首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectivesTo evaluate the cardiorespiratory and biochemical effects of ketamine-propofol (KP) or guaifenesin-ketamine-xylazine (GKX) anesthesia in donkeys.Study designProspective crossover trial.AnimalsEight healthy, standard donkeys, aged 10 ± 5 years and weighing 153 ± 23 kg.MethodsDonkeys were premedicated with 1.0 mg kg?1 of xylazine (IV) in both treatments. Eight donkeys were administered ketamine (1.5 mg kg?1) and propofol (0.5 mg kg?1) for induction, and anesthesia was maintained by constant rate infusion (CRI) of ketamine (0.05 mg kg?1 minute?1) and propofol (0.15 mg kg?1 minute?1) in the KP treatment. After 10 days, diazepam (0.05 mg kg?1) and ketamine (2.2 mg kg?1) were administered for induction, and anesthesia was maintained by a CRI (2.0 mL kg?1 hour?1) of ketamine (2.0 mg mL?1), xylazine (0.5 mg mL?1) and guaifenesin (50 mg mL?1) solution. Quality of anesthesia was assessed along with cardiorespiratory and biochemical measurements.ResultsAnesthetic induction took longer in GKX than in KP. The induction was considered good in 7/8 with KP and in 6/8 in GKX. Anesthetic recovery was classified as good in 7/8 animals in both treatments. Xylazine administration decreased heart rate (HR) in both treatments, but in KP the HR increased and was higher than GKX throughout the anesthetic period. Respiratory rate was higher in GKX than in KP. PaO2 decreased significantly in both groups during the anesthetic period. Glucose concentrations [GLU] increased and rectal temperature and PCV decreased in both treatments. Arterial lactate [LAC] increased at recovery compared with all time points in KP. [GLU] and calcium were higher in GKX than in KP at recovery.Conclusion and clinical relevanceThese protocols induced significant hypoxemia but no other cardiorespiratory or metabolic changes. These protocols could be used to maintain anesthesia in donkeys, however, they were not tested in animals undergoing surgery.  相似文献   

2.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

3.

Objective

To investigate the effects of intravenous (IV) administration of terbutaline on PaO2, PaCO2, pH, heart rate (HR) and arterial pressures in healthy, laterally recumbent horses breathing ambient air under total intravenous anesthesia (TIVA).

Study design

Prospective experimental study.

Animals

Eight healthy adult horses were enrolled. Six horses, four mares and two geldings weighing 433-624 kg, completed the study.

Methods

Horses were sedated with xylazine (1.0 mg kg?1) IV for placement of arterial and venous catheters. Anesthesia was induced with midazolam (0.1 mg kg?1) and ketamine (2.2 mg kg?1) IV and maintained with an IV infusion of guaifenesin (50 mg mL?1), ketamine (2 mg mL?1) and xylazine (0.5 mg mL?1) at 1.9 ± 0.3 mL kg?1 hour?1. Horses were in left lateral recumbency and breathed air spontaneously. Arterial blood was collected for pH and blood gas analysis during xylazine sedation, 15 minutes after induction of anesthesia, immediately before and 5, 15 and 30 minutes after administration of terbutaline (2 μg kg?1), and when the horse was standing after recovery from anesthesia. HR, systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures were recorded at 5 minute intervals during anesthesia. Normal data were analyzed with anova and non-normal data were analyzed with a Friedman test with a p < 0.05 considered significant.

Results

The mean PaO2 decreased from baseline to <60 mmHg (8.0 kPa) during anesthesia (p < 0.0001) and did not improve after administration of terbutaline. After terbutaline administration, HR increased (p = 0.002), and SAP, MAP and DAP decreased (p < 0.001) with the greatest changes occurring immediately after terbutaline administration.

Conclusions and clinical relevance

Terbutaline (2 μg kg?1) IV did not improve PaO2 and was associated with adverse cardiovascular effects during TIVA in healthy, laterally recumbent horses breathing air.  相似文献   

4.
The purpose of this study was to evaluate the cardiopulmonary effects of anesthetic induction with diazepam/ketamine or xylazine/ketamine with subsequent maintenance of anesthesia using isoflurane in foals undergoing abdominal surgery. Seventeen foals underwent laparotomy at 7–10 days of age and a laparoscopy 7–10 days later. Foals were randomly assigned to receive xylazine (0.8 mg kg?1)/ketamine (2 mg kg?1) (X/K)(n = 9) or diazepam (0.2 mg kg?1)/ketamine (2 mg kg?1) (D/K)(n = 8) for induction of anesthesia for both procedures. In all foals, anesthesia was maintained with isoflurane in oxygen with the inspired concentration adjusted to achieve adequate depth of anesthesia as assessed by an individual blinded to the treatments. IPPV was employed throughout using a tidal volume of 10 mL kg?1 adjusting the frequency to maintain eucapnia (PaCO2 35–45 mm Hg, 4.7–6.0 kPa). Cardiopulmonary variables were measured after induction of anesthesia prior to, during, and following surgery. To compare the measured cardiopulmonary variables between the two anesthetic regimes for both surgical procedures, results were analyzed using a three‐way factorial anova for repeated measures (p < 0.05). During anesthesia for laparotomy, mean CI and MAP ranged from 110 to 180 mL kg?1 minute?1 and 57–81 mm Hg, respectively, in the D/K foals and 98–171 mL kg?1 minute?1 and 50–66 mm Hg in the X/K foals. Overall, CI, HR, SAP, DAP, and MAP were significantly higher in foals in the D/K group versus the X/K group during this anesthetic period. During anesthesia for laparoscopy, mean CI and MBP ranged from 85 to 165 mL kg?1 minute?1 and 67–83 mm Hg, respectively, in the D/K group, and 98–171 mL kg?1 minute?1 and 48–67 mm Hg in the X/K group. Only HR, SAP, DAP, and MAP were significantly higher in the D/K group versus X/K group during this latter anesthetic period. There were no significant differences between groups during either surgical procedure for end‐tidal isoflurane, PaO2, PaCO2, or pH. In conclusion, anesthesia of foals for laparotomy and laparoscopy with diazepam/ketamine/isoflurane is associated with less hemodynamic depression than with xylazine/ketamine/isoflurane.  相似文献   

5.
ObjectiveTo investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.Study designProspective, randomized experimental study.AnimalsTwelve Quarter Horse foals, age of 5.4 ±0.9 months and weighing 222 ± 48 kg.MethodsFoals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute?1 was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (fR), inspired fraction of oxygen (FiO2), and end-tidal carbon dioxide (Pe’CO2) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2)] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO2/FiO2 were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was α = 0.05. All values are presented as least square means ± SE.ResultsValues at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 ± 14.4 mmHg before hoisting to 92 ± 11.6 mmHg after hoisting (p=0.0013). The PaO2/FiO2 ratio decreased from 275 ± 30 to 175 ± 24 (p=0.0055). End-tidal carbon dioxide decreased significantly from 48.7 ± 1.6 to 44.5 ± 1.2 mmHg (p=0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting.Conclusion and clinical relevanceHoisting decreased PaO2 in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO2 measurement is necessary to detect early changes.  相似文献   

6.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

7.
ObjectiveTo evaluate the efficacy and cardiopulmonary effects of ketamine–midazolam for chemical restraint, isoflurane anesthesia and tramadol or methadone as preventive analgesia in spotted pacas subjected to laparoscopy.Study designProspective placebo-controlled blinded trial.AnimalsA total of eight captive female Cuniculus paca weighing 9.3 ± 0.9 kg.MethodsAnimals were anesthetized on three occasions with 15 day intervals. Manually restrained animals were administered midazolam (0.5 mg kg–1) and ketamine (25 mg kg–1) intramuscularly. Anesthesia was induced and maintained with isoflurane 30 minutes later. Tramadol (5 mg kg–1), methadone (0.5 mg kg–1) or saline (0.05 mL kg–1) were administered intramuscularly 15 minutes prior to laparoscopy. Heart rate (HR), respiratory rate, mean arterial pressure (MAP), peripheral oxygen saturation (SpO2), end-tidal CO2 partial pressure (Pe′CO2), end-tidal concentration of isoflurane (Fe′Iso), pH, PaO2, PaCO2, bicarbonate (HCO3?), anion gap (AG) and base excess (BE) were monitored after chemical restraint, anesthesia induction and at different laparoscopy stages. Postoperative pain was assessed by visual analog scale (VAS) for 24 hours. Variables were compared using anova or Friedman test (p < 0.05).ResultsChemical restraint was effective in 92% of animals. Isoflurane anesthesia was effective; however, HR, MAP, pH and AG decreased, whereas Pe′CO2, PaO2, PaCO2, HCO3? and BE increased. MAP was stable with tramadol and methadone treatments; HR, Fe′Iso and postoperative VAS decreased. VAS was lower for a longer time with methadone treatment; SpO2 and AG decreased, whereas Pe′CO2, PaCO2 and HCO3? increased.Conclusions and clinical relevanceKetamine–midazolam provided satisfactory restraint. Isoflurane anesthesia for laparoscopy was effective but resulted in hypotension and respiratory acidosis. Tramadol and methadone reduced isoflurane requirements, provided postoperative analgesia and caused hypercapnia, with methadone causing severe respiratory depression. Thus, the anesthetic protocol is adequate for laparoscopy in Cuniculus paca; however, methadone should be avoided.  相似文献   

8.
OBJECTIVE: To compare the cardiopulmonary effects of administration of a solution of xylazine, guaifenesin, and ketamine (XGK) or inhaled isoflurane in mechanically ventilated calves undergoing surgery. ANIMALS: 13 male calves 2 to 26 days of age. Procedures-In calves in the XGK group, anesthesia was induced (0.5 mL/kg) and maintained (2.5 mL/kg/h) with a combination solution of xylazine (0.1 mg/mL), guaifenesin (50 mg/mL), and ketamine (1.0 mg/mL). For calves in the isoflurane group, anesthesia was induced and maintained with isoflurane in oxygen. The rates of XGK infusion and isoflurane administration were adjusted to achieve suitable anesthetic depth. All calves received 100% oxygen and were mechanically ventilated to maintain end-tidal carbon dioxide concentrations from 35 to 40 mm Hg and underwent laparoscopic bladder surgery through an abdominal approach. Cardiopulmonary variables were measured before induction and at intervals up to 90 minutes after anesthetic induction. RESULTS: The quality of induction was excellent in all calves. The XGK requirements were 0.57 +/- 0.18 mL/kg and 2.70 +/- 0.40 mL/kg/h to induce and maintain anesthesia, respectively. Heart rate was significantly lower than baseline throughout the anesthetic period in the XGK group. Systolic arterial blood pressure was significantly higher in the XGK group, compared with the isoflurane group, from 5 to 90 minutes. Cardiac index was lower than baseline in both groups. Differences between groups in cardiac index and arterial blood gas values were not significant. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of XGK resulted in excellent anesthetic induction and maintenance with cardiopulmonary alterations similar to those associated with isoflurane in mechanically ventilated calves.  相似文献   

9.
Objective To compare three combinations of injectable anesthetics in miniature donkeys for quality of induction, recovery, muscle relaxation, cardiopulmonary changes during anesthesia and duration of recumbency. Design Prospective, randomized experimental study. Animals Six miniature donkeys (< 90 cm in height at the withers) weighing 92–127 kg were used. Materials and methods The drug combinations were: xylazine?butorphanol?ketamine (XBK), xylazine?butorphanol?tiletamine?zolazepam (XBT) and xylazine?propofol (XP). Each miniature donkey was anesthetized with each combination at 1‐week intervals in random order. Heart and respiratory rates, indirect blood pressure and temperature were measured before and at 5‐minute intervals during recumbency. Arterial blood samples were drawn for blood‐gas analysis before and at 5, 15 and 30 minutes of anesthesia when samples could be collected. Recumbency time to sternal and time to standing were recorded and a subjective evaluation of induction, muscle relaxation and recovery were made. Results Mean recumbency time ± SD was 14.7 ± 9.4, 33.8 ± 6.3 and 14.6 ± 1.9 minutes with XBK, XBT and XP, respectively. Mean time to standing ± SD was 28.4 ± 11.3, 43.7 ± 7.2 and 26.3 ± 2.9 minutes with XBK, XBT and XP, respectively. Heart and respiratory rates and blood pressures varied from baseline but were always within normal ranges. Hemoglobin saturation, pH and PaO2 tended to be lower with these doses of XBT and XP. Conclusions and clinical relevance Overall quality of anesthesia was poor with XBK. At the doses used this combination did not provide sufficient anesthesia compared with the combinations of XBT and XP, which appeared to provide acceptable anesthesia of short duration in miniature donkeys.  相似文献   

10.
ObjectiveTo evaluate the anesthetic and cardiopulmonary effects of xylazine–alfaxalone anesthesia in donkey foals undergoing field castration.Study designProspective clinical study.AnimalsA group of seven standard donkeys aged [median (range)] 12 (10–26) weeks, weighing 47.3 (37.3–68.2) kg.MethodsDonkeys were anesthetized with xylazine (1 mg kg−1) intravenously (IV) followed 3 minutes later by alfaxalone (1 mg kg−1) IV. Additional doses of xylazine (0.5 mg kg−1) and alfaxalone (0.5 mg kg−1) IV were administered as needed to maintain surgical anesthesia. Intranasal oxygen was supplemented at 3 L minute−1. Heart rate (HR), respiratory rate (fR) and mean arterial pressure (MAP) by oscillometry were recorded before drug administration and every 5 minutes after induction of anesthesia. Peripheral oxygen saturation (SpO2) was recorded every 5 minutes after induction. Time to recumbency after alfaxalone administration, time to anesthetic re-dose, time to first movement, sternal and standing after last anesthetic dose and surgery time were recorded. Induction and recovery quality were scored (1, very poor; 5, excellent).ResultsMedian (range) induction score was 5 (1–5), and recovery score 4 (1–5). Overall, two donkeys were assigned a score of 1 (excitement) during induction or recovery. HR and MAP during the procedure did not differ from baseline. fR was decreased at 5 and 10 minutes but was not considered clinically significant. SpO2 was <90% at one time point in two animals.Conclusions and clinical relevanceXylazine–alfaxalone anesthesia resulted in adequate conditions for castration in 12 week old donkeys. While the majority of inductions and recoveries were good to excellent, significant excitement occurred in two animals and may limit the utility of this protocol for larger donkeys. Hypoxemia occurred despite intranasal oxygen supplementation.  相似文献   

11.
Standing surgical procedures are performed commonly in horses under sedation. The use of a xylazine and remifentanil combination has not been investigated in horses. We proposed to evaluate behavioral and cardiopulmonary effects of an intravenous (IV) infusion of xylazine with remifentanil for sedation in horses. Xylazine (0.8 mg/kg IV) followed in 3 minutes by remifentanil (0.0005 mg/kg IV), and a constant rate infusion of xylazine and remifentanil (0.65 mg/kg/h; 0.0225 mg/kg/h, respectively) was administered in three horses. Heart rate, respiratory rate (RR), arterial blood pressures, quality of sedation, pH, partial pressure of arterial CO2 (PaCO2), partial pressure of arterial O2 (PaO2), ataxia, sedation, and sedation overall outcome were assessed. Heart rate and RR remained within normal values during sedation without significant changes from baseline. Systolic, mean, and diastolic arterial blood pressures were increased during sedation. There were no significant changes in pH, PaCO2, and PaO2. Sedation developed immediately after injection of xylazine in the three horses but did not increase after remifentanil bolus or IV infusion of both drugs. None of the mares had ataxia. Adverse effects during and after sedation were present: excitement, increase in locomotor activity, and decrease in the gastrointestinal motility. The combination of xylazine and remifentanil sedation protocol produces adverse effects. This protocol cannot be recommended for clinical conditions, at the described doses.  相似文献   

12.
The cardiovascular effects following epidural injection of xylazine or isotonic saline during isoflurane anesthesia were assessed in six healthy dogs. Dogs were anesthetized with isoflurane in O2 and maintained at 2.0% end-tidal concentration. Ventilation was controlled to maintain PaCO2 at 35 to 45 mm Hg. The dorsal pedal artery was cannulated for measurement of arterial blood pressure (AP)(systolic AP, mean AP, diastolic AP) and for blood sample collection. Arterial pH and blood gas tensions (PaO2 and PaCO2) were determined. Cardiac output was measured by thermodilution. The electrocardiogram (ECG), heart rate (HR), core body temperature, central venous pressure (CVP), mean pulmonary AP, and end-tidal isoflurane concentration (ETISO) and CO2 tension (ETCO2) were monitored. Systemic vascular resistance (SVR), arterial HCO2 concentration, base balance, and cardiac index (CI) were calculated. After baseline measurements were taken, either xylazine (0.2 mg/kg) in 5 mL isotonic saline or 5 mL of isotonic saline was injected into the lumbosacral epidural space. Data were then recorded at 5, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after epidural injection. Data were analyzed by two-way analysis of variance (ANOVA) for repeated measures. When significant differences were encountered, mean values were compared using Bonferroni's test. The level of significance was set at P <.05. Mean values for diastolic AP decreased at 90 and 120 minutes compared with the mean value at 15 minutes after epidural injection of xylazine. No differences were detected at any time or between treatments for HR, systolic AP, mean AP, CVP, CI, SVR, mean pulmonary AP, temperature, ETCO2, ETISO, arterial pH, PaCO2, PaO2, plasma bicarbonate concentration, or base balance. Results of this study indicate that epidural injection of xylazine (0.2 mg/kg) is associated with minimal cardiovascular side effects during isoflurane anesthesia in mechanically ventilated dogs.  相似文献   

13.

Objective

To compare the induction and recovery characteristics and selected cardiopulmonary variables of midazolam–alfaxalone or midazolam–ketamine in donkeys sedated with xylazine.

Study design

Randomized, blinded, crossover experimental trial.

Animals

A group of seven adult male castrated donkeys weighing 164 ± 14 kg.

Methods

Donkeys were randomly administered midazolam (0.05 mg kg?1) and alfaxalone (1 mg kg?1) or midazolam (0.05 mg kg?1) and ketamine (2.2 mg kg?1) intravenously following sedation with xylazine, with ≥ 7 days between treatments. Donkeys were not endotracheally intubated and breathed room air. Time to lateral recumbency, first movement, sternal recumbency and standing were recorded. Induction and recovery were assigned scores between 1 (very poor) and 5 (excellent). Heart rate (HR), respiratory rate (fR), invasive arterial blood pressures and arterial blood gases were measured before induction and every 5 minutes following induction until first movement.

Results

Time to lateral recumbency (mean ± standard deviation) was shorter after alfaxalone (29 ± 10 seconds) compared with ketamine (51 ± 9 seconds; p = 0.01). Time to first movement was the same between treatments (27 versus 23 minutes). Time to standing was longer with alfaxalone (58 ± 15 minutes) compared with ketamine (33 ± 8 minutes; p = 0.01). Recovery score [median (range)] was of lower quality with alfaxalone [3 (2–5)] compared with ketamine [5 (3–5); p = 0.03]. There were no differences in HR, fR or arterial pressures between treatments. No clinically important differences in blood gases were identified between treatments. Five of seven donkeys administered alfaxalone became hypoxemic (PaO2 <60 mmHg; 8.0 kPa) and all donkeys administered ketamine became hypoxemic (p = 0.13).

Conclusions and clinical relevance

Both midazolam–alfaxalone and midazolam–ketamine produced acceptable anesthetic induction and recovery in donkeys after xylazine sedation. Hypoxemia occurred with both treatments.  相似文献   

14.
One hundred sixty horses were anesthetized with xylazine, guaifenesin, thiamylal, and halothane for elective soft tissue and orthopedic procedures. Horses were randomly assigned to one of four groups. Group 1 (n = 40): Horses positioned in lateral (LRG1,; n = 20) or dorsal (DRG1,; n = 20) recumbency breathed spontaneously throughout anesthesia. Group 2 (n = 40): Intermittent positive pressure ventilation (IPPV) was instituted throughout anesthesia in horses positioned in lateral (LRG2; n = 20) or dorsal (DRG2; n = 20) recumbency. Group 3 (n = 40): Horses positioned in lateral (LRG3; n = 20) or dorsal (DRG3; n = 20) recumbency breathed spontaneously for the first half of anesthesia and intermittent positive pressure ventilation was instituted for the second half of anesthesia. Group 4 (n = 40): Intermittent positive pressure ventilation was instituted for the first half of anesthesia in horses positioned in lateral (LRG4; n = 20) or dorsal (DRG4; n = 20) recumbency. Spontaneous ventilation (SV) occured for the second half of anesthesia. The mean time of anesthesia was not significantly different within or between groups. The mean time of SV and IPPV was not significantly different in groups 3 and 4. Variables analyzed included pH, PaCO2, PaO2, and P(A-a)O2 (calculated). Spontaneous ventilation resulted in significantly higher PaCO2 and P(A-a)O2 values and significantly lower PaO2 values in LRG1, and DRG1, horses compared with LRG2 and DRG2 horses. Intermittent positive pressure ventilation resulted in normocarbia and significantly lower P(A-a)O2 values in LRG2 and DRG2 horses. In LRG2 the Pao2 values significantly increased from 20 minutes after induction to the end of anesthesia. The PaO2 and P(A-a)O2 values were not significantly different from the beginning of anesthesia after IPPV in DRG2 or DRG3. The PaO2 values significantly decreased and the P(A-a)O2 values significantly increased after return to SV in horses in LRG4, and DRG4. The PaO2 values were lowest and the P(A-a)O2 values were highest in all horses positioned in dorsal recumbency compared with lateral recumbency and in SV horses compared with IPPV horses. The pH changes paralleled the changes in PaCO2. Blood gas values during right versus left lateral recumbency in all groups were also evaluated. The PaO2 values were significantly lower and the P(A-a)O2 values were significantly higher during SV in horses positioned in left lateral (LRLG1) compared with right lateral (LRRG1) recumbency. No other significant changes were found comparing left and right lateral recumbency. Arterial hypoxemia (PaO2 < 60 mm Hg) developed in 35% of DRG1 horses and 20% of DRG2 horses at the end of anesthesia. Arterial hypercarbia (PaCO2= 50–60 mm Hg) developed in DRoi horses. Arterial hypoxemia that developed in 20% of DRG3 horses was not improved with IPPV. Arterial hypoxemia developed in 55% of DRG4 horses after return to SV. Some DRG4 horses with hypoxemia also developed hypercarbia, whereas some had PaCO2 values within normal limits. Arterial hypoxemia developed in one LRG1, and two LRG4, horses. Hypercarbia developed in onlv one LRG4 horse.  相似文献   

15.
ObjectiveTo evaluate the oxygen reserve index (ORI) as a noninvasive estimate of the PaO2 during moderate hyperoxaemia [100–200 mmHg (13.3–26.6 kPa)], and to determine ORI values identifying PaO2 > 100, > 150 (20.0 kPa) and > 200 mmHg in anaesthetized donkeys with an inspired fraction of oxygen (FiO2) > 0.95.Study designProspective observational study.AnimalsA group of 28 adult standard donkeys aged (mean ± standard deviation) 4 ± 2 years and weighing 135 ± 15 kg.MethodsDonkeys were sedated intramuscularly with xylazine and butorphanol; anaesthesia was induced with ketamine and diazepam and maintained with isoflurane in oxygen. An adhesive sensor probe was applied to the donkey’s tongue and connected to a Masimo pulse co-oximeter to determine ORI values. An arterial catheter was inserted into an auricular artery. After ORI signal stabilization, the value was noted and PaO2 determined by blood gas analysis. The Pearson correlation coefficient was used to assess the relationship between ORI and PaO2 for oxygen tension < 200 mmHg (< 26.6 kPa). The Youden index was used to identify the value of ORI that detected PaO2 > 150 and 200 mmHg (20.0 and 26.6 kPa) with the highest sensitivity and specificity.ResultsA total of 106 paired measurements were collected. A mild positive correlation was observed between ORI and PaO2 for values < 200 mmHg (26.6 kPa; r = 0.52). An ORI > 0.0, > 0.1 and > 0.3 indicated a PaO2 > 100, > 150 and > 200 mmHg (13.3, 20.0 and 26.6 kPa) with negative predictive values > 94%.Conclusions and clinical relevanceORI may provide a noninvasive indication of PaO2 > 100, > 150 and > 200 mmHg (13.3, 20.0 and 26.6 kPa) in anaesthetized donkeys with an FiO2 > 0.95, although it does not replace blood gas analysis for assessment of oxygenation.  相似文献   

16.

Objective

To evaluate cardiopulmonary and recovery characteristics of horses administered total intravenous anesthesia (TIVA) with xylazine and ketamine combined with midazolam or propofol.

Study design

Randomized crossover study.

Animals

A group of eight adult horses, aged 7–22 years, weighing 493–740 kg.

Methods

Horses were administered xylazine (1 mg kg?1) intravenously (IV), and anesthesia was induced with ketamine (2.2 mg kg?1) IV. Anesthesia was maintained for 45 minutes via IV infusion of xylazine (0.016 mg kg?1 minute?1) and ketamine (0.03 mg kg?1 minute?1) combined with midazolam at 0.002 mg kg?1 minute?1 (MKX), propofol at 0.05 mg kg?1 minute?1 (PKXlow) or propofol at 0.1 mg kg?1 minute?1 (PKXhigh). Additional ketamine was administered if a horse moved spontaneously. Cardiopulmonary variables, blood gases, lactate concentration, packed cell volume and total solids were recorded before sedation (baseline), at 10, 20, 30 and 45 minutes during TIVA and 10 minutes after standing. Recovery variables and quantitative recovery scores were compared. Significance was set at p < 0.05.

Results

Additional ketamine was required for 50% of MKX horses. Systolic arterial pressure was elevated in MKX at 20 minutes compared with baseline (p = 0.043), at 10 and 20 minutes compared with PKXhigh (p = 0.007, p = 0.024) and at 20 and 30 minutes compared with PKXlow (p = 0.009, p = 0.02). MKX horses (5/8) were hypertensive compared with PKXlow (1/8; p = 0.017). All horses became hypoxemic (PaO2 ≤80 mmHg; 10.7 kPa) during TIVA. Recovery variables did not differ among treatments.

Conclusions and clinical relevance

PKXlow and PKXhigh had similar cardiopulmonary and recovery performance compared with MKX. PKX combinations provided superior quality of anesthesia to that of MKX. A combination of propofol, ketamine and xylazine administered as TIVA can be used in horses to provide anesthesia for short procedures. Supplemental oxygen is recommended.  相似文献   

17.
Medetomidine/ketamine sedation in calves and its reversal with atipamezole   总被引:1,自引:0,他引:1  
Atipamezole was used to reverse the sedation induced in calves by medetomidine/ketamine. Thirteen claves subjected to umbilical surgery received medetomidine 20 μg/kg bodyweight (bwt) and ketamine 0.5 mg/kg bwt intravenously (iv) from a mixture of the drugs in one syringe. Atipamezole was given at doses of 20 to 60 μg/kg iv and intramuscularly (im) to the calves at the end of the operation. Following the administration of medetomidine and ketamine, PaCO2 increased whereas pH, PaO2 and heart rate decreased. Reversing the effects of medetomidine with atipamezole did not cause undesirable effects; recovery was rapid and smooth, most of the animals reached a standing position within 1 to 3 mins after the atipamezole injection.  相似文献   

18.
On 74 occasions, 54 horses and 6 foals were anesthetized with xylazine and ketamine or xylazine, guaifenesin, and ketamine, with or without butorphanol. On 64 occasions, anesthesia was prolonged for up to 70 minutes (34 +/- 15 min) by administration of 1 to 9 supplemental IV injections of xylazine and ketamine at approximately a third the initial dosage. All horses except 5 were positioned in lateral recumbency, and oxygen was insufflated. In adult horses, the time from induction of anesthesia to the first supplemental xylazine and ketamine injection was 13 +/- 4 minutes and the time between supplemental injections was 12.1 +/- 3.7 minutes. These results were consistent with predicted plasma ketamine concentration calculated from previously published pharmacokinetic data for ketamine in horses. Respiratory and heart rates and coccygeal artery pressure remained consistent for the duration of anesthesia. The average interval between the last injection of ketamine and assumption of sternal position was approximately 30 minutes, and was the same regardless of the number of supplemental injections. The time to standing was significantly longer (P less than 0.05) in horses given 2 supplemental injections, compared with those not given any or only given 1, but was not longer in horses given 3 supplemental injections. Recovery was considered unsatisfactory in 5 horses, but did not appear to be related to prolongation of anesthesia.  相似文献   

19.
Objective— To study the combined effects of intra-abdominal CO2 insufflation with changes in body position during laparoscopy in xylazine-ketamine-halothane anesthetized llamas. Study Design— Prospective, controlled study. Animals— Nine castrated, male llamas weighing 114 ± 23 kg, 3 to 13 years old. Methods— Three llamas (preliminary study [PS] group) were used to study the effect of right lateral, dorsal, and left lateral recumbency on gas exchange and acid-base status. The other six (experimental study [ES] group) were used to study the combined effects of changes in body position and CO2 insufflation to an intraabdominal pressure of 10 to 12 mm Hg. Heart rate, respiratory rate, and indirect arterial blood pressures (systolic [SAP], mean [MAP], and diastolic [DAP]) were recorded every 5 minutes during anesthesia. Arterial blood gases (PaO2 and PaCO2) and acid-base status (pHa and HCO3) were measured immediately after induction of anesthesia and before each change of position. Results— In the PS group, significant decreases in SAP, MAP and PaCO2 and increases in PaO2 and pHa were observed when the llamas were turned from right lateral to dorsal recumbency. Values for HCO-3 were lower than the postinduction values, but they remained unaffected by the changes in position. In the ES group, values for MAP were significantly lower when the llamas were placed in dorsal and left lateral recumbency than those observed during right lateral recumbency. Arterial O2 tension during right lateral recumbency was lower but returned to preinsufflation values when the llamas were placed in the dorsal position. All llamas recovered uneventfully within 30 minutes after termination of anesthesia. Conclusions— Insufflation of CO2 and changing body position induce minor and transient changes in cardiovascular and respiratory function. Clinical Relevance— Laparoscopy with mild intra-abdominal CO2 insufflation (10 to 12 mm Hg) can be used safely in spontaneously breathing llamas anesthetized with xylazine, ketamine, and halothane.  相似文献   

20.
ObjectiveTo evaluate the cardiopulmonary effects of anaesthesia induced and maintained with propofol in acepromazine pre-medicated donkeys.Study designProspective experimental study.AnimalsSix healthy male donkeys weighing 78–144 kg.MethodsDonkeys were pre-medicated with intravenous (IV) acepromazine (0.04 mg kg−1). Ten minutes later, anaesthesia was induced with IV propofol (2 mg kg−1) and anaesthesia maintained by continuous IV infusion of the propofol (0.2 mg kg−1 minute−1) for 30 minutes. Baseline measurements of physiological parameters, and arterial blood samples were taken before the acepromazine administration, then 5, 15, 30, 45, and 60 minutes after the induction of anaesthesia. Changes from baseline were analysed by anova for repeated measures.ResultsWhen compared with baseline (standing) values, during anaesthesia heart rate increased throughout: significant at 5 (p = 0.001) and 15 (p = 0.015) minutes. Mean arterial blood pressure increased significantly only at 15 minutes (p < 0.001). Respiratory rate and arterial pH did not change significantly. PaO2 was lower throughout anaethesia, but this only reached significance at 15 minutes (p = 0.041). PaCO2 was statistically (but not clinically) significantly reduced at the times of 30 (p = 0.02), 45 (p = 0.01) and 60 (p = 0.04). Rectal temperature decreased significantly at all times of the study.Conclusions and clinical relevanceAdministration of propofol by the continuous infusion rate for the maintenance of anaesthesia resulted in stable cardiopulmonary effects and could prove to be clinically useful in donkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号