首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive logging in the twentieth century destroyed much of the coniferous forests in the lower Redwood Creek basin of Redwood National Park. Restoration of cutover lands requires the identification of historical, pre-logging reference conditions. Field notes from the original Public Land Surveys were used to reconstruct the pre-EuroAmerican settlement forests. Most reconstructive studies based on historic surveys rely on bearing tree evidence over large areas to determine vegetation patterns over several hundreds to thousands of square kilometers. Due to the small size of the study area (approximately 200 km2), bearing tree evidence could not accurately reconstruct the vegetation at this scale. Instead, lists of the overstory and understory vegetation for each surveyed mile (line summaries) were employed. Analysis of line summaries evidence identified the historical importance, geographical range, and environmental influences on woody species and vegetation communities. Topography, especially elevation, and soil texture were significantly correlated with plot-scale ordination scores derived from non-metric multidimensional scaling. The influence of topography and distance to ocean coast on the historical distribution of dominant woody species concurs with findings from present-day field studies of local and regional old-growth forest. A comparison with present-day vegetation maps revealed that coast redwood (Sequoia sempervirens), Douglas fir (Pseudotsuga menziesii), Sitka spruce (Picea sitchensis), and red alder (Alnus rubra) experienced the most substantive changes in the vegetation as a result of twentieth century land use activities.  相似文献   

2.
An inductive method for recognizing vegetation complexes is presented. These complexes can be used to define landscape units. The method is demonstrated with regard to the river and rivulet valleys of the Black Forest in south-western Germany. It is based on surveys of locally occurring plant communities in homogeneous landscape units, using a cover-abundance scale for the areal extension of each community. The communities have first been established on the basis of the usual relevés of small homogeneous plots.The surveys are called sigma relevés (sigma = Greek for sum), Sigma relevés can be arranged in tables by the usual classification method in order to establish vegetation complexes. Characteristic and differential communities can be elaborated to characterize the vegetation complexes. The specific spatial distribution of each complex reflects certain physical-geographical and anthropo-geographical characteristics. Some applied aspects can be included for each vegetation complex, for example, lists of woody species typical for a landscape unit. From the point of view of water economy such a survey is useful since many efforts are being made to plant woody species in accordance with natural conditions along river and rivulet embankments.  相似文献   

3.
Intense harvesting and slash fires during the late 1800s and early 1900s led to homogenization throughout the Great Lakes region via the conversion from tamarack, pine, and spruce forests to aspen forests, which are supported by the forest products industry. Subsequently, mesophication occurred in the eastern United States due to fire suppression, transforming oak woodlands to mixed mesophytic forests. We explored both homogenization and mesophication at a regional scale by quantifying changes in community composition and density between historical General Land Office survey points and current USDA Forest Analysis and Inventory plots for Minnesota??s Laurentian Mixed and Eastern Broadleaf Forest provinces. We used the Morisita plotless density estimator and applied corrections for surveyor bias to estimate density for historical forests and we used known densities of FIA plots to predict current densities with random forests, an ensemble regression tree method, and terrain and soil predictor variables. Of the 43 ecological units used in the analysis, only one current community was similar to its historical counterpart. Within the Laurentian Mixed Forest province, forest density of primarily mature aspen stands is reduced slightly today compared to the tamarack-dominated forests of the past. Conversely, in the Eastern Broadleaf Forest province, forest densities have increased compared to historical pine and oak woodlands, due to increases of densely growing, fire-sensitive species. Ordinations of functional traits and structure showed substantial changes between current and historical communities as well as reduced differentiation among current communities compared to their historical counterparts. Homogenization in the Laurentian Mixed Forest is occurring by transition from early-successional to late-successional species, with associated changes in forest ecosystems, and homogenization and mesophication in the Eastern Broadleaf Forest are occurring by transition from disturbance-stabilized genera of open forest ecosystems to non-disturbance-dependent genera of dense forests. Despite different starting points of historical forest ecosystems in the Laurentian Mixed Forest and Eastern Broadleaf Forest, we found homogenization and mesophication to be interrelated in the convergence of composition and densities along a common trajectory to dense forests composed of late-successional species in Minnesota.  相似文献   

4.
Pärtel  Meelis  Mändla  Riina  Zobel  Martin 《Landscape Ecology》1999,14(2):187-196
The landscape history of the largest calcareous seminatural alvar site (ca. 700 ha) in Estonia, is described with the help of a historical map from 1705 and aerial photographs from 1951, and recent vegetation mapping from 1994–1996. The seminatural, species rich alvar grasslands originate and are maintained by grazing of domestic animals. Three hundred years ago the area was mainly open grassland with sparse shrubs and some fields. Forty years ago the vegetation pattern was similar, with some smaller forests and forest clear-cut areas present. Now, since grazing has ceased for ca. 40 years, only 30% of the area remains as open grassland and 70% as forest. Identification of clusters of field layer vegetation using the program TABORD resulted in 8 clusters, which agreed with the empirically determined community types. The field layer within the young pine forest (up to 20 year old pines) is similar to the open alvar grassland. In older forests, the field layer has already changed. There were no phytosociological differences found between ancient grasslands and grasslands on former arable fields or forest clear-cut areas. Decrease in species richness, compared to open grassland, was most drastic in forests of age 20–40 years where the canopy was most closed. Forests have spread more extensively in areas with deeper soil. The continuation of traditional management (grazing and tree cutting) in alvar grasslands is urgently needed in order to keep seminatural alvar grasslands open. The possibility to restore open grasslands remains as long as there is a pool of grassland species available, especially in younger forests.  相似文献   

5.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

6.
The distribution of woody vegetation was studied in forest edges and hedgerows in a 28 km2 southern Swedish agricultural area, characterised by species-rich edge zones. The occurrence of 21 selected woody species (taxa) was related to differences in both edge structure and landscape structure. All the species studied were represented in both edge types, but a higher frequency of animal-dispersed species was found in hedgerows.Animal dispersed species were more affected by edge width and density than wind dispersed species. A higher number of wind-dispersed species were more frequent in forest edges, in hedgerows near to forest, or with a high proportion of forest within 500 m. A clear relationship was found between the number of physically connected elements in hedgerow networks and increasing frequency of occurrence for Corylus avellana, Crataegus spp., Euonymus europaeus, and Quercus robur; which indicate the ecological significance of connectedness for certain animal dispersed species. The study supports the general principle that woody species distribution and landscape structure are linked in a positive feedback loop. The results match findings from studies in other countries and are interpreted in the context of landscape processes and the ecological characteristics of woody plant species. We emphasise the importance of understanding dispersal mechanisms of woody species for the design and improvement of edge habitats in agricultural landscapes.  相似文献   

7.
Land use history has altered natural disturbance dynamics, causing widespread modifications of the earth’s forests. The aim of this study is to reconstruct a regional, spatially-explicit, fire and logging history for a large southern boreal forest landscape (6,050 km2) of eastern Canada. We then examined the long-term influence of land use history, fires, and physiographical gradients on the area’s disturbances regimes, present-day age structure and tree species composition. Spatially-explicit fire (1820–2005) and logging (1900–2005) histories were reconstructed from forestry maps, terrestrial forest inventories and historical records (local newspapers, travel notes, regional historical reviews). Logistic regression was used to model the occurrence of major boreal tree species at the regional scale, in relation to their disturbance history and physiographical variables. The interplay of elevation and fire history was found to explain a large part of the present-day distribution of the four species studied. We conclude that human-induced fires following the colonization activities of the nineteenth and twentieth centuries have increased fire frequency and the dominance of fire-adapted species at lower elevations. At higher elevations, the low historical fire frequency has fostered the dominance of fire-sensitive species. Twentieth-century forestry practices and escaped settlement fires have generated a forest landscape dominated by younger forest habitats than in presettlement times. The expected increase of wildfire activity in North America’s eastern boreal forest, in conjunction with continued forest management, could have significant consequences on the resilience of boreal forests.  相似文献   

8.
Silviculturally-managed pine plantations within southern Ohio are chronically disturbed patches of introduced vegetation distinct from the surrounding matrix of hardwood forest. To determine the successional pathways by which such pine stands might blend back into the hardwood forest matrix under different types of silvicultural management, we determined the current status of hardwood regeneration under 24 pine stands. Stands of Pinus virginiana (Virginia pine) had the highest density of hardwood seedlings and saplings (20,560 stems ha-1) whereas P. strobus (white pine) stands averaged only 7090 hardwood stems ha-1; P. resinosa (red pine) stands were intermediate. The most abundant hardwood seedling and sapling species under pine canopies were Acer rubrum and Cornus florida. DCA ordination of the seedling + sapling assemblages clustered most of the P. resinosa and P. strobus stands in the center of the ordination along with a group of species which are common in second-growth forests of the area. P. virginiana stands, in contrast, were scattered throughout the ordination space. Most of the woody species common in second-growth forests of the region were also common in the pine understory. Multiple regression indicated that large plantations with deeper litter, higher soil pH and lower total hardwood density had the greatest abundance of mesic-site species in the understory. This relationship did not hold for P. resinosa stands, however, due to more frequent and intense silvicultural intervention. The seed bank was not an important source of woody seedlings to the understory assemblage under intact pine plantations. The vegetation of 1–4 yr old clear-cut sites was dominated by wind and bird dispersed species which were generally absent from the understory of intact plantations. We conclude these chronically disturbed planted patches will revert to matrix vegetation faster if the disturbance is allowed to end in a gradual manner through stand senescence than if it is abruptly ended by clear-cutting.  相似文献   

9.
We studied the vegetational and avifaunistic changes following rural depopulation in an area covering 2,600 ha north of Montpellier (Southern France). The study area is covered by a mosaic of Mediterranean habitats that includes cultivation, grasslands, shrublands, and woodlands and is representative of the natural features present and of the human usage practiced so far in this part of the Mediterranean. We sampled the vegetation and the bird fauna in the same 193 census plots in 1978 and in 1992. At both the habitat and landscape scales the cover of woody plants increased significantly. Open habitats tend to disappear. As a consequence the abundance of open-habitat bird species decreased significantly whereas the abundance of forest birds increased significantly. These changes favor a pool of forest species widespread in western Europe and reduce habitat availability for open habitat and shrubland species. Many of the latter are Mediterranean species whose distribution in Western Europe could become reduced under current landscape dynamics. Our observation of more woodlands and their typical birds and of less open habitats and their associated avifauna is not consistent with the traditional worry shown by the public and the managers about the regression of forests and woodlands in the Northern Mediterranean as a consequence of fire.  相似文献   

10.
Invasion of grasslands by woody plants has been identified as a key indicator of changes in ecosystem structure and function in arid and semi-arid rangelands throughout the world. We investigated changes in the balance between woody and herbaceous components of a semi-arid landscape in western Colorado (USA) using historical aerial photography. Aerial photographs from 1937, 1965–67, and 1994 were sampled at matched locations within overlapping photographs. We modeled change in spatial pattern and heterogeneity across the entire landscape and found a small, net decrease in woody canopy cover; however means disguised normal distributions of change that demonstrated offsetting increases and decreases. We described a region of widespread canopy decline within piñon-juniper forests between 2300 and 2600 m (7500–8500 feet) and a region of predominant increase at lower elevations, between 1800 and 2250 m (5900–7400 feet). It remains unclear whether this shift was driven by climate or by human-caused or natural disturbance. Mean conifer cover decreased within coniferous forests, which counteracted a trend of increased conifer cover in mixed forests, savanna-like woodlands, and the shrub steppe. Disturbance had a significant interaction with cover change in several communities, including forests, savanna and shrublands. Anthropogenic disturbances counteracted successional trends toward canopy closure more than wildfires, but this did not entirely explain observed canopy decline. The natural dynamics in this region also caused diverse changes rather than a simple progression towards increased forest cover. Importantly, temporal change in vegetation varied spatially across the landscape illustrating the importance of landscape level, spatially explicit analyses in characterizing temporal dynamics.  相似文献   

11.
Predictions of species biomass from a forest simulation model were compared with pollen percentages for seven peatland sites in an area of Southland-Otago, New Zealand, now depleted of forest cover. Comparisons were made for the recent past (700–800 cal. yr BP) and for a period of the early Holocene (7000–8000 cal. yr BP). Satisfactory matches were obtained overall between predicted biomass and pollen for the recent dataset (r=0.73, P<0.001), in spite of expected poor correspondences for some pollen taxa known to be under-represented in the modern pollen rain. Nothofagus species tended to be over-represented by the simulation model, due most likely to dispersal limiting to their spread under actual conditions. Raising mean annual temperatures by 1 °C and lowering precipitation by up to 60% for the forest simulation produced a satisfactory match to the early Holocene site data (r=0.69, P<0.001). To test for consistency between recent and past periods, regressions for each period of modelled relative biomass against pollen percentages were compared, using all tree taxa from all sites. No discernible bias was found between the different climate regimes modelled. However, an examination of each site showed the dominant early-Holocene hardwood forests of Stewart Island were not reproduced by a simulation under the hypothesized past climate. These forests required a different set of conditions from those for the South Island sites, suggesting they grew under a different climatic regime. The low variation in climate among several of the sites tested the forest model's ability to reproduce the distinct forest communities identified from the pollen data. Comparisons with the pollen record improved confidence in the species attribute data used by the model, the completeness of the ecosystem processes explicitly modelled, and the disturbance regimes employed. A forest reconstruction of the region, under current climate conditions, indicated extensive areas of grassland and grassland-scrub vegetation could potentially be replaced by a range of podocarp, broadleaf, and beech forest types. Overall, the exercise suggested such approaches can improve our understanding of the processes required to restore forest in depleted landscapes and to model forest dynamics under changed climates.  相似文献   

12.
The riparian forests along braided rivers are dynamic, frequently rejuvenated by floods and channel changes, and thus dominated by pioneer to middle stages of succession; they are sites of high biodiversity in some regions. The Lower Eygues River (drainage area 1150 km2 in southeastern France) is such a braided river system with large alluvial forests dominated by Salix alba, Populus alba, and P. nigra. It was identified as a site of ecological interest by the EU under the Natura 2000 program. Such forests elsewhere in Europe have been identified as reference ecosystems. We documented the historical evolution of this alluvial forest from detailed (1:2500 scale) early 19th C parcel maps, early 20th C topographic maps, aerial photography from 1947 to 1996, and field surveys of topography and riparian vegetation in 1997–1998. Our results show that in 1830, the channel was wide, aggraded, and agricultural pressure extended literally to the channel edge. With decline in the rural population and reduced agricultural and grazing pressure in the catchment, erosion rates declined. Reduced sediment supply led to channel narrowing and incision. This channel narrowing, coupled with reduced agricultural pressure along the banks, has allowed riparian forest to colonize former active channel areas, especially within late 19th-century 20th century flood dykes. In recent decades, aggregate mining, and clearing for recreation and agriculture have fragmented the forest. Thus, the alluvial forest of the Lower Eygues is largely an artifact of changing human land-use over the past century, a context that should frame efforts for preservation and restoration.  相似文献   

13.

Context

Landscape modification is an important driver of biodiversity declines, yet we lack insight into how ongoing landscape change and legacies of historical land use together shape biodiversity.

Objectives

We examined how a history of agricultural land use and current forest fragmentation influence the abundance of red-backed salamanders (Plethodon cinereus). We hypothesized that historical agriculture and fragmentation cause changes in habitat quality and landscape structure that limit abundance.

Methods

We measured salamander abundance at 95 forested sites in New York, USA, and we determined whether sites were agricultural fields within the last five decades. We used a structural equation model to estimate relationships between historical agriculture and salamander abundance mediated by changes in forest vegetation, microclimate, and landscape structure.

Results

Historical agriculture affected salamander abundance by altering forest vegetation at a local scale and forest cover at a landscape scale. Abundance was lowest at post-agricultural sites with low woody vegetation, leaf litter depth, and canopy cover. Post-agricultural sites had limited forest cover in the surrounding landscape historically, and salamander abundance was positively related to historical forest cover, suggesting that connectivity to source populations affects colonization of regenerating forests. Abundance was also negatively related to current forest fragmentation.

Conclusions

Historical land use can have legacy effects on animal abundance on par with effects of ongoing landscape change. We showed that associations between animal abundance and historical land use can be driven by altered site conditions and surrounding habitat area, indicating that restoration efforts should consider local site conditions and landscape context.
  相似文献   

14.
Selective logging of tropical forests imposes spatial pattern on the landscape by creating a mosaic of patches affected by different intensities of disturbance. To understand the ecological impacts of selective logging it is therefore necessary to explore how patterns of tree species composition are affected by this patchy disturbance. This study examines the impacts of selective logging on species composition and spatial patterns of vegetation structure and tree diversity in Sabah, Borneo. We compare tree diversity between logged and unlogged forest at three scales: species richness within plots, species turnover among plots, and total species richness and composition of plots combined. Logging had no effect on tree diversity measured at the smallest scale. Logged forest had a greater rate of species turnover with distance, so at a large spatial scale it supported more tree species than the relatively homogeneous unlogged area. Tree species composition also differed significantly between the two types of forest, with more small dipterocarps and large pioneers in logged forest, and more large dipterocarps in unlogged forest. Our results emphasize the importance of sampling at a sufficiently large scale to represent patterns of biodiversity within tropical forest landscapes. Large areas of production forest in SE Asia are threatened with conversion to commercial crops; our findings show that selectively logged forest can retain considerable conservation value.  相似文献   

15.
The near-to-nature urban forestry concept and practices are widely recognized for urban greening, urban ecosystem restoration, urban greenspace management for biodiversity conservation and ecosystem services provision. However, the regeneration and succession of urban vegetation are rarely studied due to the complex settings of the urban environment. To this end, we conducted a large-scale field investigation in the metropolitan area of Beijing, China to explore the spatial variations in plant species composition and diversity in soil seed banks, and their similarity to the aboveground vegetation to assess the potential of urban plant regeneration. Overall, 657 vegetation and soil sampling plots from 219 grids, measuring 2 km × 2 km each, were investigated within two perpendicular 10 km wide transects running across the urban center in north-south and east-west directions within the 6th Ring Road of the city. We recorded a total of 102 plant species in soil seed banks, including 13 tree species, 10 shrub species, and 79 herb species. We found that the soil seed bank species diversity and its similarity to that of the aboveground vegetation communities decreased significantly with the urbanization intensity. Higher urbanization intensity is typically associated with increased human management and a reduction in Greenspace Area (GSA). Soil seed bank species richness increased significantly when GSA exceeded 45 % and the similarity of species composition and diversity between soil seed banks and aboveground vegetation communities was the highest in forest parks. This suggests that habitats under forest park management are more conducive to plant regeneration. Soil seed bank species diversity first increased and then decreased significantly with increased distance to the city center, whereas the species similarity between the soil seed banks and the aboveground vegetation communities showed little change with the ring roads going out. The results of this study have important implications for further understanding the potential for urban vegetation regeneration and sustainability, which have significant implications for urban biodiversity conservation and restoration.  相似文献   

16.
Improved knowledge of the environmental factors that affect woody composition is urgently required for species conservation in riparian zones of urbanizing landscapes. We investigated the environmental factors influencing tree abundance and regeneration in diverse forest types growing in the riparian area of an urbanizing landscape along the Chao Phraya River. We established 252 0.1-ha circular plots in remnant forest patches along 372 km of the river. Cluster analysis was applied to classify the forest types. The relationships between environmental variables and tree abundance were assessed with ordination analysis, and generalized linear models were used to assess seedling/sapling abundance. The cluster analysis revealed five forest types, including floodplain forest with three sub-forest types, swamp forest, and mangrove forest. The ordination indicated that tree abundance in the floodplain forest was positively affected by distance to the ocean and the proportion of forested area. Swamp forest was positively influenced by the proportion of urbanized area and mean rainfall. Mangrove forest was negatively related to distance to the river. Seedling/sapling abundance of the dominant species in the floodplain forests was positively affected by lowland plain topography and negatively affected by the proportion of urbanized area, whereas swamp and mangrove forest species were positively influenced by the proportion of urbanized area and estuarine topography. Mature tree density influenced seedling/sapling abundance of all forest types. Tree abundance and regeneration of the riparian landscape was prevented by the urbanized area, floodplain, estuarine topography, and mature tree densities in remnant forests. These results suggest that remnant forest patches of conserved riparian forests along the urbanized landscape of the Chao Phraya River must be protected and the factors determining their colonization must be considered to enhance restoration practices.  相似文献   

17.
Urban parks comprise diverse microhabitats, such as vegetation units of lawn and arbour forests, with differing biodiversity potentials. However, the influences of microhabitats on butterfly diversity and the mechanisms involved remain unclear. This study used butterfly survey data from 112 plots in 27 urban parks in the central metropolitan area of Beijing, China, from June to September 2020. Based on the growth form of larval host plants, recorded butterfly species were classified into three functional groups: woody plant-feeding taxa (WF), herb-feeding taxa (HF), and feeding on multiple plant growth forms taxa (MF). We analysed the effects of 11 variables among three facets, namely, vegetation composition, vegetation structure, and human activity, on the butterfly diversity (species richness and abundance) of the whole community, three functional groups using generalised linear mixed models. Twenty-five butterfly species observed mainly feed on herbs rather than on woody plants. Our results demonstrated that vegetation community characteristics explain up to 24% and 43% variation in butterfly species richness and abundance, respectively. Of this, vegetation structure facets crucially affected butterfly species richness, and vegetation composition facets had the most significant influence on the abundance of the whole butterfly community. However, the impact of human activity factors was minimal. Light availability and herb height belonging to vegetation structure factors and nectar plant species richness and nectar abundance which belonged to vegetation composition factors showed the most important and positive effects on butterfly diversity. The positive impact of the above significant factors was found especially on herb-feeding butterfly diversity. In contrast, the diversity of butterflies feeding on woody plants was most positively influenced by herb height. We thus suggest that it is necessary to guarantee the presence of a well-developed herb layer, which provides abundant nectar sources and maintain specific open spaces to ensure light availability. In conclusion, our findings imply that the critical role of the spatial structure of vegetation community is conspicuous in the formation of suitable microhabitats for butterflies, and managers could combine vegetation management practices with the needs of specific functional groups.  相似文献   

18.
The role of habitat heterogeneity as a key factor in determining species pools in habitat mosaics has been acknowledged, but we still know little on the relative importance of the different ecological processes acting within such complex landscapes. We compared species richness and distribution in forest fragments imbedded in shrub-lands to those in continuous forests or in continuous shrublands. We examined the consistency of our data with the predictions of two hypotheses: 1) the Habitat fragmentation hypothesis which states that fragmentation has negative effects on the species from the original continuous habitat; 2) the Habitat supplementation /complementation hypothesis which stipulates that the presence of a matrix habitat around the fragments will mitigate negative effects on the species from the original habitat (supplementation) or allow the presence of species that depend on the presence of both the fragment and matrix habitats (complementation). We show that: 1) species richness in forest fragments did not differ from species richness in segments of continuous forests of equal area; 2) the bird community of forest fragments got impoverished in some forest species but a higher proportion of species common in continuous forests were not affected by fragmentation; 3) fragment communities had a significant proportion of common species that were scarce in, or absent from both continuous forests and shrublands. While, a few forest species supported predictions from the fragmentation hypothesis, occurrence patterns observed in several other species were consistent with either the supplementation or the complementation hypotheses. Our results suggest that there is no single hypothesis that properly captures the consequences of a shift from continuous forests to a mosaic of forest fragments and shrublands and that different ecological mechanisms act in conjunction to determine species pools in habitat mosaics. Habitat heterogeneity at a local scale appears a key factor in maintaining bird diversity in fire driven Mediterranean landscapes.  相似文献   

19.
Fire frequency can affect pattern and diversity in plant communities and landscapes. We had the opportunity to study changes due to recurring wildfires on the same sites over a period of 50 years in the Massif des Aspres (southern France). The study was carried out in areas occupied byQuercus suber andQ. ilex series. A comparison of historical and cartographical documents (vegetation maps covering a 50 year interval and an accurate map of major wildfires during this period) allowed us to determine the changes occurring over time with or without fire action. Plant communities were grouped into three main vegetation types: forests, treed shrublands and shrublands. The passage of three successive wildfires on the same site led to a decrease in forest areas and an increase in shrublands; however, shrublands were already present before the first fire of the period under consideration. Less frequent fire occurrence induced more complex heterogeneity and greater landscape diversity. In the study region as a whole, with or without fire action, a significant decrease in forest surfaces was recorded, whereas there was an increase of unforested communities such as treed shrublands and shrublands. In some parts of the Massif fires increased the homogeneity of the landscape, in other parts they created a greater heterogeneity and diversity of plant communities.  相似文献   

20.
Human land use of forested regions has intensified worldwide in recent decades, threatening long-term sustainability. Primary effects include conversion of land cover or reversion to an earlier stage of successional development. Both types of change can have cascading effects through ecosystems; however, the long-term effects where forests are allowed to regrow are poorly understood. We quantify the regional-scale consequences of a century of Euro-American land use in the northern U.S. Great Lakes region using a combination of historical Public Land Survey records and current forest inventory and land cover data. Our analysis shows a distinct and rapid trajectory of vegetation change toward historically unprecedented and simplified conditions. In addition to overall loss of forestland, current forests are marked by lower species diversity, functional diversity, and structural complexity compared to pre-Euro-American forests. Today’s forest is marked by dominance of broadleaf deciduous species—all 55 ecoregions that comprise the region exhibit a lower relative dominance of conifers in comparison to the pre-Euro-American period. Aspen (Populus grandidentata and P. tremuloides) and maple (Acer saccharum and A. rubrum) species comprise the primary deciduous species that have replaced conifers. These changes reflect the cumulative effects of local forest alterations over the region and they affect future ecosystem conditions as well as the ecosystem services they provide. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号