向过程中轮胎垂直载荷的转移情况,建立了三轴车辆全轮转向的非线性二自由度整车动力学模型,以车辆的质心侧偏角为零为控制目标,基于模糊控制理论,采用前馈加状态反馈的控制方法设计了零质心侧偏角比例前馈加质心侧偏角反馈的全轮转向模糊控制系统,最后利用MATLAB/Simulink建立了该控制系统的仿真模型,对控制系统在车辆极限转向工况下的控制性能进行了仿真验证。结果表明,全轮转向模糊控制方法可使三轴车辆的质心侧偏角基本为0,横摆角速度和侧向加速度均能很快达到稳态值,因而可有效防止车辆在极限转向工况下发生侧滑失稳,可显著提高车辆的主动安全性。 相似文献
5.
为了改善多桥车辆操纵稳定性和行驶平顺性,通过建立多桥车辆的5+2n自由度动力学模型,设计了主动悬架与多桥转向线性系统二次型最优控制(LQG)综合控制器。通过仿真试验,对比分析了采用与不采用综合控制器2种情况下,多桥车辆不同车速下对阶跃信号的各项性能指标的响应。结果表明:低速情况下,采用综合控制器较不采用控制器的多桥车辆侧偏角峰值减小0.03 rad、横摆角速度峰值减小0.1 rad/s、车身侧倾角峰值减小0.015 rad、俯仰角峰值减小0.015 rad、车身垂直加速度峰值减小0.3 m/s2、轮胎动位移峰值减小0.009 m;高速情况下,以上各性能指标峰值分别减小0.095 rad、0.4 rad/s、0.075 rad、0.09 rad、2.1 m/s2、0.018 m。多桥车辆采用综合控制器相对于不采用控制器时的操纵稳定性和行驶平顺性都有显著改善。 相似文献
6.
车辆转向统一动力学模型及模型跟踪控制 总被引:3,自引:2,他引:3
为将两轴车辆控制算法应用于多轴车辆,该文在多轴转向车辆二自由度动力学模型的基础上,建立了多轴转向车辆和两轴车辆的统一动力学模型;在此统一动力学模型的基础上可通过对任两轴车轮的控制就能实现对多轴转向车辆的控制。同时根据零侧偏角控制策略构建了多轴车辆的动力学理想模型;对前轮机械转向和前轮电控转向的多轴转向车辆,分别设计了基于模型跟踪的控制系统并进行了分析。分析结果表明,采用统一动力学模型、零侧偏角控制策略和模型跟踪控制方法,控制系统调整方便且较易实现,也能达到理想的控制效果。 相似文献
7.
基于键合图的全液压转向器鲁棒优化设计 总被引:1,自引:0,他引:1
为了实现全液压转向器的稳健设计,该文基于键合图方法建立了全液压转向器的动力学模型,并推导得出了转向器的状态方程,以转向器阀芯直径、等效转动惯量及转向器内部总压缩容积作为设计变量,以转向器流量动态响应超调量最小为设计目标,首先对转向器进行了传统优化设计,然后以传统优化设计结果作为设计初值,对全液压转向器进行了稳健优化设计。通过分别基于传统优化设计和稳健优化设计所得动态响应结果比较、分析得知,稳健优化后的转向器结构参数更加合理,动态响应峰值超调量降低了12.5%,稳健性有所提高。以传统优化设计结果为初值对转向器进行稳健设计是切实有效的。 相似文献
8.
双流传动履带式车辆实现方向盘转向的台架试验 总被引:1,自引:0,他引:1
为了使履带车辆的转向操作简便,并降低发动机的功率储备,在现有静液压双流差速转向装置的基础上,设计了一套与其匹配的采用方向盘操纵的控制装置,利用方向盘转角来控制两个定量马达的转速,再通过可差速传动的机械式变速箱分配到两侧驱动轮上,从而实现履带车辆双流传动装置转向期间车辆自动无级降速.通过台架空载试验测得车辆两侧驱动轮输出轴转速与方向盘转角之间的对应关系,并与理论计算仿真结果进行比较.结果表明:使用方向盘转向来实现履带车辆转向期间自动无级降速是可行的,为进一步研究方向盘操纵双流传动履带车辆转向装置提供充分可靠的理论依据. 相似文献
9.
履带车辆差速转向机构转向过程动态特性的试验方法 总被引:2,自引:2,他引:2
该文研究了履带车辆在不同转向半径下转向的两侧履带功率流动特性及液压无级差速转向机构的工作原理。在此基础上,确定了用试验台模拟履带车辆转向过程的试验方案,提出了用试验台驱动装置模拟发动机特性以及加载装置模拟转向过程动态负载的方法,完成液压无级差速转向机构转向过程的动态特性试验。结果表明:履带车辆转向过程中内侧履带由输出功率到输入功率以及外侧履带输出功率进一步增大的变化特点,能够在液压二次调节实验台上予以完成。此试验方法成功解决了履带车辆转向特性试验的台架实现问题。 相似文献
10.
履带车辆转向时最大驱动力矩的计算 总被引:3,自引:2,他引:3
履带车辆转向时不仅要克服行走阻力,还要克服转向阻力,该文对不考虑车体重心偏移时的转向驱动力矩进行了研究,并在此基础上着重研究了考虑重心偏移时的转向驱动力矩的计算方法,进行了实例计算和比较分析,可知横向偏心距对总的转向阻力矩没有影响,而纵向偏心距对其有影响,且随纵向偏心距的增加转向阻力矩减小;只考虑纵向偏心距,而不考虑横向偏心距时,转向时驱动力矩小于不考虑重心偏移时的驱动力矩;当只考虑横向偏心距,而不考虑纵向偏心距时,转向驱动力矩最大。当履带车辆原地转向,且只存在横向偏心距时靠近偏心一侧的履带的驱动力矩最大。 相似文献