首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the effects of AQUI‐S®20E (10% eugenol) sedation on the survival and behaviour of yellow perch Perca flavescens (Mitchill) and Nile tilapia Oreochromis niloticus L. held in high loading densities. Fish were held in 0–300 mg L?1 AQUI‐S®20E (0–30 mg L?1 eugenol) for up to 10 h in static tanks. At 17°C, yellow perch held in 200 and 300 mg L?1 AQUI‐S®20E were lightly sedated for up to 7 h. Yellow perch at 200 and 300 mg L?1 AQUI‐S®20E also had >95% mean survival 7‐days post exposure using loading densities up to 360 g L?1. Nile tilapia were only sedated for ≤3 h in concentrations up to 300 mg L?1 at 22°C and had >90% mean survival at loading densities ≤480 g L?1. Ammonia in tanks increased significantly as loading density increased, but treatment with AQUI–S®20E did not reduce ammonia accumulation. Results suggest that AQUI–S®20E was effective to sedate yellow perch and Nile tilapia at high loading densities, but sedation varied with loading density and species.  相似文献   

2.
Phthalates such as di‐n‐butyl phthalate (DBP) and their esters are widely used plasticizers, their ubiquitous presence in daily life, inevitably leads to their restricted use due to important environmental pollution and health impacts and endocrine disruption potential. The aim of this study was to examine the effects of a sublethal concentration of 10 mg L?1 DBP on haematocrit (HCT) values, gills and liver histology, malondialdehyde (MDA, 2‐thiobarbituric acid‐TBA reactivity) and reduced glutathione (GSH) levels in gills and liver tissue as oxidative stress biomarkers in the aquaculture fish species Nile tilapia (Oreochromis niloticus) after 24 (DBP‐24) and 96 (DBP‐96) h exposure. No differences were found between per cent HCT values in the 24 h exposure groups (P > 0.05). Response of antioxidant defence systems in liver and gill tissues of the fish were dependent on exposure duration and changed to a higher extent during 96 h. MDA levels in liver tissue increased in DBP treated fish in comparison to the control fish. However, the differences between the exposure and control groups were not significant (P > 0.05). A statistically significant decrease (P > 0.05) was recorded in gill MDA levels in the DBP‐96 group when compared to the control and DBP‐24 groups. The liver GSH levels were unchanged in the DBP treated fish. However, GSH levels were significantly lower in the gill tissue of the DBP‐96 group. Exposure to DBP caused several degenerative changes in the histology of gill and liver tissue. Gills displayed hyperaemia, epithelial lifting, oedema, talengiectasia, epithelial hyperplasia and fusion of secondary lamellae, whereas in liver several circulatory anomalies (hyperaemia, blood congestion and sinosoid dilatation) and vacuolization of hepatocytes were observed. Histopathological results demonstrated that the gills were more affected than the liver perhaps due to their direct contact with DBP.  相似文献   

3.
Effects of eugenol (AQUI‐S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L?1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L?1, yellow perch controls (0 mg L?1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg?1 h?1, while yellow perch exposed to 20 and 30 mg L?1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg?1 h?1 respectively. Nile tilapia exposed to 30 mg L?1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg?1 h?1) relative to the 0 mg L?1 eugenol control (546.6 ± 53.5 mg O2 kg?1 h?1) at a loading density of 120 g L?1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L?1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.  相似文献   

4.
Bacterial diseases cause tilapia's high‐mortality outbreak. This study investigated the toxicity of azithromycin (AZT), a macrolide antibiotic that has been considered a possible therapeutic drug for tilapia aquacultural use. The 48‐h acute toxicity (50% lethal concentration, LC50; 48 h) of AZT was determined for Oreochromis niloticus. Thereafter, fish were exposed to 0, 1, 50 and 100 mg L?1 AZT during 14 days (chronic exposure) and measured the haematological variables, the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione‐S‐transferase (GST) and the concentration of glutathione (GSH), protein carbonyl and lipid peroxidation in the liver; histopathology was analysed the liver, gills and kidneys. The LC50; 48 h was >100 mg L?1. No fish died during chronic exposure. Haematocrit and haemoglobin concentration increased in fish exposed to 50 and 100 mg L?1, and the total number of leucocyte and thrombocyte increased after exposure to 100 mg L?1 AZT, suggesting a stimulation of defence cell production. In the liver, the antioxidant enzyme activities did not change, but GST activity and the GSH level increased in fish exposed to 100 mg L?1 AZT. Oxidative stress did not occur. Histopathological index (HIL) indicates moderate liver damage; minor histological changes in the gill and no change in the kidneys. AZT was considered non‐toxic for O. niloticus after acute exposure and, although it causes moderated histopathology in the liver after chronic exposure, this antibiotic may be an alternative against bacterial infections, depending on its efficacy to control bacterial disease in fish.  相似文献   

5.
This study examined the effects of water hardness and salinity on yolk sac larvae and swim‐up fry survival of Nile tilapia, Oreochromis niloticus (Chitralada strain), eggs during artificial incubation. Four experiments were conducted to evaluate the effects of hardness, salinity and the sources of saline incubation water. High water hardness treatments (500–4200 mg L?1 as CaCO3) resulted in higher yolk sac larvae and swim‐up fry survival than low water hardness treatments (50.0 and 132 mg L?1 as CaCO3); although yolk sac larvae and swim‐up fry survival did not differ among the high or low hardness treatments. Salinity of 4.0 g L?1 using seawater, and 4.0 and 8.0 g L?1 using unprocessed common salt resulted in the higher survival rate of yolk sac larvae and swim‐up fry than other salinity treatments. Yolk sac larvae and swim‐up fry survival was found to decrease with the increase in salinity and increase with the increase in water hardness. The present study demonstrated the positive effects of increased water hardness level (>132 mg L?1) on yolk sac larvae and swim‐up fry survival. The study also showed that seawater salinity of 4 g L?1 was the most appropriate salinity level for incubating Nile tilapia eggs.  相似文献   

6.
Pollution by the heavy metal lead (Pb) has become a threat to both aquaculture and food safety. In this study, the protective effects of a selected probiotic with good Pb binding capacity (Lactobacillus plantarumCCFM8661) against waterborne Pb exposure were evaluated in Nile tilapia (Oreochromis niloticus). One hundred and eighty fish were divided into four groups as control, Pb‐only, Pb‐plus‐CCFM8661 and CCFM8661‐only. Fish were exposed to a dose of waterborne Pb level at 1 mg L?1 for 4 weeks, and the probiotic was administered at 108 CFU g?1 in fish diet twice daily. The results showed that dietary supplementation of CCFM8661 ameliorated the growth performance and prevented the death of Pb‐exposed fish. Cotreatment with Pb and CCFM8661 also effectively decreased Pb accumulation in kidney, liver, gonad, brain, gills and muscle. Moreover, the administration of this probiotic alleviated Pb‐induced oxidative stress, recovered digestive enzyme activities and blood δ‐aminolevulinic acid dehydratase activity, reversed alterations in innate immune status and decreased the frequencies of the nuclear abnormalities in peripheral blood erythrocytes of fish. These results suggested that CCFM8661 may be a novel dietary supplement against Pb toxicity at least in tilapia.  相似文献   

7.
The effects of ditch size on growth and production of mono‐sex tilapia, Oreochromis niloticus in rain fed concurrent rice–fish system were technically and economically evaluated for a period of 4 months. Three different ditch sizes were tried: 5%, 10% and 15% of the total cultivable rice field. The fish fingerlings stocking density (5000 ha?1) and management practices were similar in all plots. The water temperature, dissolve oxygen, pH, Secchi disc visibility, ortho‐phosphate, ammonia nitrogen and alkalinity were found to be in the range of 31.5–31.9°C, 5.10–5.27 mg L?1, 7.56–7.62, 34.81–35.41 cm, 0.88–0.96 mg L?1, 0.014–0.021 mg L?1 and 66.23–69.76 mg L?1, respectively, and all the values were found suitable for tilapia fish farming. Sediment organic matter, available nitrogen and phosphorous were increased significantly (P < 0.05) in all plots after cultivating the fish. Larger ditch size (15% of the total land area) resulted in significantly (P < 0.05) higher specific growth rate, survival and fish production compared with the smaller (5%) and medium (10%) ditch sizes. However, significantly (P < 0.05) higher net income and benefit–cost ratio were obtained in medium ditch size with the values of 2.6% and 3.6% higher than the smaller and larger ditch sizes respectively. It is concluded that rice–fish farming in a rain fed ecosystem of Bangladesh with medium ditch size and stocking density of 5000 ha?1 mono‐sex tilapia can achieve better economic return.  相似文献   

8.
Ammonia is a metabolite of aquatic organisms which might reach deleterious levels in intensive fish farms. The aim of the present study was to determine median lethal concentrations (96‐h LC50) of total ammonia nitrogen (TA‐N) on marbled spinefoot rabbitfish (Siganus rivulatus) and chronic effects of TA‐N on survival, growth and behaviour of juvenile rabbitfish over a 50 day period. In the first experiment, fish were exposed to 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 mg L?1 TA‐N for 96 h and survival evaluated. In the second experiment, 12 fish were stocked per 50‐L tank and treated with one of 0, 2, 4, 6, 8, 10 and 12 mg L?1 TA‐N with three replicate tanks per treatment. Survival and growth were determined and histopathological alterations of gills due to chronic ammonia exposure were studied by light and electron microscopy. The 96‐h LC50 values were 16–18 mg L?1 TA‐N. In the chronic exposure experiment, fish reared in water with 0 mg L?1 TA‐N had 100% survival and had 50% weight increase in 50 days. Fish at 2 and 4 mg L?1 TA‐N all died whilst fish in 6, 8, 10 and 12 mg L?1 TA‐N survived and grew albeit less than in treatment 0 mg L?1. Gills from ammonia treated fish displayed severe histological and ultrastructural alterations including hyperplasia, hypertrophy and fusion of secondary lamellae, aneurysms and presence of pleomorphic altered cells. Chronic exposure to ammonia is deleterious to marbled spinefoot rabbitfish and low concentrations of ammonia appear to kill the fish in <50 days whilst fish can survive for more than 50 days at concentrations between 6 and 12 mg L?1 TA‐N.  相似文献   

9.
It was discovered recently that infection by a protozoan parasite, Azumiobodo hoyamushi, is the most probable cause for soft tunic syndrome in an edible ascidian, Halocynthia roretzi (Drasche). In an attempt to develop measures to eradicate the causative parasite, various drugs were tested for efficacy in vitro and in vivo. Of the 20 antiprotozoal drugs having different action mechanisms, five were found potent (24‐h EC50 < 10 mg L?1) in their parasite‐killing effects: formalin, H2O2, bithionol, ClO2 and bronopol. Moderately potent drugs (10 < 24‐h EC50 < 100 mg L?1) were quinine, fumagillin, amphotericin B, ketoconazole, povidone‐iodine, chloramine‐T and benzalkonium chloride. Seven compounds, metronidazole, albendazole, paromomycin, nalidixic acid, sulfamonomethoxine, KMnO4, potassium monopersulphate and citric acid, exhibited EC50 > 100 mg L?1. When ascidians were artificially infected with A. hoyamushi, treated using 40 mg L?1 formalin, bronopol, ClO2, or H2O2 for 1 h and then monitored for 24 h, very low mortality was observed. However, the number of surviving parasite cells in the ascidian tunic tissues was significantly reduced by treating with 40 mg L?1 formalin or ClO2 for 1 h. The data suggest that we might be able to develop a disinfection measure using a treatment regimen involving commonly available drugs.  相似文献   

10.
A 12‐week growth experiment was conducted to quantify the appropriate dietary vitamin C requirement for GIFT tilapia Oreochromis niloticus. Triplicate groups of 25 experimental tilapia [initial body weight: (70.0 ± 1.6) g] were cultured in 5.6‐m3 aquaria (= 1.5 m,= 0.8 m) and fed with semi‐purified diets containing six levels [6.1 (un‐supplemented diet], 23.8, 41.9, 85.1, 167.4 and 339.0 mg kg?1 diet respectively) of vitamin C (supplied as L‐ascorbyl‐2‐polyphosphate). The results showed that, increasing dietary vitamin C level up to 41.9 mg kg?1 diet increased weight gain rate of tilapia, beyond which it remained nearly unchanged. Vitamin C contents in liver and muscle presented first increased linearly then tended to reach saturation at high vitamin C (167.4 and 339.0 mg kg?1) treatments. Muscle collagen content significantly increased with increasing dietary vitamin C levels. Whole‐body lipid content significantly increased, whereas ash content significantly declined, but moisture and crude protein content showed no significant difference with the increasing of dietary vitamin C. The blood chemistry analysis showed that dietary vitamin C had significant effects on enzyme activities of serum alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase. Significant effects were also observed on albumin and total protein content of serum, but haemoglobin content showed no significant differences among all the treatments. The vitamin C requirement for GIFT tilapia was estimated to be 45.0 mg kg?1 diet based on maximum growth, 114.9 and 118.6 mg kg?1 diet based on maximum liver and muscle vitamin C concentration respectively.  相似文献   

11.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

12.
Piaractus mesopotamicus juveniles (total length 12 ± 0.5 mm) were exposed to different concentrations of ammonia‐N (un‐ionized plus ionized ammonia as nitrogen), using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7. The 24, 48, 72, 96 h LC50 values of ammonia‐N in P. mesopotamicus juveniles were 5.32, 4.19, 3.79 and 2.85 mg L?1 at 15°C; 4.81, 3.97, 3.25 and 2.50 mg L?1 at 20°C; and 4.16, 3.79, 2.58 and 1.97 mg L?1 at 25°C respectively. The 24, 48, 72, 96 h LC50 values of NH3‐N (un‐ionized ammonia as nitrogen) were 0.018, 0.014, 0.013, 0.009 mg L?1 at 15°C temperature; 0.023, 0.019, 0.016 and 0.012 mg L?1 at 20°C; 0.029, 0.026, 0.018 and 0.014 mg L?1 at 25°C. The temperature increase from 15 to 25°C caused an increase of ammonia‐N susceptibility by 21.80%, 9.55%, 31.92% and 30.87%, after 24, 48, 72 and 96 h exposure respectively. Furthermore, we found that exposure of fish to ammonia‐N caused an elevation in total haemoglobin and blood glucose with an increase of 2 mg L?1 concentration. Ammonia levels tolerated, especially in different temperatures levels, have important implications for the management of aquaculture.  相似文献   

13.
Egg disinfection is considered the most important routine work in hatcheries to avoid fungal and/or bacterial infection of fish eggs. The aim of this study was to determine the effectiveness of three disinfectants: formalin, iodine and sodium chloride on the hatching success of yellow perch eggs. The disinfectants were tested in triplicate at different concentrations for 15 and 30 min bath treatments. Two experiments were conducted; formalin at five concentrations (25, 50, 100, 150 and 200 mg L?1) and 25 mg L?1 iodine were tested in the first experiment. The second experiment involved formalin at three concentrations (250, 500 and 1000 mg L?1), iodine at three concentrations (50, 100 and 250 mg L?1) and sodium chloride at three concentrations (500, 1000 and 3000 mg L?1) were used. Iodine and sodium chloride‐treated eggs hatched earlier than formalin‐treated eggs. The highest mean percentage of eyed stage, hatching rate and survival to first feeding fry was observed at 200 mg L?1 formalin for 30 min, 50 mg L?1 iodine for 15 min and 500 mg L?1 sodium chloride for 30 min. High concentrations of formalin (1000 mg L?1), iodine (250 mg L?1) and sodium chloride (1000 and 3000 mg L?1) showed toxicity to yellow perch eggs, resulting in low hatching rate and survival to first feeding fry. We recommended formalin at a concentration of 150–200 mg L?1 for 30 min as an effective, easily available and low‐cost disinfectant for routine use to improve yellow perch hatchability.  相似文献   

14.
The amelioration effect of balanced diet with supplementation of vitamin C against stress was evaluated in freshwater paddy field fish, Clarias batrachus, exposed to organophosphate insecticide, monocrotophos (MCP). Three groups of fishes, that is, (E0) Control, (E1) MCP (2.14 mg L?1) exposure and E2) Vitamin C, MCP (0.2 g kg?1 body weight + 2.144 mg L?1) were selected for the sublethal study. The effect of MCP on protein metabolism in physiological sensitive tissues, namely gills, kidney, liver and muscle of the fish has been determined. Stress on Clarias batrachus was evident that the total protein, amino acid and ammonia contents were decreased, and urea and glutamine levels were elevated in all tissues for 30 days. Similarly, the activities of protease, aminotransferases and phosphatases were elevated significantly in all the tissues during the same period. Fish fed with a diet supplemented by vitamin C (0.2 g kg?1 body weight) could significantly counter these effects.  相似文献   

15.
A growth trial was conducted to examine the effect of dietary digestible energy (DE) content on methionine (Met) utilization and requirement in juvenile Nile tilapia (Oreochromis niloticus). Ten iso‐nitrogenous (288 g kg?1 protein) practical diets, with two DE levels (10.9 MJ kg?1; 12.4 MJ kg?1) and five methionine supplementation levels (0, 1, 2, 4 and 6 g kg?1), were hand‐fed twice daily to triplicate groups of Nile tilapia (initial body weight 8.95 ± 0.06 g) for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased significantly with increasing dietary methionine concentration at the same DE content (< 0.001). At the same dietary methionine level, WG and SGR of fish fed high‐DE diets were significantly higher than that of fish fed low‐DE diets (= 0.0001), although no interaction was found between dietary DE and methionine supplementation. Based on quadratic regression analysis between dietary methionine concentration and weight gain, optimal methionine requirement for maximum growth, expressed as g Met required kg?1 diet (low‐ versus high‐DE diets), increased as diet DE concentration increased (7.34 versus 9.90 g kg?1 diet, respectively; with cysteine 4.70 g kg?1 diet). The results indicated that diet DE content affects methionine utilization and requirement in juvenile Nile tilapia, fish fed high‐DE diets required more methionine for maximum growth.  相似文献   

16.
Ichthyobodo necator is a single‐celled biflagellate parasite, which in high density can cause significant mortality in young fish. Copper sulphate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated control, 2.1 mg L?1CuSO4, 3.0 mg L?1 KMnO4, 1.5 mg L?1 PAA and 3.0 mg L?1 PAA, and were applied to flow‐through tanks on three consecutive days. The study was designed to simulate the flow‐through systems utilized in the commercial rearing of juvenile channel catfish (Ictalurus punctatus). Mortality was monitored daily to compare survival rate among treatments. Parasite intensity was assessed pre chemical exposure and 20–24 h after the third application to determine effectiveness of the treatment. An assessment was also done 7 days post application to investigate possible reoccurrence. Copper sulphate, KMnO4 and PAA (3.0 mg L?1) significantly reduced the infestation rate of I. necator. Copper sulphate significantly improved the survival of I. necator infested channel catfish after three flow‐through applications compared with the untreated control. The 3.0 mg L?1 PAA resulted in significantly lower survival than the untreated control, the 1.5 mg L?1 PAA and the KMnO4 were not statistically different from the untreated control.  相似文献   

17.
The efficacy of anaesthetic tricaine methanesulfonate (MS‐222) was evaluated in four freshwater aquarium fish species, Zebrafish (Danio rerio), Guppy (Poecilia reticulata), Discu (Symphysodon discus) and Green swordtail (Xiphophorus helleri). The correct dose of anaesthetic should induce the plane 4 of anaesthesia in less than 180 s, recovery in less than 300 s and must survive when exposed during 30 min to anaesthetic. Fishes were exposed to six concentrations of anaesthetic (75, 100, 125, 150, 200 and 250 mg L?1) and the time of fish reaching plane 4 of anaesthesia, post exposure recovery, and the percentage of survival when fish were subject to 30 min in the anaesthetic were recorded. The optimal doses varied according to the species: D. rerio – 75, 100 and 125 mg L?1, P. reticulata – 125, 150 and 200 mg L?1, S. discus – 75 and 100 mg L?1 and X. helleri – 125 and 150 mg L?1. The induction time generally decreased significantly with increasing concentration of MS‐222 for all of the species evaluated. The recovery time had a tendency to increase with the increase of the MS‐222 concentration for D. rerio, P. reticulata and S. discus. On the other hand, X. helleri recovery time decreased with the increase of MS‐222 concentration. MS‐222 proved to be effective in anaesthesia for all the freshwater ornamental species studied. The main results clearly show that the optimal dose to anesthetize is fish species dependent and it is completely wrong to extrapolate optimal anaesthetic concentrations between different species.  相似文献   

18.
The objective of this study was to evaluate the effect of two concentrations of copper (0.13 and 0.5 mg L?1) on juveniles of tilapia, Oreocromis niloticus (Linnaeus), using two toxicological assays (I‐ copper exposure and II‐ copper exposure followed by recovery). Doses were taken from the liver of the test organisms to determine the concentrations of copper, reduced glutathione, activities of glutathione S‐transferase and catalase, and lipid peroxidation. Exposure to copper in both assays resulted in significant accumulation of this metal in the analysed tissue and in decreased concentration of reduced glutathione. There was no alteration in the activities of catalase and glutathione S‐transferase and in lipid peroxidation.  相似文献   

19.
The anaesthetic potential of menthol was evaluated in lambari Astyanax altiparanae by exposing fingerlings to concentrations 50, 100, 150, 200, 250 and 300 mg L?1 and measuring the induction and recovery times to deep anaesthesia, the mortality rates during and 96 h after procedure and after 6 min of continuous exposure. The effect of menthol on stress responses were evaluated by comparing glucose and cortisol levels of juveniles subjected to anaesthesia (50 mg L?1), stress (air exposure) or pre‐anaesthesia associated to stress. All concentrations induced deep anaesthesia within 0.5 to 1 min, with recovery between 1.83 and 4.16 min, without mortality during the induction or up to 96 h after exposure. Induction time decreased and recovery time increased linearly as the menthol concentration increased. Continuous exposure to 50, 100 and 150 mg L?1 concentrations resulted in mortality rates of 0%, 20% and 80% respectively. Anaesthesia or air exposure increase blood glucose but prior anaesthesia with menthol suppressed the elevation of cortisol caused by stress. Menthol has an anaesthetic effect and attenuates the stress response in lambari and 50 mg L?1 is the most effective concentration for inducing deep anaesthesia in 1.0 min, safe for up to 6 min exposure.  相似文献   

20.
Four alkaloids (Sanguinarine, 6‐Methoxyl‐dihydro‐chelerythrine, Cryptopine and β‐Allocryptopine) were isolated from aerial parts of Macleaya microcarpa (Maxim) Fedde using bioassay‐guided isolation method, and the inhibitory activity of ethanolic extract, various fractions and these four alkaloids against four fish pathogenic bacteria (Aeromonas hydrophila, Aeromonas salmonicida, Vibrio anguillarum and Vibrio harveyi) was assessed in vitro using the agar dilution method and the microdilution assay method respectively. A. hydrophila was the most sensitive strain to all the tested compounds. Minimum inhibitory concentration (MIC) values were lower for sanguinarine against all tested Gram‐negative strains than other three alkaloids, with MIC values of 12.5 mg L?1 for A. hydrophila and 50 mg L?1 to other pathogenic bacteria. Followed by 6‐methoxyl‐dihydro‐chelerythrine, which showed considerable antibacterial activity with MIC values of 80 mg L?1 for A. hydrophila, 100 mg L?1 for V. harveyi, and 125 mg L?1 for both V. anguillarum and A. salmonicida. Cryptopine and β‐allocryptopine revealed similar inhibitory activity with MIC values of 100 mg L?1 for A. hydrophila and 200 mg L?1 for other three bacterial species. These finding provided evidence that extract, as well as isolated compounds from M. microcarpa might be potential sources novel antibacterial agents for the treatment of fish infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号