首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The purpose of this study was to evaluate the effect of varying dietary levels of highly unsaturated fatty acids (HUFAs) in live prey (Artemia nauplii and a calanoid copepod, Schmackeria dubia) on the growth performance, survival, and fatty acid composition of the lined seahorse, Hippocampus erectus, juveniles. Artemia nauplii were enriched with a commercial product (SS? 50DE‐microcapsule as HUFA source, 2/3 DHA, 1/3 EPA. Shengsuo Fishery Feed Research Center of Shandong Province, Qingdao, China) at four concentrations of 0.0, 14.0, 28.0, and 56.0. Newly hatched juveniles were cultured for 35 days. The content of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n‐3 HUFAs in the Artemia nauplii was positively related to the enrichment concentration. At the end of the trials, growth performance of the juveniles was positively related to the enrichment concentration as well. However, the juveniles fed prey enriched with the highest concentration of enrichment (56.0 μL/L) had the significantly lower (P < 0.05) survival rate. The juveniles fed the copepod had the best growth performance and the highest survival rate, suggesting that the copepod, S. dubia, is suitable for feeding the seahorse juveniles. The comparisons between the growth, survival, and fatty acid profiles of the juveniles fed Artemia and copepods indicate that the seahorse juveniles require dietary levels of DHA beyond those achieved by enriching prey with the HUFA enrichment. Surplus EPA resulted from an imbalance between DHA and EPA in the enriched Artemia nauplii probably caused an adverse effect on the seahorse juveniles. This study suggests that DHA and EPA requirement of the lined seahorse juveniles is roughly 32% of total fatty acid, and the optimal DHA/EPA ratio for the species is circa 4:1. To avoid an adverse effect resulting from excessive EPA, maximum proportion of EPA in enriched Artemia nauplii should not exceed 13% of total fatty acid, and a recommended minimum DHA/EPA ratio in the enriched Artemia nauplii is 1.46. Arachidonic acid (20:4n‐6) might not be an essential fatty acid for the seahorse juveniles.  相似文献   

2.
Differences in survival and growth rates in seahorse Hippocampus guttulatus juveniles feeding on Artemia sp. or copepods have been related to specific digestive capacities of seahorse newborn, which are capable of actively forage on available prey from the first day of live. Other seahorse species, such as H. abdominalis and H. hippocampus, show high success feeding on Artemia nauplii suggesting species-specific differences in the digestibility of prey among seahorses. In this study, the profiles of digestive enzyme activity during the initial 15 days after release (DAR) were very low for trypsin, chitinase and α-amylase. In contrast, higher activities towards any of the assayed substrates for lipase (butyrate, octanoate and oleate) were evident from 0 DAR onwards. From 15 DAR onwards, the effect of diet composition became evident in juveniles previously fed on a mixed diet (Artemia + copepods), which showed a clear increase in all the assayed enzymes when compared with juveniles fed on Artemia as a sole prey. As a practical applicability of this study, a feeding schedule ensuring an adequate digestibility of the prey is proposed based on ontogenetic enzymatic activities of seahorse juveniles fed on different prey.  相似文献   

3.
This study examined the feeding selectivity of Hippocampus kuda juveniles under captive conditions and evaluates different food organisms that could be used to improve hatchery‐rearing of this species. Newly born H. kuda were reared for 10 days in 60‐L capacity tanks and fed rotifers (Brachionus rotundiformis), zooplankton (mostly Pseudodiaptomus annandalei and Acartia tsuensis) alone or both food sources. The size and amount of food ingested increased as seahorses grew. Selective feeding of seahorses appeared to change as they develop, preferring copepod adults over nauplii and rotifers. A. tsuensis was highly selected by juveniles over P. annandalei. Specific growth rate in terms of body weight (SGR‐BW, 15% day–1) was the highest and mortality rate (9% at day 10) the lowest in seahorses fed a mixed food sources. Slowest growth rate (0.3% day–1) and highest mortality rate (60% at day 7) were observed in seahorses fed rotifers alone. These results indicate that copepods are suitable food for seahorse juveniles, but a mixture of food organisms in the rearing tank environment enhances survivorship and growth of H. kuda, thus potentially providing a source of cultured rather than wild specimens for characterizing the life history of this threatened species.  相似文献   

4.
Frozen copepods, frozen adult Artemia, live rotifers and live Artemia nauplii were used as feed for the megalopa of Eriocheir sinensis during desalination stage to determine the most nutritious and cost‐effective feed. The biochemical composition of the four feeds was analysed. Then, the individual wet weight, individual dry weight, survival rate, the cost and the biochemical composition of the megalopa were measured after the desalination. The resulting effects on the metamorphosis ratio and the duration of the megalopa were also assessed. The results showed that the duration of desalinated megalopa to first stage crab for all treatments was approximately 3.5 days, while the metamorphosis rate of the copepod treatment was significantly higher than the other treatments with the value of 96.33 ± 3.79%. In terms of biochemical composition, after desalinization, the moisture content of megalopa in the adult Artemia treatment was the highest, and the total lipid in the Artemia nauplii treatment and rotifer treatment was significantly higher than the other two treatments. The desalinated megalopa from copepod treatment had the highest percentages of DHA (22:6n‐3) and EPA (20:5n‐3) among the four treatments. The desalinated megalopa from copepod treatment and rotifer treatment had the higher contents of protein. In conclusion, frozen copepods have higher nutritional value for the megalopa during the desalination period. Therefore, feeding the megalopa with copepods can improve the culture performance and megalopa quality, and can also reduce the feed cost during desalination stage.  相似文献   

5.
Considering the well‐known problems arising from the use of rotifers and Artemia as live prey in larval rearing in terms of fatty acid deficiencies, the aim of this study was to evaluate a partial or complete replacement of traditional live prey with preserved copepods during the larviculture of gilthead sea bream (Sparus aurata). Sea bream larvae were randomly divided into 4 experimental groups in triplicates: group A larvae (control) fed rotifers followed by Artemia nauplii; group B fed a combined diet (50%) of rotifers–Artemia and preserved copepods; group C fed rotifers followed by preserved copepods; and group D fed preserved copepods solely. Survival and biometric data were analysed together with major molecular biomarkers involved in growth, lipid metabolism and appetite. Moreover, fatty acid content of prey and larvae was also analysed. At the end of 40 days treatment, a stress test, on the remaining larvae, was performed to evaluate the effects of different diets on stress response. Data obtained evidenced a positive effect of cofeeding preserved copepods during sea bream larviculture. Higher survival and growth were achieved in group B (fed combined diet) larvae respect to control. In addition, preserved copepods cofeeding was able to positively modulate genes involved in fish growth, lipid metabolism, stress response and appetite regulation.  相似文献   

6.
The aim of this study was to evaluate the effect of microalgae on the rearing of newborn juveniles of the longsnout seahorse, Hippocampus reidi. Two treatments in three replicates were tested over a 15‐day period: with and without the addition of the microalgae Nannochloropsis oculata at a concentration of 2.02 ± 0.44 × 106 cells mL?1. At each replicate, beginning on the second day of life, 120 H. reidi juveniles (stocking density of 3 ind L?1) were fed the offspring of the benthic copepod Tisbe biminiensis (100 copepod cm?2) together with newly hatched Artemia nauplii (3.8 mL?1). From the sixth day of life, enriched Artemia metanauplii replaced newly hatched Artemia nauplii. After 15 days, the H. reidi individuals were counted, measured and weighed. Mean survival was significantly greater in the microalgae treatment (76.42 ± 5.07%) than in the treatment with no microalgae (25.44 ± 6.91%). Moreover, total length, height and dry weight were significantly larger in the microalgae treatment. Thus, the addition of microalgae increases the growth and survival of H. reidi juveniles fed T. biminiensis and Artemia. The higher growth and survival of H. reidi juveniles was not related to the larger ingestion rates but probably to the nutritional improvement of the live feeds or to the probiotic effect. The protocol developed for rearing H. reidi juveniles resulted in a high survival, and represents an advance in the farming of this species.  相似文献   

7.
Seahorses are ambush predators that swallow the prey through their tubular snout. In order to better understand mouth growth and its effect on prey preference by juveniles of the seahorse Hippocampus guttulatus, experimental assays were carried out by feeding juveniles (0–30 – d after male's pouch release [dar]) on a mixture of rotifers, Brachionus plicatilis; Artemia nauplii; and copepods; Acartia tonsa. Mouth development in juveniles was accomplished by growth of upper and lower jaws, which were linearly correlated with juvenile length, whereas mouth width (MW) and height (MH) grew exponentially with juvenile size. Additionally, MW and MH were exponentially correlated, so that the transversal section of the mouth increased linearly with juvenile age and length. Gut content and Ivlev' selectivity index demonstrated a permanent rejection of rotifers for the whole experimental period and a clear preference of juveniles for copepods from 0 to 15 dar and for Artemia nauplii afterwards. Results also suggest that juveniles are able to ingest larger prey than those provided as the limiting factor in prey ingestion was not MW, as for many marine fish larvae, but mouth area. A tentative feeding schedule to successfully feed H. guttulatus juveniles from 0 to 30 dar is proposed.  相似文献   

8.
The trade in seahorses for aquarium fishes is contributing to the depletion of many wild populations of these animals. Many seahorses are sold to replace those that have died in captivity as a result of husbandry problems. It can be particularly difficult to rear the young seahorses, because of their need for varied live food and their vulnerability to disease. We here report a pilot study on rearing broods from males of three species (H. fuscus, H. barbouri, and H. kuda) that had mated in the wild and gave birth in captivity. The new-born seahorses were fed an initial diet of enriched Artemia until 7 days, after which copepods were added to the diet. From 5 weeks, frozen mysids were gradually phased in to replace both other food items. Scrupulous hygiene was maintained. We achieved 100% survival of the partial broods we reared for all three species and achieved life cycle closure in two of these during the experimental period. Of the three species, H. kuda grew to be largest and longest, and H. barbouri grew least. However, H. kuda were the slowest to mature and reproduce while H. fuscus (intermediate in growth) were the fastest. Techniques used in this work should be more generally applicable, both for aquarium husbandry and for small-scale aquaculture to help provide alternative incomes for small-scale fishers who are otherwise dependent on catching wild seahorses.  相似文献   

9.
Seahorse aquaculture has been a focus for meeting the demand of traditional medicine and aquarium. Feeble (poor quality) juveniles are commonly found in the commercial seahorse culture. In this study, we compared the growth and survival performances of the feeble and healthy common seahorses Hippocampus kuda. The results show that the feeble juveniles had high growth and survival at the temperature of 27–29 C and salinity of 26–28‰ with frequent feeding (≥three times a day) during first 5 wk. Through a 12‐wk investigation, we found that the air‐bubble disease could significantly affect the specific growth rate and survival of the feeble juveniles. There was a positive and significant correlation between the substrate‐attachment rate and survival rate in the feeble juveniles, and substrate‐attachment rate may be used to assess the quality of the feeble populations in the seahorse H. kuda.  相似文献   

10.
As with many species of seahorses, Hippocampus hippocampus wild populations are being subjected to uncontrolled exploitation in their natural environment. Thus, aquaculture could contribute to satisfy the commercial demand for animals while promoting the recovery of wild stocks. The present study was conducted to compare the effect of the substituting Artemia nauplii with rotifers for first feeding seahorse juveniles. Survival, growth and biochemical composition of prey organisms and fish were studied during the feeding trial. In addition, to help the biometric study, an anaesthetic test was also carried out using clove oil. The results showed excellent survival (average 60%) in juveniles exclusively fed with Artemia, with better values than those reported previously obtained by other authors for this species. By comparison, high mortality and poor growth were observed during first feeding with seahorses fed on rotifers. This could have been related to the lower energy intake and poorer nutritional value of the rotifers. Furthermore, clove oil concentrations of 25 ppm were found to work well as an anaesthetic for seahorse juveniles. Overall, first feeding Artemia alone was found to be an efficient and simplified method for feeding young H. hippocampus fry, building the principles for their culture for ornamental or re‐stocking purposes.  相似文献   

11.
This study aimed at (1) evaluating the efficacy of live food organisms (Artemia and natural zooplankton) and an artificial diet in the larval rearing of African carp Labeo parvus and (2) determining appropriate rearing conditions. After yolk sac resorption, the larvae were separated into five different feeding trials with two replicates. At the end of the larval rearing period (28 days post‐hatching), the highest (94.6%) and the lowest (53.7%) cumulative survival rates were found when larvae were fed with natural zooplankton for 7 days followed by Nippai food for 21 days, and when larvae were fed from the beginning of exogenous feeding with Nippai food only respectively. The significant highest body weight (351.6 mg), total length (34.4 mm) and specific growth rates (15.5%day?1) were recorded when the larvae were fed with Artemia nauplii for 14 days followed by Nippai food for 14 days. The lowest growth performance (body weight and specific growth rates) were obtained when larvae were fed exclusively Nippai food. These results indicate that L. parvus can be successfully cultured in indoor nursery systems from hatching to the early juvenile stage.  相似文献   

12.
The specific activity of alkaline protease, trypsin and pepsin‐like enzymes was measured in yolk sac stage Acipenser persicus larvae and over a 1‐month feeding experiment using live Artemia nauplii (ND), formulated feed (FD) or mixed food (MD). Artemia nauplii group larvae showed significantly higher growth and survival during the first 15 days while FD larvae showed the lowest growth and survival. At day 30, MD larvae exhibited significantly higher growth than the ND group. Alkaline protease activity showed the lowest activity on day 15; the highest activity was observed in the MD group larvae. Pepsin‐like activity showed a drastic increase from day 1 to 5 in all treatments, but remained stable throughout the next 25 days, with the lowest and the highest activity in the FD treatment on day 10 and in the MD treatment on day 30 post‐feeding respectively. Trypsin‐like activity in group ND remained almost the same from day 5 to 30, whereas in groups MD and FD, it decreased significantly from day 10 to 30. The contribution of the naupliar proteases was moderate but effective. Additionally, better performance in Artemia fed sturgeon larvae may also be due to the structure and digestibility of proteins and the food intake stimulation by the nauplii.  相似文献   

13.
Previously, we found Lactobacillus plantarum had probiotic effects on lined seahorse (Hippocampus erectus) juveniles by the addition Lactobacillus directly into rearing seawater containing juveniles and their food (i.e. copepods). However, how the juveniles consumed Lactobacillus, directly from water or from copepods in whose guts Lactobacillus may have accumulated by ingestion, is still unclear. To clarify this, three experiments were successively carried out in this study. In the first experiment, the manner by which juveniles consumed Lactobacillus, namely, directly from food, was discovered via a 2 × 2 factorial design with two factors of water and food, and two levels with and without L. plantarum. In the second experiment, a 5 × 4 factorial design with five levels of L. plantarum doses (D: 5, 10, 20, 40 and 80 × 108 cfu/L) and four levels of enrichment time (T: 0.5, 1.0, 1.5 and 2.0 hr) was conducted to analyse lactic acid bacteria (LAB) contents in the enriched copepods under different treatments. In the third experiment, six kinds of Lactobacillus‐enriched copepods chosen from the second experiment that carried significantly different LAB contents were fed to juveniles, and it was found that the copepods containing LAB greater than 5 log10colonies/g had the most improved effects for survival and growth. In conclusion, the effective manner of L. plantarum administration in seahorses is by the addition to their food. Additionally, D40 * T1.0, whose LAB content was more than 5 log10colonies/g, is generally the most economic copepod treatment for improving survival and growth in H. erectus rearing.  相似文献   

14.
This investigation examined the effects on growth and survival of seahorses Hippocampus abdominalis Leeson 1827 fed a 25% body weight (wet weight) daily ration of live Artemia sp. enriched with Algamac‐3050, frozen mysids Amblyops kempi or a combination of live enriched Artemia and frozen mysids. After 3 months there was no difference in seahorse length, wet weight, condition factor (CF), or food conversion ratios (FCR) between the treatments. Mean daily specific growth rate (SGR) was higher for the Artemia‐only treatment than for the mysid‐only treatment (P<0.05). FCRs ranged from 6.14 g to 8.72 g dry weight of food required to give a 1‐g dry weight increase in seahorses. There was no difference in survival between treatments. Fatty acid analysis revealed that mysids had a higher percentage composition of EPA, 20 : 5n‐3, and DHA, 22 : 6n‐3, but a lower composition of AA, 20 : 4n‐6, than enriched Artemia. Percentage n‐3 highly unsaturated fatty acids (HUFAs) in mysid levels were approximately twice that of Artemia. Proximate analysis revealed mysids to be higher than the enriched Artemia in protein and fats, and lower in water content. This experiment demonstrates that, although no growth advantage was derived from the use of frozen mysids, they can be used successfully as an alternative food to live enriched Artemia for H. abdominalis. The use of frozen mysids is highly recommended in commercial seahorse culture if the seahorses are to be sold into the live aquarium trade, as this may increase their chances of survival after sale.  相似文献   

15.
The aim of this study was to compare the nutritional composition and effects of short periods with cultivated copepod nauplii versus rotifers in first‐feeding. Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae were given four different dietary regimes in the earliest start‐feeding period. One group was fed the copepod Acartia tonsa nauplii (Cop), a second fed enriched rotifers (RotMG), a third fed unenriched rotifers (RotChl) and a fourth copepods for the seven first days of feeding and enriched rotifers the rest of the period (Cop7). Cod larvae were fed Artemia sp. between 20 and 40 dph (days posthatching), and ballan wrasse between 36 and 40 dph, with weaning to a formulated diet thereafter. In addition to assessing growth and survival, response to handling stress was measured. This study showed that even short periods of feeding with cultivated copepod nauplii (7 days) had positive long‐term effects on the growth and viability of the fish larvae. At the end of both studies (60 days posthatching), fish larvae fed copepods showed higher survival, better growth and viability than larvae fed rotifers. This underlines the importance of early larval nutrition.  相似文献   

16.
It is not known whether rotifers or Artemia nauplii are the best first food for South African mud crab Scylla serrata larvae. In order to test this, larvae were fed with five different test diets. These were rotifers for the first 8 days and newly hatched EG® type Artemia nauplii (San Francisco Bay) from day 6 onwards (treatment R6A); newly hatched EG® type Artemia nauplii throughout the rearing period (treatment EG); newly hatched Vinh-Chau strain (Vietnam) Artemia nauplii throughout the rearing period (treatment VC); decapsulated cysts of EG® type Artemia throughout the rearing period (treatment DECAP); or decapsulated cysts supplemented with low densities of Artemia EG type Artemia nauplii (treatment MIX). Two experiments were conducted approximately 1 month apart using larvae from two different female crabs. Although results showed it is possible to rear S. serrata larvae through metamorphosis on Artemia nauplii exclusively, larval performance (development, survival and successful metamorphosis) was enhanced by the inclusion of rotifers as a first feed.No significant difference in performance was recorded between larvae fed on the two strains of Artemia nauplii. Larvae fed on decapsulated cysts in treatments DECAP and MIX performed poorly, but there were indications that decapsulated cysts and other inert diets may have potential as supplements to live food in the rearing of S. serrata larvae.  相似文献   

17.
We evaluated the growth and survival rate of sterlet (Acipenser ruthenus) larvae fed Artemia nauplii enriched with Olioω3 or Red Pepper commercial emulsions (BernAqua NV, Belgium). Sterlet larvae, 0.022 ± 0.002 g body weight, were randomly assigned to one of three feeding regimes with two different feeding durations. After administering live feed for 7 or 14 days, larvae were weaned onto commercial food and reared to 36 days posthatching (28 days of feeding). There were no significant differences in body weight among groups at the end of the trial. A significantly higher survival rate (p < 0.05) was observed in larvae fed Artemia enriched with Red Pepper for 14 days compared to other feeding regimes. Based on the analysis of growth parameters, we can conclude that 7 days of live feeding to be sufficient for efficient rearing of sterlet larvae. And longer duration of live feeding with use of special enrichment can be recommended for a higher survival rate.  相似文献   

18.
An experiment was conducted to evaluate the effect of different forms of Artemia biomass as a food source on survival, molting and growth rate of mud crab Scylla paramamosain. Instar 1 crablets with a mean weight of 0.0082 ± 0.0007 g were reared both individually and communally and fed with different diets consisting of fresh shrimp meat (control feed), live Artemia biomass, frozen Artemia biomass and a dried Artemia‐based formulated feed for 40 days. The highest survival was obtained for crablets receiving live Artemia (92.5% and 75.8%) followed by the groups fed with frozen biomass (90.0% and 47.5%), the control feed (72.5% and 24.2%) and the dried Artemia‐based diet (60.0% and 21.7%) for individual and communal cultures, respectively. The intermolt period, the total number of moltings and the growth rate, which were determined on individually reared crabs, showed the same pattern as for survival. The results suggest that crab performance decreased in the following order: live Artemia>frozen Artemia > fresh shrimp meat > dried Artemia‐based formulated feed. Live Artemia biomass proved an ideal feed for nursery of Scylla paramamosain crabs. Frozen Artemia biomass may be an alternative in times of shortage. Our findings illustrate the high potential for local utilization of Artemia biomass in Vietnam for reliable production of mud crab juveniles.  相似文献   

19.
Nutritional efficacy of fairy shrimp (Streptocephalus sirindhornae) nauplii, as a live food, was studied for growth performance and survival rate of giant freshwater prawn (Macrobrachium rosenbergii) postlarvae. A feeding experiment was designed with four different feeds: dry commercial feed, fairy shrimp nauplii, Artemia sp. nauplii and adult Moina macrocopa. Results from the nutritional composition revealed that fairy shrimp nauplii had protein and lipid contents of 54.58 ± 2.8 g kg?1 and 255 ± 2.8 g kg?1, respectively. The highest value for an individual amino acid in fairy shrimp was lysine (140.7 ± 1.6 g kg?1). The essential amino acids content in the whole body of the larval prawns was in the range of 66.7–67.5 g kg?1. Fairy shrimp nauplii had the highest essential amino acid ratio (A/E) of lysine, similarly, in musculature of prawn larvae. Weight gain and specific growth rate of the postlarvae fed with fairy shrimp nauplii were significantly higher than those fed with Artemia nauplii, adult Moina and dry commercial feed. The presented results suggest that S. sirindhornae nauplii can be used as a nutritionally adequate food for freshwater prawn M. rosenbergii postlarvae.  相似文献   

20.
Intensive grow‐out of goldfish, Carassius auratus (L.), larvae and juveniles in closed systems requires the control of environmental conditions and feeding. This study investigates the use of different types of live food and combinations of live food and dry food in a series of four rearing experiments. Juvenile goldfish can be weaned from Artemia onto live food at about 24 days after the onset of feeding without causing a reduction in growth and survival. The replacement of Artemia by Daphnia at day 10 appears feasible, as growth and survival were not significantly affected. Fish fed decapsulated Artemia cysts grew better than fish fed live Artemia. Within the first 14 days, goldfish juveniles should be fed at least 155 cysts per fish per day to achieve fast growth and to minimize size variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号