共查询到20条相似文献,搜索用时 0 毫秒
1.
Reducing the levels of dioxins and dioxin-like PCBs in farmed Atlantic salmon by substitution of fish oil with vegetable oil in the feed 总被引:1,自引:0,他引:1
MARC H.G. BERNTSSEN ANNE-KATRINE LUNDEBYE & BENTE E. TORSTENSEN 《Aquaculture Nutrition》2005,11(3):219-231
Atlantic salmon were fed extruded diets based on either 100% fish oil (FO) or 100% vegetable oil blend (VO) substitution for 22 months. A total of seven distinct feeding periods were studied that incorporated higher levels of dietary oil inclusion, and larger pellet size as fish size increased. Whole fish levels of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/F) and dioxin‐like PCBs (DLPCB) were analysed at the beginning and end of each of the seven feeding periods. The PCDD/F and DLPCB concentrations in the FO diets increased from 2.43 to 4.74 ng WHO‐TEQ kg?1 (TEQ, toxic equivalents), while VO diets decreased from 1.07 to 0.33 WHO‐TEQ kg?1 as oil inclusion increased. Partial least square regression analyses identified feed concentration, growth rate and feed utilization, but not variations in lipid content, as factors significantly affecting fish PCDD/F and DLPCB levels. Accumulation efficiencies for DLPCB (740 ± 90 g kg?1) were significantly (P < 0.01) higher than for PCDD/F (430 ± 60 g kg?1), explaining the increasing dominance of DLPCB levels over PCDD/F levels in whole fish (DLPCB : PCDD/F ratio of 2.4 ± 0.1 for both VO and FO fed fish) compared with feed (DLPCB : PCDD/F ratio of 1.5 and 0.34 for FO and VO feed respectively). Vegetable oil substitution significantly reduced the level of PCDD/F and DLPCB (eightfold and twelve‐fold, respectively) in the fillet of a 2 kg salmon, but, also negatively affected beneficial health components such as fillet n‐3/n‐6 fatty acid ratio. 相似文献
2.
Temperature modulates liver lipid accumulation in Atlantic salmon (Salmo salar L.) fed low dietary levels of long‐chain n‐3 fatty acids 下载免费PDF全文
N.H. Sissener B.E. Torstensen M.A.G. Owen N.S. Liland I. Stubhaug G. Rosenlund 《Aquaculture Nutrition》2017,23(4):865-878
Atlantic salmon (Salmo salar) were fed five graded levels of eicosapentaenoic acid (EPA, 20:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3), from 1.4 to 5.2% of total fatty acids (FA, 5–17 mg kg?1 feed), and grew from ~160 g to ~3000 g, with the period from 1450 g onwards conducted both at 6 °C and at 12 °C. All fish appeared healthy, and there were no diet‐related differences in haematological or plasma parameters, as well as intestinal histological or gut microbiota analysis. Fish reared at 6 °C had higher accumulation of storage lipids in the liver compared to fish reared at 12 °C. Liver lipids also increased with decreasing dietary EPA + DHA at 6 °C, while there was no such relationship at 12 °C. Gene expression of SREBP1 and 2, LXR, FAS and CPT1 could not explain the differences in liver lipid accumulation. In liver polar lipids, DHA was found to be reduced when dietary EPA + DHA was <2.7% of FAs, while the level of EPA in the membranes was not affected. In conclusion, reducing dietary EPA + DHA from 5.2 to 1.4% of total FAs had a minor impact on fish health. Temperature was the factor that most affected the liver lipid accumulation, but there was also an interaction with dietary components. 相似文献
3.
The dietary influence on the fatty acid composition of neutral lipids and phosphatidylcholine of very low density lipoprotein
(VLDL), low density lipoprotein (LDL) and high density lipoprotein (HDL) of Atlantic salmon (Salmo salar) was studied, using soybean oil, capelin oil and sardine oil as lipid sources in the diets. The fish had a mean weight of
3 Kg and had been fed the experimental diets for 24 months. The results show that the fatty acid composition in the feed are
important for the composition of the core lipids as well as the surface components of the lipoproteins. 相似文献
4.
Raja Mansingh Rathore Bjørn Liaset Ernst Morten Hevrøy Adel El‐Mowafi Marit Espe 《Aquaculture Research》2010,41(11):e751-e759
This experiment aimed to test the interaction of lysine limitation with nutrient accretion and muscle carnitine depot in Atlantic salmon. Fish were fed adequate or low‐lysine diets for 3 months. Lysine intake was significantly less (48%) in fish fed the low‐lysine diet as compared with that fed the adequate one. There was no difference in dietary amino acids between treatments, with the exception of lysine. The lower lysine intake was reflected in plasma free lysine being 52% less while the free lysine concentration in the liver and muscle were unaffected. Although there was no significant difference between voluntary feed intakes among treatments, fish fed the low‐lysine diet had reduced growth, protein and energy deposition as compared with fish fed the adequate lysine diet. White trunk muscle contained more glycogen and less protein in fish fed the low‐lysine diet while no difference in lipid was observed. The livers from fish fed the low‐lysine diet contained less glycogen and slightly more fat and protein than the livers from fish fed the adequate lysine diet. Lysine limitation reduced carnitine in the liver without affecting muscle carnitine depot. Thus, low‐lysine diets did not likely affect the fatty acid oxidation capacity. This fact was supported by unaffected fatty acid profiles and lipid classes between treatments during the 3‐month study. In conclusion, lysine limitation does not deplete the muscle carnitine depot during the on‐growing seawater phase of Atlantic salmon, but affects the deposition pattern of nutrients. 相似文献
5.
Mohammed Aliyu‐Paiko Roshada Hashim Alexandern Shu‐Chien Chong Lavineshwary Yogarajah Abdel‐Fattah M. El‐Sayed 《Aquaculture Research》2010,41(9):1365-1376
Nine isoenergetic (18.5 kJ g−1) diets were formulated, in a 3 × 3 factorial design, by varying three levels of dietary protein (350, 400 and 450 g kg−1) at each of three levels of dietary lipid (65, 90 and 115 g kg−1) accordingly. Each diet was hand fed two times daily for 8 weeks to triplicate homogenous groups of eight fish (average weight 3.34 ± 0.02 g) per tank connected to a recirculation system. Results showed that the feed efficiency and growth performance significantly (P<0.05) increased with increasing protein level at the two lower lipid levels (65 and 90 g kg−1), respectively, as indicated by indices such as %weight gain, specific growth rate, protein efficiency ratio, feed conversion ratio and feed intake, but did not at the highest lipid level (115 g kg−1). The muscle polyunsaturated fatty acids (PUFA) content declined with increasing dietary protein level at the lipid levels producing the highest growth, suggesting that the utilization of PUFA influences growth. Whereas the muscle monounsaturated fatty acids level was generally lower than the dietary levels in all the treatments tested, indicating preferential catabolism for energy, the muscle saturated fatty acids level was comparatively higher than in the diets, indicating selective deposition. Docosa hexaenoic acid (22:6n3, DHA), which was very low in the diet and in the initial fish, was higher in the muscle of some of the treatments, indicating the ability of Channa striatus to desaturate and elongate short‐chain PUFA to long‐chain HUFA, due to the availability of dietary 18:3n3 and 20:5n3 (the precursors for DHA biosynthesis). It could be concluded, based on the results of this trial, that a diet formulated to contain 65 g kg−1 lipid and 450 g kg−1 protein, with a gross energy of 18.5 kJ g−1 and a dietary n3/n6 PUFA ratio of about 0.1, is sufficient to promote good feed efficiency and growth performance in C. striatus fingerling. 相似文献
6.
A 12‐week feeding trial was conducted to investigate the interactive effects between water temperature and diets supplemented with different blends of fish oil, rapeseed oil and crude palm oil (CPO) on the apparent nutrient and fatty acid digestibility in Atlantic salmon. Two isolipidic extruded diets with added fish oil fixed at 50% and CPO supplemented at 10% or 25% of total added oil, at the expense of rapeseed oil, were formulated and fed to groups of Atlantic salmon (about 3.4 kg) maintained in floating cages. There were no significant effects (P>0.05) of diet on growth, feed utilization efficiency, muscle total lipid or pigment concentrations. Fatty acid compositions of muscle and liver lipids were mostly not significantly different in salmon fed the two experimental diets but showed elevated concentrations of 18:1n‐9 and 18:2n‐6 compared with initial values. Decreasing water temperatures (11–6°C) did not significantly affect protein, lipid or energy apparent digestibilities of the diets with different oil blends. However, dry matter digestibility decreased significantly in fish fed the diet with CPO at 25% of added oil. Increasing dietary CPO levels and decreasing water temperature significantly reduced the apparent digestibility (AD) of saturated fatty acids. The AD of the saturates decreased with increasing chain length within each temperature regimen irrespective of CPO level fed to the fish. The AD of monoenes and polyunsaturated fatty acids was not affected by dietary CPO levels or water temperature. No significant interaction between diet and water temperature effects was detected on the AD of all nutrients and fatty acids. The results of this study showed that the inclusion of CPO up to about 10% (wt/wt) in Atlantic salmon feeds resulted in negligible differences in nutrient and fatty acid digestibility that did not affect growth performance of fish at the range of water temperatures generally encountered in the grow‐out phase. 相似文献
7.
Previously, we reported that methionine intake determined the taurine concentration in the liver of on‐growing Atlantic salmon fed plant protein diets. Further, the methionine intake and/or the increased taurine concentration following increased methionine intake affected the liver lipid metabolism. The following study therefore aimed to test whether taurine affected the growth or the type of growth when added in high plant protein diets naturally low in taurine but equal and adequate in dietary methionine. Juvenile Atlantic salmon [initial body weight (BW) of 2 g] were fed plant protein diets (16.5% fishmeal), which were supplemented with taurine or not for a period of 56 days. As a control for growth and normal metabolism, a fishmeal‐based commercial diet (68% fishmeal) was used. Supplementation with taurine to high plant protein diets had a slightly negative effect on weight gain, but the final body weight was not different. Interestingly, the pool of free amino acids in the liver and muscle was significantly higher in fish fed the supplemented diet as compared with fish fed the plant protein diet without taurine supplementation. Liver polyamine concentration was higher in fish fed the supplemented diet than in fish fed the similar diet without supplementation. Additionally, juvenile salmon fed the plant‐based diet supplemented with taurine had a lower body lipid‐to‐protein ratio due to a reduced whole‐body lipid content, while the whole‐body protein content was similar between treatments. Our study thus indicates that the addition of a low concentration of taurine to high plant protein diets interacts with lipid metabolism and storage, concomitantly affecting the general metabolism as the concentrations of the free amino acids and polyamines in the liver were significantly higher. The possible reasons for these changes are discussed. 相似文献
8.
Effects of dietary lipid level and vegetable oil on fatty acid metabolism in Atlantic salmon (Salmo salar L.) over the whole production cycle 总被引:1,自引:0,他引:1
D.R. Tocher J.G. Bell F. McGhee J.R. Dick J. Fonseca-Madrigal 《Fish physiology and biochemistry》2003,29(3):193-209
Changes in fatty acid metabolism in Atlantic salmon (Salmo salar) induced by vegetable oil (VO) replacement of fish oil (FO) and high dietary oil in aquaculture diets can have negative impacts
on the nutritional quality of the product for the human consumer, including altered flesh fatty acid composition and lipid
content. A dietary trial was designed to investigate the twin problems of FO replacement and high energy diets in salmon throughout
the entire production cycle. Salmon were grown from first feeding to around 2 kg on diets in which FO was completely replaced
by a 1:1 blend of linseed and rapeseed oils at low (14–17%) and high (25–35%) dietary oil levels. This paper reports specifically
on the influence of diet on various aspects of fatty acid metabolism. Fatty acid compositions of liver, intestinal tissue
and gill were altered by the diets with increased proportions of C18 polyunsaturated fatty acids and decreased proportions of n-3 highly unsaturated fatty acids (HUFA) in fish fed VO compared
to fish fed FO. HUFA synthesis in hepatocytes and enterocytes was significantly higher in fish fed VO, whereas β-oxidation
was unaltered by either dietary oil content or type. Over the entire production cycle, HUFA synthesis in hepatocytes showed
a decreasing trend with age interrupted by a large peak in activity at seawater transfer. Gill cell prostaglandin (PG) production
showed a possible seasonal trend, with peak activities in winter and low activities in summer and at seawater transfer. PG
production in seawater was lower in fish fed the high oil diets with the lowest PG production generally observed in fish fed
high VO. The changes in fatty acid metabolism induced by high dietary oil and VO replacement contribute to altered flesh lipid
content and fatty acid compositions, and so merit continued investigation to minimize any negative impacts that sustainable,
environmentally-friendly and cost-effective aquaculture diets could have in the future.
Abbreviations: FO - fish oil; HUFA - highly unsaturated fatty acids acids (carbon chain length ≥C
20 with ≥3 double bonds); LO - linseed oil; RO - rapeseed oil; VO - vegetable oil.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
9.
The major aim of the current study was to evaluate the effect of substituting fish oil (FO) for a vegetable oil blend (VO) as dietary lipid source on lipid catabolism in Atlantic salmon (Salmo salar L.). The experiment endured from the start of feeding until the salmon reached 2.5 kg. Total and peroxisomal β‐oxidation capacities were determined in red and white muscle and liver. In addition, fatty acid productive value (FAPV) was calculated during the four time periods the experiment was divided into. In all the three tissues, an increased β‐oxidation capacity was found prior to seawater transfer; however, calculating the difference between the peroxisomal β‐oxidation capacity and the total, the peroxisomal β‐oxidation increased more than the mitochondrial β‐oxidation capacity. Hence, in liver and red muscle, 100%and 70%, respectively, of the total β‐oxidation capacity was accounted by peroxisomes prior to seawater transfer, compared with approximately 60% and 3% during the seawater phase. In contrast, white‐muscle mitochondria was the main organelle responsible for oxidizing fatty acids during the entire experiment (>90%). However, during the period of high energy demand (parr‐smolt transformation), fish fed VO exhibited significantly lower β‐oxidation capacity than fish fed FO, coinciding with low FAPV and low specific growth rate (SGR). Further, during periods of high growth rate, fish oxidized even essential fatty acids (18:2n‐6, 18:3n‐3, 20:5n‐3, and 22:6n‐3) when given in surplus. Low dietary levels of essential fatty acids gave significantly higher FAPV of these fatty acids in the whole body. However, the FAPV of 22:1n‐11 was low, indicating that this fatty acid is highly utilized as a substrate for β‐oxidation, irrespective of the dietary levels. There were no differences in whole lipid content between fish fed either FO or VO. 相似文献
10.
During refrigeration, lipid oxidation is a major factor contributing to post-mortem deterioration of flesh quality. Polyunsaturated fatty acids (PUFA), especially n -3 PUFA, are present in high concentration in fish tissues, and in oils used in diets, and are readily susceptible to peroxidation. α-Tocopherol (AT) can reduce tissue lipid peroxidation in vivo and post mortem. The effect of increasing the tissue level of AT by dietary supplementation of α-tocopherol acetate (ATA) was therefore investigated. Commercial salmon diets C, M and H, high in lipids, containing 184, 573 and 865 mg ATA kg−1 diet DM (dry matter) were fed to 18 fish per treatment. Dietary AT: PUFA ratios were 2.0, 6.3, and 9.5 mg g−1 for diets C, M and H, respectively. Fish (mean initial live weight 630 g) were slaughtered after 50 and 78 days of feeding. Fillet samples were analysed fresh or after storage at 4 °C for 12 days and –20 °C for 12 months. Lipid oxidation was measured using the thiobarbituric acid test. Colour score, but not carotenoid content, of fillets was significantly higher between 6 and 12 days of fresh storage in fish fed diets M and H compared with those fed diet C. Colour score, carotenoid content and ΑΤ content decreased and the content of lipid oxidation products increased following storage of fillets at –20 °C for up to 12 months, although lipid oxidation was always significantly lower in fish fed diets M and H. 相似文献
11.
Six groups of Atlantic salmon, initial weight 142 ± 1 g, were fed increasing dietary inclusion of rapeseed oil (RO) in a regression design and one group was fed a 50% olive oil/50% capelin oil diet. Fatty acid composition was measured in red and white muscle, liver, and fatty acid and lipid class composition was measured in plasma and in the lipoproteins; very low density lipoprotein, low density lipoprotein, high density lipoprotein and nonlipoprotein fraction after 22 and 42 weeks of feeding. Further, the activities of liver NADH‐isocitrate dehydrogenase (ICDH), malic enzyme, glucose‐6‐phosphate dehydrogenase (G6PDH) and 6‐phosphogluconate dehydrogenase were measured at each sampling point. After 42 weeks of feeding the experimental diets, the tissue and lipoprotein fatty acid composition was highly affected by dietary fatty acid composition. Regressions showed that 22:1n ? 11, 18:1n ? 9, 18:3n ? 3 and 18:2n ? 6 are readily metabolized in all tissues analysed. Further, 20:5n ? 3 seems to be metabolized in muscle and retained in liver. 22:6n ? 3 was selectively retained in all the analysed tissues, and with higher retention in liver and plasma with higher polar lipid/neutral lipid ratio compared to white and red muscle. Liver from salmon fed 100% RO showed decreased G6PDH and increased ICDH activities compared to the other dietary groups; however, no linear relationship related to increased RO inclusion was detected. The amount of plasma lipoproteins, liver monoene fatty acid level and lipogenic enzyme activity decreased from the autumn to the winter sampling with concomitant decrease in temperature. 相似文献
12.
An experiment with 0.2‐kg Atlantic salmon, Salmo salar in saltwater was conducted to determine if the fish could grow normally, and maintain normal nitrogen (N) and mineral balance when fed a diet with the majority of the protein (75%) derived from soy‐protein concentrate (SPC). The two diets contained 50% SPC and 15% fish meal (FM) or 60% FM as the sources of protein. No calcium phosphate was added to the diets in order to assess the availability of P from the ingredients. A second aim was to investigate if whole‐body concentrations of essential elements and growth were related in individual salmon. Growth (SGR=0.88–0.89) was similar in salmon fed the two diets, and the fish nearly doubled their body weights during the 84 days of feeding. Feed conversion was more efficient for the FM diet (0.81 kg intake kg?1 gain) than for the SPC diet (0.89 kg kg?1). The intake of N was similar, faecal loss of N was lower, while the metabolic N excretion was greater in the fish fed the FM than the SPC diet. This resulted in a total excretion of 35.4 g N kg?1 gain for the salmon fed the FM diet and 35.5 g N for the fish fed the SPC diet. Both the intake, faecal and metabolic excretion of P were higher in the fish fed the FM diet than the SPC diet, resulting in a total excretion of 10.5 g P kg?1 gain for the FM diet and 7.2 g P for the SPC diet. Whole‐body concentrations of Ca, Mg, P and Zn were lower in the fish fed the SPC diet, while the Ca–P ratio was decreased, both when compared with the fish at the start of the experiment, and the fish fed the FM diet. The differences in elemental composition were ascribed to a combination of reduced availability of elements due to phytic acid and lower concentration of elements in the SPC than in the FM. No reduction in growth of individual fish, which could be ascribed to reduced availability of essential elements, was seen. 相似文献
13.
The effect of different dietary lipid sources on the athletic health of five groups of Atlantic salmon (Salmo salar) was tested by measuring oxygen consumption rates, prolonged swimming performance, and recovery from exhaustive exercise in a closed circuit respirometer. These groups of fish differed from each other in the source of the supplemental lipid in their diet. The control diet contained 100% anchovy oil, while in the test diets, poultry fat, de-gummed canola oil, or flaxseed oil were used to replace up to 75% fish oil. The composition of the industry diet was a 1:1 blend of anchovy oil and poultry fat, also 50% of the fishmeal protein in this diet was replaced with protein from poultry by-product meal. Despite major differences in dietary lipid and protein composition that altered the lipid composition of the fish, all of our treatment groups performed equally well with respect to their oxygen consumption, swimming performance and recovery ability. Since these swim tests integrated many physiological functions, and collectively represented a sensitive measure of the athletic health of the fish, we concluded that our alternative lipid and protein-based diets represented viable possibilities for salmon farming. 相似文献
14.
B. Ruyter C. Røsjø K. Måsøval O. Einen M.S. Thomassen 《Fish physiology and biochemistry》2000,23(2):151-158
Atlantic salmon (Salmo salar) were fed diets containing fish oil supplemented with 22:6n-3 (FO diet) or linseed oil supplemented with 20:5n-3 (LO diet) for 6
months. The effects of these diets, both containing about 36% n-3 fatty acids, on the esterification, desaturation and elongation of [1-14C] 18:2n-6 and [1-14C] 18:3n-3 were investigated in isolated hepatocytes. The percentages of radioactivity which was esterified from [1-14C] 18:2n-6 or [1-14C]18:3n-3 into total lipids, were approximately 20% lower in hepatocytes from fish fed the FO diet than in hepatocytes from fish fed the LO diet. The percentages of radioactivity esterified in both groups were further reduced when 0.1 mM unlabelled 22:6n-3 was added to the incubation. The percentage of desaturation and elongation products formed from [1-14C] 18:2n-6 was twice as high in hepatocytes from salmon fed the FO diet as it was in hepatocytes from fish fed the LO diet. The ratio of 18:2n-6 to 18:3n-3 was five times higher in the FO diet, and this probably promoted the conversion of 18:2n-6 to longer chain n-6 fatty acids. When 0.1mM unlabelled 22:6n-3 was added to the incubation medium, the percentages of desaturation and elongation products formed were unchanged. Thus, a high level of 22:6n-3 in the diet is apparently not inhibiting the conversion of 18:2n-6 to 20:4n-6, as long as the amount of 18:2n-6 present is substantially higher than that of 18:3n-3. No desaturation and elongation products were recovered from the phospholipids of hepatocytes incubated with [1-14C] 18:3n-3 in any of the groups. However, the `dead end' elongation product 20:3n-3 was found in the triacylglycerol fraction, and the percentage of this fatty acid increased when 22:6n-3 was added to the incubation medium. 相似文献
15.
Taekyoung Seong Renato Kitagima Yutaka Haga Shuichi Satoh 《Aquaculture Nutrition》2020,26(4):1173-1185
A feeding experiment was conducted to determine the optimal formulation level of algae meal, which is rich in docosahexaenoic acid (DHA), in a non‐fish meal diet. Six iso‐nitrogenous (450 g/kg) and iso‐lipidic (130 g/kg) experimental diets were prepared. The control diet was formulated with fish meal (400 g/kg), fish oil (60 g/kg), plant protein sources (220 g/kg) and rapeseed oil (50 g/kg). Plant protein sources (soy protein concentrate, soybean meal and corn gluten meal), rapeseed and fish oil were formulated in the second diet (NFM + FO). In the third diet, fish oil of the NFM + FO diet was replaced by rapeseed oil (NFM + NFO) and designated as the negative control. In the other three diets, rapeseed oil in the NFM + NFO diet was replaced with algae meal (Schizochytrium sp. powder) at 50 g/kg, 100 g/kg and 150 g/kg (AM5, AM10 and AM15, respectively). Triplicate groups of juvenile red sea bream (8.8 g) were fed the experimental diets for 12 weeks near satiation. The growth was lowest in the fish fed NFM + NFO diet. This was improved by the formulation of algae meal, which reached the growth level of the NFM + FO group in the AM10 group. The lipid content of the whole fish body in the NFM + NFO group was significantly lower than those of other groups. The fatty acid profile showed significant differences among dietary treatments. DHA content in total and polar lipids of the whole body and liver was highest in the AM10 and AM15 groups. These results reconfirm that microalgae are a suitable lipid source for the replacement of dietary fish oil for marine fish, and the optimal level was estimated as 50 g/kg?100 g/kg in diet. 相似文献
16.
R. Waagb M.H.G. Berntssen T. Danielsen H. Helberg A.L. Kleppa T. Berg Lea G. Rosenlund L. Tvenning S. Susort V. Vikes O. Breck 《Aquaculture Nutrition》2013,19(4):598-618
By feeding Atlantic salmon diets with 64% of the fish oil (FO) replaced by vegetable oil, and with decreasing fishmeal (FM) inclusion levels from 213, 178 and 143 g kg−1 (accumulated level during the seawater phase) in a full‐scale experiment producing 3.1 thousand tonnes fish, no significant negative effects on fish performance, health and product quality were observed. All dietary groups showed, however, moderate intestinal inflammation. Reduced growth and feed efficiency were seen with decreasing fishmeal inclusion levels. Two dietary groups demonstrated net marine protein production, while none of the groups showed net fish production (FIFO ≥1.65) due to the equal low FO inclusion. High plant oil level gave lower fillet level of persistent organic pollutants (POPs) compared with the levels surveyed on the Norwegian market. The study gave predictable incorporation rates of essential n‐3 long‐chain fatty acids in the fillet. Cooked salmon fillet from all dietary groups showed minor differences in sensory quality. Based on the present full‐scale production results, dietary FM inclusion down to 160 g kg−1 (accumulated) during the seawater phase, concurrent to replacing ~70% of the FO with a suitable plant oil, is not regarded to represent any risk to fish performance, health or quality. 相似文献
17.
The aim of the present study was to investigate the retention of menadione nicotinamide bisulphite (MNB; vitamin K3) and phylloquinone (vitamin K1) in Atlantic salmon (Salmo salar L.). Another objective was to find a reliable method for determination of menadione in fish feed, and to include and validate more matrices in the methods for phylloquinone and menaquinones (vitamin K2). Duplicate tanks of Atlantic salmon (~93 g) were fed four levels (0–1000 mg menadione kg?1 feed) of MNB for 9 weeks. The concentration of menadione and phylloquinone in the feed and the concentration of phylloquinone and menaquinone‐4 (MK‐4) in the tissues were determined. The analysed concentration of dietary menadione found in feed indicated a substantial loss of MNB during feed production. This assumption was supported by screening 15 commercial fish feed samples which also revealed menadione concentrations far below the recommended level. MNB fed salmon showed only a minor increase in liver MK‐4 concentration, compared to salmon fed phylloquinone which had a considerably higher level of liver phylloquinone, indicating a higher retention of phylloquinone compared to menadione in Atlantic salmon. Due to highly varying stability and bioavailability of the different vitamin K derivatives, vitamin K supplementation in fish feed needs a revision. 相似文献
18.
Xin‐Xia Wang Yong‐Jin Li Chong‐Lin Hou Yang Gao Yi‐Zhen Wang 《Aquaculture Research》2012,43(2):281-291
A 9‐week feeding trial was conducted to investigate the impact of dietary lipid sources on the lipid mechanisms of large yellow croaker by feeding three isonitrogenous and isoenergetic diets containing fish oil (FO), soybean oil (SO) and beef tallow (BT) respectively. The effects of the diets on the growth performance, somatic indices, tissue fatty acid composition, histological changes and peroxisome proliferator‐activated receptor (PPAR)γ expression were evaluated. Experimental diets were all well accepted by fish and no significant (P>0.05) differences were found in the weight gain, growth rate and feed conversion rate. The fatty acid profile of the fish fillet and liver reflected the fatty acid composition of the diets. Specific‐fatty acids were selectively retained, however, in the flesh of the fish; in particular, docosahexaenoic acid and arachidonic acid concentrations were higher than the dietary concentrations. When FO was replaced by SO or BT diets, the reduction in eicosapontaenoic acid in fish tissue was more pronounced, suggesting a preferred utilization of this fatty acid. The consumption of SO displayed intense lipid accumulation in the liver of the fish. The expression of PPARγ increased significantly in the SO group compared with the FO and BT groups (P<0.05). 相似文献
19.
S. Seifi Berenjestanaki A. Esmaeili Fereidouni H. Ouraji K. Jani Khalili 《Aquaculture Nutrition》2014,20(5):494-504
Five isonitrogenous (420 g kg?1 crude protein) and isoenergetic (16.3 kJ g?1) practical diets were formulated to contain fish oil (FO), Kilka fish oil (KFO), linseed (LO), canola (CO) and soybean (SBO) oils fed to juveniles of three‐spot gourami (Trichopodus trichopterus) (initial weight 1 ± 0.03 g) three times per day to apparent satiation for 14 weeks. Results showed the mean final weight of brooders was not significantly affected by dietary oil sources. Specific growth rate for fish fed in SBO and CO diets was statistically higher than for fish fed diet LO. Fish fed diets CO and KFO showed in significantly higher GSI value compared with other diets. Absolute fecundity was greatest in fish fed diets KFO and CO, which significantly differ with other treatments. Except for KFO diet, high fertilization percentages (87.3–93.45%) were observed in other treatments. Fatty acid composition of muscle and egg was found to be positively correlated with their respective dietary lipid sources. High levels of EPA, DHA and n‐3 HUFA in brooders fed diet FO negatively affect egg quality parameters. Therefore, the results demonstrated that vegetable oil‐based diets (CO, SBO and LO, respectively) can positively affect on growth performance of juveniles compared with fish oil‐based diets. Furthermore, CO and LO diets, respectively, showed positive effects on reproductive performance in T. trichopterus compared with fish oil diets during experimental period under controlled conditions. 相似文献
20.
Abdolmohammad Abedian Kenari Mansour Torfi Mozanzadeh Reza Pourgholam 《Aquaculture Research》2011,42(8):1131-1144
This research aimed to evaluate the effects of two dietary fat levels [low fat (LF) (10%), high fat (HF) (20%)] and sources [fish oil (FO), vegetable oil (VO)] on the growth and some physiological parameters of Caspian brown trout fingerlings for 60 days. Tuna oil or blends of canola and soybean oils (85:15) were added to diets to design four feeds namely LFFO, HFFO, LFVO and HFVO according to the fat levels and sources. The fish fed the LFFO diet had lower weight gain than the other fish (P<0.05). The total n‐6 fatty acids increased in fish fed diets with the blends of VO, while the total n‐3 fatty acids decreased in these fish (P<0.05). Serum lysozyme activity was higher in fish fed the HFVO diet than the other fish (P<0.05). Serum glucose, total cholesterol, triglyceride and very low‐density lipoprotein were lower in fish fed LFFO than the other fish (P<0.05). The present study demonstrates that in terms of fish growth, VOs can be used as an alternate source of dietary fat, whereas fish health and nutritional value are improved with the LFFO diet. According to these results, a partial substitution of FO by VO in high‐level fat diets is suggested for long‐term feeding of Caspian brown trout. 相似文献