首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The autochthonous microbiota in the foregut, midgut and hindgut of juvenile grouper Epinephelus coioides following the dietary administration of probiotic Bacillus clausii for 60 days were assessed using polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE). A complex and generally similar bacterial composition along the digestive tract of E. coioides was detected in the DGGE profiles, while several bacteria showed regional specialization. Similarity dendrogram revealed that the bacterial composition of the foregut was more similar to the midgut than the hindgut. Samples collected from the probiotic group and the control group showed generally similar DGGE patterns, while no significant difference in the total number of bands and Shannon index were observed between the probiotic group and the control group, suggested that probiotic B. clausii exerted no significant effect on the gut microbiota of E. coioides. However, various potentially beneficial bacteria, such as Enterococcus sp.‐like and Bacillus pumilus‐like bacterium were selectively stimulated by probiotic B. clausii, while some potential harmful species, like Staphylococcus sp.‐like and Vibrio ponticus‐like bacterium were depressed. These indicated that the gut microbiota was modified to some degree by probiotic B. clausii. Sequences analysis showed that the autochthonous gut bacteria of E. coioides could be classified into four groups, i.e. Proteobacteria, Firmicutes, Actinobacteria and unclassified bacteria.  相似文献   

2.
Gut microorganisms play an important role in host health and have susceptibility to diseases, undergoing a distinct transformation at early stages of development. This study aimed to determine the regulation of gut microorganism development from fertilized eggs to 150 DAH (days after hatching) and the differences between flatulent and healthy silver pomfret (Pampus argenteus). High‐throughput sequencing was used to analyze the diversity and relative abundance of microorganisms. PICRUSt was used to predict functional alterations of dominant microorganisms. The results showed that from all 42 samples, a total of 3,746,895 reads were obtained, representing 6,081 operational taxonomic units (OTUs). Top 3 phyla were Proteobacteria, Firmicutes and Bacteroidetes. From 0 to 32 DAH, the relative abundance of Proteobacteria continuously increased and peaked at 94.99%. After that, the abundance of Proteobacteria decreased, but Bacteroidetes and Firmicutes increased instead. Alpha diversity is the lowest at 32 DAH, the difference is significant compared with others, p < .05. Comparing flatulent fish with healthy fish, the former has more specific OTUs, higher diversity and abundance. There were four genera Ethanoligenens, Methanobacterium, Caproiciproducens and Leptolinea that only obtained from the flatulent samples, but almost none in the healthy samples. All of these four genera are directly or indirectly involved in gas metabolism. This study enriched the basic research of silver pomfret, for the first time, focused on flatulent individuals which would provide a theoretical basis for the subsequent breeding.  相似文献   

3.
Traditional culture‐based technique and 16S rDNA sequencing method were used to investigate the mucosa‐associated autochthonous microbiota of grass carp (Ctenopharyngodon idellus). Twenty‐one phylotypes were detected from culturable microbiota, with Aeromonas, Shewanella, Lactococcus, Serratia, Brevibacillus, Delftia, Pseudomonas, Pantoea, Enterobacter, Buttiauxella and Yersinia as their closest relatives. Genomic DNA was directly extracted from the gut mucosa of C. idellus originating from six different geographical regions, and used to generate 609 random bacterial clones from six clone libraries and 99 archaeal clones from one library, which were grouped into 67 bacterial and four archaeal phylotypes. Sequence analysis revealed that the intestinal mucosa harboured a diversified bacterial microbiota, where Proteobacteria, Firmicutes and Bacteroidetes were dominant, followed by Actinobacteria, Verrucomicrobia and Deinococcus‐Thermus. The autochthonous bacterial communities in the gut mucosa of fish from different aquatic environments were not similar (Cs < 0.80), but γ‐Proteobacteria was a common bacterial class. In comparison to bacterial communities, the archaeal community obtained from one library consisted of Crenarchaeota and Euryarchaeota. These results demonstrate that molecular methods facilitate culture‐independent studies, and that fish gut mucosa harbours a larger bacterial diversity than previously recognized. The grass carp intestinal habitat selects for specific bacterial taxa despite pronounced differences in host environments.  相似文献   

4.
The polymerase chain reaction–denaturing gradient gel electrophoresis (PCR‐DGGE) of 16S ribosomal RNA gene was used to investigate bacterial communities in the intestines of large yellow croaker at six different ages (12 d, 18 d, 26 d, 40 d, 3 mo, and 1 yr old) as well as within the corresponding feed and culture water. In addition, Illumina Miseq sequencing was utilized to compare intestinal microbiota between 12‐d‐old and 1‐yr‐old individuals. PCR‐DGGE results revealed that the culture water had the highest bacterial diversity, followed by the feed, while the intestines had the lowest diversity. The intestinal microbiota at six ages changed severely; however, the change did not follow any trend. The large yellow croaker intestines harbored specific bacterial communities that differed from those in both feed and water. Illumina Miseq sequencing results revealed that the diversity of intestinal bacteria in 12‐d‐old fish was higher than that in 1‐yr‐old fish, and the bacterial composition differed significantly between them. γ‐Proteobacteria and Pseudoalteromonas supplied the most abundant phylum and genus in the 12‐d‐old fish intestine. However, in the 1‐yr‐old fish intestine, Firmicutes and Clostridium were the most dominant, respectively. The study may contribute to a better understanding of gut microbiota and dynamics of the large yellow croaker and the relationship with their surrounding environment.  相似文献   

5.
The kaluga, Huso dauricus (Georgi 1775), is a large‐sized semi‐anadromous sturgeon native to the Amur River basin. Gut microbes play an important role in the growth and development of fish. Because wild samples of this species are difficult to obtain, very few studies have analysed the microbial community of the kaluga gut. Here, we used high‐throughput sequencing to determine differences in the intestinal microbial communities of wild and cultured kaluga, to lay the foundation for development of micro‐ecological preparations that might ultimately assist with conserving wild kaluga by benefitting sturgeon aquaculture. Two 2‐year‐old (wild) fish collected from the Heilongjiang River basin were size‐ and age‐matched with two 2‐year‐old (cultured) fish obtained from a breeding base in Yunnan Province, for molecular analysis of gut samples. In total, 483,008 16S rRNA sequences were obtained. The intestinal microbial diversity was greater in the wild kaluga than in the cultured fish. The dominant phyla in the gut community of wild kaluga were Proteobacteria (47.9%), Fusobacteria (30.5%) and Firmicutes (8.85%), whereas samples from the cultured kaluga were dominated by Fusobacteria (78%). This result may be attributed to differences in environmental conditions, particularly water quality and temperature, as well as diet between the wild and cultured animals. The findings provide basic data to assist further research and the development of feed as a part of artificial breeding technology.  相似文献   

6.
洪斌  牛犇  陈萍  李薇  刘海泉  潘迎捷  赵勇 《水产学报》2019,43(5):1347-1358
探究凡纳滨对虾和罗氏沼虾肠道微生物及抗生素抗性基因(antibiotic resistance genes, ARGs)种类的差异。通过高通量测序和变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)技术分析2种虾肠道微生物群落结构差异和微生物多样性,并运用PCR方法检测了2种虾肠道细菌常见38种ARGs的携带情况。结果显示,获得凡纳滨对虾和罗氏沼虾肠道细菌有效序列分别为42 795和40 713条,物种注释单元(operational taxonomic unit, OTU)数目分别为124和82,分类地位明确的细菌种类分别隶属5个门、17个属和5个门、16个属。凡纳滨对虾肠道细菌的优势类群为变形菌门,所占比例为75.45%,优势菌属为副球菌属(25.83%)和不动杆菌属(25.24%);罗氏沼虾肠道细菌的优势类群是厚壁菌门(49.74%),优势菌属为乳球菌属(49.01%)和弧菌属(29.98%)。凡纳滨对虾肠道细菌(2.19)Shannon指数高于罗氏沼虾肠道细菌(1.78),表明前者肠道细菌多样性大于后者。DGGE图谱的分析结果与高通量测序一致,2种虾肠道细菌种类差异很大。PCR结果显示,凡纳滨对虾肠道细菌携带15种ARGs,罗氏沼虾肠道细菌携带14种ARGs。本实验表明凡纳滨对虾肠道细菌的群落种类多样性、OTU丰富度、物种总数和ARGs种类均高于罗氏沼虾肠道细菌,为后续肠道微生物资源的挖掘提供了理论依据。  相似文献   

7.
Bacterial communities in eggs and larvae of grass carp were analysed. During the early‐developmental stages, grass carp harboured five bacterial phyla, i.e. Proteobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes and Firmicutes. However, the composition of bacterial communities varied among the different developmental stages. In eggs, the bacterial communities were dominated by Proteobacteria, while in larvae the dominant bacterial community was Bacterioidetes. With the exception of a large proportion (>50%) of uncultured bacteria, Sphingobacterium (14.75%) and Acinetobacter (13.11%) were the most abundant groups in eggs at the fertilization stage (FS). However, Aermonas was the most abundant group, ranging from 40.54% to 61.76% in eggs at the cleavage (CS), blastula (BS), organ differentiation (ODS) and hatching stages (HS). In larvae after first ingestion (OW), Chitinophagaceae (79.41%) formed the predominant bacterial community. Changes in the bacterial community were further confirmed by statistical analysis, which demonstrated significant differences in the bacterial communities of eggs at FS, eggs from CS to HS and OW. However, no significant difference was found in bacterial communities of eggs from CS to HS. Furthermore, the present study revealed that bacteria related to Chitinophagaceae persisted from CS to OW, suggesting that these bacteria form part of the autochthonous microbiota of the fish.  相似文献   

8.
Malaysian Mahseer (Tor tambroides) has a good prospect for aquaculture because of its high market demand. However, there is a scarce information on gut microbiota associated with Malaysian Mahseer unlike other fish species. Therefore, we constructed and compared gut microbiota in different developmental stages (larval, juvenile, fingerling, yearling, and adult) using culture dependent and PCR‐DGGE fingerprinting technique for better understanding of gut microbiota composition associated with T. tambroides. Culturable gut microbiota composition in all developmental stages were composed of β‐ and γ‐Proteobacteria, and Bacilli. Biodiversity analysis of culturable gut microbiota showed that larval, juvenile, and adult stages have higher diversity than fingerling and yearling stages. Ward's linkage cluster analysis showed that culturable gut microbiota composition in larval and juvenile stages were close to adult stages, whereas fingerling and yearling stage composed same cluster. PCR‐DGGE fingerprinting technique showed that unculturable gut microbiota were constituted by α‐and γ‐Proteobacteria, and Actinobacteria. Ward's linkage cluster analysis showed that unculturable gut microbiota composition in both larval and juvenile stages were distinct from other developmental stages. Our results revealed that gut microbiota composition were varied in different developmental stages of Malaysian Mahseer and continuous shifts of gut microbiota from larval to adult stages.  相似文献   

9.
A 16S rDNA‐based polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) method was applied to detect intestinal bacterial communities of juvenile allogynogenetic crucian carp, Carassius auratus gibelio, fed with chitosan‐containing diet. This is the first time to use the molecular method to analyze the bacterial communities in the allogynogenetic crucian carp intestine. The DGGE profile with universal bacterial primers revealed simple communities in all treatment groups. Sequencing and phylogenetic analysis of excised DGGE bands showed that the dominant bacteria belonged to class γ‐Proteobacteria and Fusobacteria. The relative abundance and diversity of detected bacteria suggested that 0.5 and 0.75% of chitosan in diet were optimum for juvenile allogynogenetic crucian carp. As in these concentrations, some detected pathogen bacteria either disappeared or decreased. However, the DGGE profile with Aeromonas‐specific primers showed a similar composition among all treatment groups, which suggested that Aeromonas was one of relative stable bacteria components in the intestine of juvenile allogynogenetic crucian carp.  相似文献   

10.
The effect of dietary β‐glucan on the bacterial community in the gut of common carp (Cyprinus carpio) was examined after oral application of Aeromonas hydrophila. Carp received either feed supplemented with 1% MacroGard®, a β‐1,3/1,6‐glucan, or a β‐glucan‐free diet. Fourteen days after feeding, half of the carp from each group were intubated with 109 colony‐forming units (CFU) of a pathogenic strain of A. hydrophila. Gut samples were taken 12 hr to 7 days after application and analysed using microbiological and molecular biological techniques (NGS, RT‐PCR‐DGGE). The reaction of the mucosa and the microbiota to an A. hydrophila intubation differed in carp fed with β‐glucan compared to carp from the control group. In β‐glucan fed carp, the total bacterial amount was lower but the number of bacterial species was higher. Bacterial composition was different for carp from both treatment groups. The number of mucin filled goblet cells was reduced in carp fed the β‐glucan diet. Mucus was obviously released from the goblet cells and was probably washed out of the gut together with high numbers of bacteria. This might be protective against pathogenic bacteria and, therefore, feeding with β‐glucan may provide protection against infections of the gut in carp.  相似文献   

11.
PCR‐denaturing gradient gel electrophoresis (DGGE) was applied to analyse the microbial community attached to the gills and skin of poly‐cultured gibel carp (Carassius auratus gibelio) and bluntnose black bream (Megalobrama amblycephala Yih) and compare these results with those detected in the rearing water. The microbiota discussed included bacteria, fungi and a specific bacterial taxa of actinomycetes was also analysed. Proteobacteria, Firmicutes, Actinobacteria, Cyanobacteria, Ascomycota, Basidiomycota and some unclassified microbiota were identified. Based on our results, we concluded that: (1) the adherent bacterial/fungal communities on the gills and skin were different from those in the rearing water, (2) the bacterial/fungal diversities on fish gills were lower than that on fish skin, (3) the adherent bacterial/fungal communities on gill and skin of gibel carp were different from that of bluntnose black bream and (4) the adherent actinomycetal community showed certain similarity between the skin of different hosts. Based on our conclusions, we suggested that the topic investigated in the present study merits further investigations.  相似文献   

12.
采用基于Illumina Hi Seq测序平台的高通量测序技术,对拟穴青蟹(Scylla paramamosain)肠道及其养殖池塘水体、底泥中细菌种类及丰度进行了研究。测序结果显示,3个样品共获得有效序列234575条,可聚类于2812个分类操作单元(OTUs),归属于拟穴青蟹肠道、养殖水体、池塘底泥样品的操作分类单元(OTU)个数分别为453、706和2547,其中有184个OTU均能在3个样品中检测到,在青蟹肠道和养殖水体、青蟹肠道和池塘底泥中分别检测到197和309个共有OTU。物种注释结果显示,拟穴青蟹肠道中优势细菌种类为变形菌门(Proteobacteria)(39.96%)、柔膜菌门(Tenericutes)(23.09%)和厚壁菌门(Firmicutes)(16.58%);养殖水体中优势细菌种类为变形菌门(63.02%)、放线菌门(Actinobacteria)(24.96%)和拟杆菌门(Bacteroidetes)(8.41%);池塘底泥中优势细菌种类为变形菌门(75.23%)、拟杆菌门(5.72%)和放线菌门(3.83%)。此外,对各样品中丰度最高的前10位OTU分析显示,不同样品中占优势地位的10种细菌在数据库(SILVA)缺乏相关已知序列,并且各样品中的优势细菌种类完全不同。实验结果表明拟穴青蟹肠道与其池塘养殖环境中菌群结构存在着密切的相关性,但肠道菌群同时具有一定的独立性,其优势细菌种类与养殖环境中优势细菌种类无关。本研究旨在为拟穴青蟹健康养殖和微生态调控提供实验依据。  相似文献   

13.
This study investigates the effects of inclusion of low levels of dietary short chain fructooligosacchairde (sc‐FOS) on physiological response and intestinal microbiota of carp (Cyprinus carpio) larvae. After acclimation, fish (550 ± 20 mg) were allocated into nine tanks (40 fish per tank) and triplicate groups were fed a control diet (0%) or diets containing 0.5% and 1% sc‐FOS for 7 weeks. At the end of the experiment, the growth performance parameters (final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR) and condition factor (CF), survival rate as well as digestive enzyme activities (amylase, lipase and protease), total viable counts of heterotrophic aerobic bacteria (TVC) and lactic acid bacteria (LAB) level in intestinal microbiota were measured. Our results revealed no significant (P > 0.05) effects of sc‐FOS on growth performance and TVC when compared with the control group. However, administration of low levels of dietary sc‐FOS significantly increased digestive enzyme activities (lipase and amylase) and LAB levels (P < 0.05). Also, survival rate was significantly elevated in sc‐FOS fed carp. These results revealed that administration of low levels of sc‐FOS can be considered as a beneficial dietary supplement for larval stage of common carp.  相似文献   

14.
In this study, we evaluate the use of polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) for monitoring the effect of different aquaculture practices on sediment prokaryote (Archaea and Bacteria) communities. The effect of initial fish (gilthead seabream Sparus aurata) stocking density on the structural diversity of prokaryote communities of earth ponds bottom sediments was evaluated using PCR‐DGGE after a 5 month grow‐out period. An identical approach was used to monitor the effect of supplying different fish feeds [commercial feed (CD) versus an ecofeed (ECO)]. One additional variable was the use of copper sulphate (CuSO4) as an algicide in some of the experimental rearing tanks. The statistical analyses of prokaryote community profiles showed that the presence of fish in earth ponds significantly influenced the structure of sediment prokaryote communities, when compared with earth ponds without fish, independently of the stocking density. Our results also indicated that the structure of the prokaryote communities of earth ponds supplied with the ECO feed shared a strong similarity with that fed CD. Curiously, the use of CuSO4 in ponds receiving the ECO feed promoted significant differences on the structural composition of the bacterial community, but not on the archaeal community. DGGE molecular fingerprints are suitable for fast evaluation of new management practices in food‐fish production on earth ponds by monitoring shifts on microbial communities in bottom sediments.  相似文献   

15.
Gu  Hailong  Feng  Yaming  Yang  Zhijing 《Fisheries Science》2022,88(6):721-731

To investigate the differences in gut bacterial community of Parabramis pekinensis at different growth stages, we collected wild P. pekinensis from the Jingjiang region of the Yangtze River, and detected the intestinal microflora structure using high-throughput sequencing technology. Results show that during stage I the dominant bacteria were Proteobacteria, Actinobacteria, and Firmicutes. During stage II, the proportion of Proteobacteria and Actinobacteria decreased, while the proportion of Firmicutes and Fusobacteria increased, especially Clostridium and Cetobacteria increased significantly. During stage III, Cetobacterium had a dominant position, while the proportion of Firmicutes decreased slightly. In stage IV, the male and female fish showed obvious differences. In the female gut, the proportion of Proteobacteria increased to the first place, while Fusobacteria decreased to the second place. In the male fish, the proportion of Fusobacteria dropped to the fifth, especially that of Cetobacterium decreased significantly, and that of Verrucomicrobia increased. In stage V, the proportion of Fusobacteria increased again to the first place, while Proteobacteria did not decrease significantly in the female gut. The gut bacterial community in males changed into a structure similar to stage I. In stage VI, the gut bacterial community in both females and males changed into a structure similar to stage I. There were significant differences in the intestinal microflora structure of P. pekinensis at different gonad development stages and sexes. To some extent, the changes in intestinal microflora structure reflect the changes in the nutritional requirements of P. pekinensis.

  相似文献   

16.
利用Illumina MiSeq高通量测序技术分析了网箱养殖花鲈()肠道细菌组成,同时分析了配合饲料和网箱中海水的细菌组成,以确定鱼类肠道细菌与环境之间的关系。花鲈投喂冰鲜鱼,日本黄姑鱼投喂配合饲料。从花鲈和日本黄姑鱼前肠、中肠、后肠、配合饲料和网箱内海水中共鉴定出886个细菌OTU(operational taxonomic unit),分别隶属8个门、40个属,其中从花鲈和日本黄姑鱼肠道中鉴定出的550个细菌OTUs分别隶属5个门、15个属。在门的水平上,厚壁菌门(Firmicutes)在两种鱼类肠道中均占优势;在属的水平上,梭菌属()在日本黄姑鱼肠道中占优势。花鲈与日本黄姑鱼之间肠道细菌的相似性高于日本黄姑鱼肠道细菌与配合饲料中细菌的相似性,也高于花鲈或日本黄姑鱼肠道细菌与其养殖网箱内海水中细菌的相似性。日本黄姑鱼肠道与配合饲料中共有的细菌OTU数多于日本黄姑鱼肠道与网箱内海水中共有的细菌OTU数。综上所述得出结论:(1)花鲈和日本黄姑鱼肠道细菌群落分别独立于其养殖网箱内海水细菌群落,日本黄姑鱼肠道细菌群落独立于其配合饲料中的细菌群落;(2)日本黄姑鱼肠道细菌受配合饲料中细菌的影响大于受网箱内海水中细菌的影响。  相似文献   

17.
Because of the increasing market potential of Pacific white shrimp (Litopenaeus vannamei) and limited availability of coastal areas for production, culture of L. vannamei at low salinity is a growing trend throughout the world. Dietary manipulation could improve the growth performance of L. vannamei at low salinity. This study reared L. vannamei with glucose, sucrose and corn starch as dietary carbohydrate sources, respectively, at a low salinity. The results indicated that the sucrose and glucose feeding groups showed better growth performance. An Illumina‐based sequencing method was used to examine the intestinal bacterial composition and the results indicated that Proteobacteria were the most prevalent members, but abundance of Actinobacteria decreased while Firmicutes increased in the corn starch‐fed group. Furthermore, bacteria related to complex carbohydrate degradation were in lower abundance, whereas the abundance of opportunistic pathogenic bacteria increased in corn starch‐fed group than the other two groups, suggesting that the diet imposes selective pressure on the intestinal microbiota. Complex carbohydrates were not the ideal energy sources for L. vannamei at low salinity because the host has higher energy demand in the stressful conditions while the complex carbohydrate degradation efficiency of the gut microbiota in L. vannamei is limited.  相似文献   

18.
为研究不同地区稻虾综合种养系统的环境及克氏原螯虾肠道的细菌群落结构差异,为改进不同地区稻虾综合养殖策略提供依据,采用Illumina Miseq高通量测序技术,研究了武汉、永州和韶关地区稻田养殖克氏原螯虾的水体、底泥及虾肠道细菌群落结构,并对水体、肠道菌群与环境因子之间的关系进行了分析。结果显示,武汉地区稻虾综合种养系统的水体、底泥及克氏原螯虾肠道细菌群落的多样性均大于永州地区和韶关地区。武汉地区的稻虾综合种养系统的水体及底泥的细菌群落结构与永州地区和韶关地区均相似,其中水体的优势菌门均为放线菌门、蓝细菌门、变形菌门和拟杆菌门;底泥的优势菌门均为变形菌门。武汉地区的克氏原螯虾肠道的优势菌门为变形菌门、厚壁菌门和拟杆菌门;优势菌属为柠檬酸杆菌属(Citrobacter,10.85%)、气单胞菌属(Aeromonas,9.88%)和[Anaerorhabdus]_furcosa_group (8.43%)等。永州地区的克氏原螯虾肠道的优势菌门为厚壁菌门和放线菌门;优势菌属为ZOR0006 (9.78%)、拟杆菌属(Bacteroides,5.41%)和[Anaerorhabdus]_fur...  相似文献   

19.
20.
To understand the nutrient utilization efficiency and distribution in indoor fish culture system under treatment of probiotics, this study examined water quality and nitrogen budget in turbot Scophthalmus maximus culture system supplemented with four strains of lactic acid bacteria (LAB) isolated from fishery products. The results showed that the concentration of ammonia nitrogen (NH?‐N) and nitrite nitrogen (NO?‐N) in LAB treatments were all significantly lower (p < 0.05) than in the control group. The nitrate nitrogen (NO?‐N) in LAB treatments showed no significant differences (p > 0.05) compared with control group. The fish feed and water exchange accounted for 79.07% and 17.02% of total N input respectively. For N output, the drainage and residual diets in LAB treatment accounted for 24.50%–25.80% and 1.33%–1.60% respectively, and they were significantly lower than in the control group (27.60% and 2.20% respectively). Fish growth and lost N in LAB treatments accounted for 27.10%–30.50% and 11.00%–18.50% respectively, and they were both significantly higher (p < 0.05) than in the control group (22.30% and 5.30% respectively). The results indicated that the indigenous LAB strains were capable of improving fish growth, and reducing NH?‐N and NO?‐N level (at concentration of 105 cfu/ml) by directly adding in S. maximus culture water. Moreover, specific strains of LAB may increase nitrogen loss by promoting denitrification process in culture system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号