首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Bacteria, isolated from canola and soybean plants, produced antifungal organic volatile compounds. These compounds inhibited sclerotia and ascospore germination, and mycelial growth of Sclerotinia sclerotiorum, in vitro and in soil tests. Ascospore germination in cavity slides was inhibited 54-90% by the volatile producers. When mycelial plugs or the sclerotia, exposed to these volatiles, were transferred to fresh agar plates, the pathogen could not grow, indicating the fungicidal nature of the volatiles. Head space volatiles, produced by bacteria, were trapped with activated charcoal, by passing nitrogen continuously over shake cultures for 48 h. The compounds were eluted from the charcoal with methylene chloride and identified using Gas Chromatography-Mass Spectrometry (GC-MS). The volatile compounds included aldehydes, alcohols, ketones and sulfides. Of the 23 compounds assayed for antifungal activity in divided Petri plates, with filter-disks soaked with these compounds (100 and 150 μl), only six compounds completely inhibited mycelial growth or sclerotia formation, suggesting their potential role in biological control. The compounds are benzothiazole, cyclohexanol, n-decanal, dimethyl trisulfide, 2-ethyl 1-hexanol, and nonanal. Volatiles may play an important role in the inhibition of sclerotial activity, limiting ascospore production, and reducing disease levels. Studies are under way to understand this phenomenon under field conditions. This is the first report on the identification and use of bacterial antifungal organic volatiles in biocontrol.  相似文献   

2.
The analysis of volatile emissions of coffee berries in different physiological states of ripeness was performed using dynamic headspace and gas chromatography/mass spectrometry analysis for Coffea arabica, var. Colombia. The composition of the volatiles emitted by coffee berries is dominated by very high levels of alcohols, mainly ethanol, in all stages of ripeness in comparison with other compounds. Overripe coffee berries have high volatile emissions and show a composition dominated mainly by esters followed by alcohols, ketones, and aldehydes. The lowest level compounds were monoterpenes. 2-Methyl furan was detected in various ripening stages; this compound has not been previously reported as a coffee berry volatile. The presence of ethanol and other alcohols in the volatile composition might explain the effectiveness of using traps with mixed alcohols for detection and capture of coffee berry borers.  相似文献   

3.
Six-carbon (C(6)) aldehydes and alcohols are important components of the aroma and flavor of fruits and vegetables. Soybean lipoxygenase (LOX) isozyme LOX 3 was reported not only to produce less 13-hydroperoxides, precursors of C(6) aldehydes, but also to convert them to ketodiene products. Here, we examined the effects of LOX 3 on hexenal formation from linolenic acid homogenized with watermelon 13-hydroperoxide lyase (HL)-overexpressing Nicotiana tabacum leaves and soybean acetone powder. Compared to the wild type, which contains LOXs 1, 2, and 3, the elimination of LOX 3 in LOX 1 + 2 facilitates greater production of hexenals. The use of LOX 2 alone yielded the highest hexenal production, while a two-step conversion was required for LOX 1 to produce hexenals at high levels due to different pH optima of the enzymes involved. These results clearly demonstrate that the soybeans lacking LOX 3 in combination with watermelon HL-overexpressing leaf tissues greatly enhance hexenal formation.  相似文献   

4.
Volatiles generated from corn silks of individual genotypes of maize were found to exhibit differences in biological activities when the volatiles were exposed to 5-day solid cultures of Aspergillus flavus. In inverted potato dextrose-agar Petri plate bioassays, it was found that volatiles emitted from silks of the different maize genotypes had a profound effect on the growth of the fungus and, consequently, aflatoxin production. To determine the underlying cause for this bioactivity, volatiles emitted from the maize silks were trapped on Tenax glass columns and were analyzed by GC-MS. Aflatoxin field-resistant maize genotypes exhibited a larger relative concentration of the antifungal aldehyde, furfural (2-furancarboxaldehyde), when compared to the relative concentrations of the field-susceptible varieties tested. In a closed-container 5-day study, it was observed that fresh 1- and 4-day-old corn silk samples of aflatoxin-resistant maize genotypes emitted higher concentrations of furfural compared to those from susceptible genotypes. This observation probably explains the reason for the bioactivity observed in the in vitro bioassays, and the presence of furfural appears to contribute to a defense mechanism for protecting the developing maize kernel from fungal attack.  相似文献   

5.
The volatile composition of four southern highbush blueberry cultivars ('Primadonna', 'Jewel', 'Snowchaser', and 'FL02-40') grown in two locations (Gainesville and Haines City, FL) and harvested multiple times was investigated. A total of 42 volatiles were identified, including 8 esters, 12 terpenoids, 11 aldehydes, 7 alcohols, and 4 ketones. Twelve of these volatiles are reported for the first time in highbush blueberries, with 10 being positively identified: (Z)-3-hexenal, (E,E)-2,4-hexadienal, (E,Z)-2,6-nonadienal, (E,E)-2,4-nonedienal, methyl 2-methylbutanoate, butyl acetate, 2-methylbutyl acetate, and geranyl acetate. The dominant volatiles were aldehydes followed by terpenoids and esters, with distinct varietal profiles. 'Primadonna' was characterized by a large amount of esters and C-6 aldehydes. In contrast, fewer than 4 esters were found in 'FL02-40' and 'Snowchaser', respectively, but they produced more terpenoids than 'Primadonna' and 'Jewel'. Location and/or harvest date affected the production of volatiles in 'Primadonna', but not so much in the other cultivars.  相似文献   

6.
Enzymatic extracts from olive pulp (Olea europea L.) were used to characterize lipoxygenase (LOX) activity in order to determine its role in the biogenesis of the volatile compounds that influence the aroma of extra virgin olive oil. The LOX activity was tested spectrophotometrically at an optimal pH of 6.0 in three olive cultivars, Ascolana Tenera, Kalamata, and FS17. The trend of the LOX activity was determined as a function of pH and temperature; the kinetic constants of the enzyme were also determined. The highest LOX activity was observed in the FS17 fruit, which had the highest concentrations of C(5) and C(6) compounds (aldehydes, alcohols, and ketones), followed by Kalamata and Ascolana T., respectively. Given the direct relationship between enzymatic activity and the quantity of aromas measured in the fruit, it is hypothesized that olive LOX is involved in the formation of C(5) and C(6) volatile compounds. To study the mechanism of the movement of the aromas from the fruit to the oil, which was obtained by simple mechanical extraction, the headspace of the oil for each cultivar was analyzed as well as the aromatic composition in order to compare it with the aromas of the fruit.  相似文献   

7.
Wounded strawberry fruit produces a diverse group of volatile compounds including aldehydes, alcohols, and esters derived from the lipoxygenase (LOX) and hydroperoxide lyase (HPL) pathways. Because the wound volatiles may play an important role in plant-fungal interaction, the goal of this study was to develop a greater understanding about the biosynthesis of the major wound volatile, trans-2-hexenal (t-2-H), produced by strawberry fruit upon wounding. To that end, composition and quantity of total and free fatty acids of control and wounded strawberry fruit were analyzed. In addition, activities of the key enzymes, LOX and HPL, and production of C6 aldehydes were determined. Intact strawberry fruit did not produce detectable t-2-H which is derived from alpha-linolenic acid (18:3). However, in response to wounding by bruising, strawberry fruit emitted t-2-H and its precursor cis-3-hexenal (c-3-H). The level of total lipid 18:3 in the fruit increased 2-fold in response to wounding, whereas free 18:3 declined slightly ( approximately 30%). At 10 min following wounding, fruit exhibited a 25% increase in LOX activity, which leads to the production of 13-hydroperoxyoctadecatrienoic acid (13-HPOT) from 18:3. The activity of HPL, which catalyzes formation of cis-3-hexenal from 13-HPOT, increased 2-fold by 10 min after wounding. Thus, during a 15 min period after wounding, free 18:3 substrate availability and the activity of two key enzymes, LOX and HPL, changed in a manner consistent with increased c-3-H and t-2-H biosynthesis.  相似文献   

8.
Volatiles from roasted byproducts of the poultry-processing industry   总被引:6,自引:0,他引:6  
Volatiles of roasted chicken breast muscle and byproducts, such as backbones, breastbones, spent bones, and skin, were investigated. Total volatile concentrations ranged from 2030 ppb in the roasted backbones to 4049 ppb in the roasted skin. The major classes of volatile compounds detected in roasted samples were aldehydes (648-1532 ppb) and alcohols (336-1006 ppb). Nitrogen- and/or sulfur-containing compounds were also detected in appreciable quantities (161-706 ppb) in all samples. For all samples, hexanal and 2-methyl-2-buten-1-ol were dominant among the aldehydes and alcohols, respectively. Among the nitrogen- and sulfur-containing compounds, Maillard reaction products, such as tetrahydropyridazines, piperidines, and thiazoles, were the major contributors to the total volatile content in all samples. The composition of volatiles observed in roasted byproducts was markedly different from that of the roasted breast muscle. Therefore, the blending of the byproducts in appropriate proportions or blending of volatile flavor extracts from different byproducts may be necessary to obtain an aroma that mimics roasted chicken aroma.  相似文献   

9.
The quantitative distribution of volatile compounds in the skin and pulp of Queen Anne's pocket melon [Cucumis melo var. dudaim (L.) Naudin] has been investigated. Volatile compounds were extracted by liquid-liquid microextraction (LLME) using chloroform and analyzed by GC-FID and GC-MS. Sixty volatiles, including 20 esters, 15 alcohols, 7 lactones, 7 aldehydes and ketones, 6 sulfur compounds, and 5 C(6) compounds, have been identified. Among them, 38 were reported for the first time in pocket melon, 10 of them have been, however, labeled "tentatively identified". The results showed that the levels of volatiles in skin were significantly higher than those observed in pulp. Eugenol, the major constituent in skin (15.3%), thioether esters, and lactones were thought to contribute significantly to the unique aroma of the pocket melon. Finally, the distribution of lactones was also found to be different in skin and pulp according to their carbon chain length.  相似文献   

10.
The flavor volatiles in three Japanese rice cultivars, Nihonbare, Koshihikari, and Akitakomachi, during cooking were directly extracted by using a modified headspace solid‐phase microextraction (SPME) method and analyzed by gas chromatography‐mass spectrometry (GC‐MS). A total of 46 components were identified, including aldehydes, ketones, alcohols, and heterocyclic compounds, as well as fatty acids and esters, phenolic compounds, hydrocarbons, etc. The amount of key odorant compounds increased with cooking, while the amount of low‐boiling volatiles decreased. The similarities and differences of the three rice cultivars were determined through a comparison of their volatile components. Nihonbare was characterized by a higher amount of indole but an absence of the chemical class of fatty acid esters. In contrast, both Koshihikari and Akitakomachi had a higher amount of 4‐vinylphenol and an abundance of those esters. Koshihikari and Akitakomachi were quite similar in regard to those flavor volatiles. Furthermore, the observations in the research may suggest that the volatile components at cooking stage (I) were the representatives of the flavor volatiles of uncooked rice, while the volatile constituents at cooking stage (IV) were the representatives of the flavor volatiles of cooked rice.  相似文献   

11.
Selected types of commercial breads obtained from local markets, including white sandwich, Irish oatmeal, soft rye, hearty rye, sour dough, home-like white, and onion-basil, were analyzed for volatiles. Using a purge and trap instrument, volatiles were purged directly from fresh crumb and crust samples of each bread type, collected on a trap (Tenax-TA), and transferred to a gas chromatograph. Separated components were detected and identified using mass and infrared spectroscopic detectors. Many components were present in all of the bread samples, with relative amounts varying among bread types and crust and crumb samples of a given bread type. Alcohols were generally the most abundant, followed in approximate order by aldehydes, esters, ketones, acids, various aromatics, terpenes, and hydrocarbons. Flavor additives, such as limonene, carvone, and other related compounds, were found mostly in rye and onion-basil breads. Composition of volatiles from sour dough bread differed greatly from the other breads, especially in increased levels of aldehydes, acids, and certain esters. Unsaturated aldehydes, such as 2-hexenal and 2-heptenal, were most abundant in sour dough bread.  相似文献   

12.
Cultured and wild sea bream were compared for differences in their volatile components over a 23 day storage period in ice. A total of 60 compounds in cultured and 78 compounds in wild sea bream were tentatively identified (in addition to this, there were 23 unknowns in cultured and 29 unknowns in wild sea bream volatiles). These included aldehydes, ketones, alcohols, aromatics, terpenes, furans, sulfur-containing compounds, an acid, and miscellaneous compounds. Although selection of best fish is a subjective matter, more aldehydes, ketones, aromatics, and terpenes were found in wild sea bream as compared to that of its cultured counterpart. Both sea bream samples exhibited complex volatile profiles over the entire storage period. The combination of several classes of volatile compounds, dependent upon their concentrations and odor thresholds, is responsible for the distinctive and unique flavor of fresh cultured and wild sea bream. Relative concentrations of several compounds (trimethylamine, piperidine, methanethiol, dimethyl disulfide, dimethyl trisulfide, 1-penten-3-ol, 3-methyl-1-butanol, and acetic acid) increased continually throughout the storage period, and these may have the potential to be used as indicators of sea bream quality.  相似文献   

13.
Kernel pericarp wax of the corn breeding population GT-MAS:gk has been associated with resistance to Aspergillus flavus infection and aflatoxin production. GT-MAS:gk wax, previously compared to waxes of three susceptible genotypes, was presently compared to wax of a different, and more numerous, group of susceptible lines. Wax separation by TLC confirmed previous findings, demonstrating a unique GT-MAS:gk band and a unique "susceptible" band. Only GT-MAS:gk wax inhibited the growth of A. flavus; however, no association was established, as before, between kernel wax abundance and resistance. Gas chromatography-mass spectroscopy (GC-MS) analysis of kernel whole wax showed a higher percentage of phenol-like compounds in wax from GT-MAS:gk than in waxes from the susceptible lines. The GT-MAS:gk unique band contained phenol-like compounds and ethyl-hexadecanoate; butyl-hexadecanoate was preeminent in most of the "susceptible bands". Alkylresorcinol (phenolic compounds) content was dramatically higher in GT-MAS:gk wax than in the wax of susceptible lines. An alkylresorcinol, 5-methylresorcinol, also inhibited in vitro growth of A. flavus. These and other phenolic compounds may contribute to kernel wax inhibition of A. flavus infection/aflatoxin production. Further investigation is needed to confirm a role for them in GT-MAS:gk resistance.  相似文献   

14.
15.
The objective of the present study was to purify and characterize the lipoxygenase (LOX) from banana leaf (Giant Cavendishii, AAA), an unutilized bioresource. LOX was extracted, isolated, and purified 327-fold using 25-50% saturation of ammonium sulfate fractionation, hydroxyapatite column separation, and gel filtration on Superdex 200. The molecular mass of the purified LOX was 85 kDa, K(m) was 0.15 mM, and V(max) was 2.4 microM/min.mg using linoleic acid as substrate. Triton X-100 was required in the extraction medium; otherwise, no LOX activity was detected. LOX activity increased with the concentration of Triton X-100 with an optimum at 0.1%. The optimal pH of the purified LOX from banana leaf was 6.2, and optimal temperature was 40 degrees C. The LOX showed the highest reactivity toward 18:2 followed by 18:3 and 20:4. A very low reaction rate was observed toward 20:5 and 22:6. On the basis of retention time in normal phase HPLC, the products of 18:2 or 18:3 catalyzed by purified LOX were hydroperoxyoctadecadienoic acid or hydroperoxyoctadecatrienoic acid. It seems that 9-LOX is the predominant enzyme in banana leaf. Banada leaf dried at 110 degrees C for 2 h developed algal aroma. Banana leaf extract stored at 10 degrees C for 12 h formed an oolong tea-like flavor. Banana leaf extract reacted with 18:2 or soybean oil pretreated with bacterial lipase produced green and melon-like aroma, whereas the same reaction with 18:3 produced a sweet, fruity, cucumber-like flavor note.  相似文献   

16.
17.
Soybean (Glycine max) seed volatiles were analyzed using a solid phase microextraction (SPME) method combined with gas chromatography-mass spectrometry (GC-MS). Thirty volatile compounds already reported for soybean were recovered, and an additional 19 compounds not previously reported were identified or tentatively identified. The SPME method was utilized to compare the volatile profile of soybean seed at three distinct stages of development. Most of the newly reported compounds in soybean seed were aldehydes and ketones. During early periods of development at maturity stage R6, several volatiles were present at relatively high concentrations, including 3-hexanone, (E)-2-hexenal, 1-hexanol, and 3-octanone. At maturity stage R7 and R8, decreased amounts of 3-hexanone, (E)-2-hexenal, 1-hexanol, and 3-octanone were observed. At maturity stage R8 hexanal, (E)-2-heptenal, (E)-2-octenal, ethanol, 1-hexanol, and 1-octen-3-ol were detected at relatively high concentrations. SPME offers the ability to differentiate between the three soybean developmental stages that yield both fundamental and practical information.  相似文献   

18.
The volatile compounds of guava wine were isolated by continuous solvent extraction and analyzed by GC-FID and GC-MS. A total of 124 volatile constituents were detected, and 102 of them were positively identified. The composition of guava wine included 52 esters, 24 alcohols, 11 ketones, 7 acids, 6 aldehydes, 6 terpenes, 4 phenols and derivatives, 4 lactones, 4 sulfur-compounds, and 5 miscellaneous compounds. The aroma-active areas in the gas chromatogram were screened by application of the aroma extract dilution analysis and by odor activity values. Twelve odorants were considered as odor-active volatiles: (E)-β-damascenone, ethyl octanoate, ethyl 3-phenylpropanoate, ethyl hexanoate, 3-methylbutyl acetate, 2-methyltetrahydrothiophen-3-one, 2,5-dimethyl-4-methoxy-3(2H)-furanone, ethyl (E)-cinnamate, ethyl butanoate, (E)-cinnamyl acetate, 3-phenylpropyl acetate, and ethyl 2-methylpropanoate.  相似文献   

19.
Effects of lipoxygenase I-B (LOX)-catalyzed oxidation of linoleic acid on soybean proteins was evaluated by electron spin resonance (ESR) and fluorescence spectroscopy in different model systems in the presence or absence of antioxidants. A strong central singlet signal was detected by ESR spectroscopy and identified as the carbon radical (g value range 2.0041-2.0054). A downfield shoulder attributed to the sulfur radical (g value 2.019-2.028) was also observed. The changes in soybean proteins were accompanied by an increase in fluorescence, indicating the formation of cross-links. Natural antioxidants such as ascorbic acid and alpha-tocopherol as well as synthetic antioxidants butyl hydroxytoluene (BHT) inhibited the development of both the free radical signal and the fluorescence when added to soybean proteins prior to incubation with linoleic acid and lipoxygenase I-B; the central singlet signal attributed to the carbon radical was reduced by 35-65%. This paper clearly indicates direct free radical transfer from oxidizing linoleic acid catalyzed by LOX to soybean proteins.  相似文献   

20.
The enzymatic activity, subcellular localization, and immunolocalization of plant lipoxygenase (LOX) in strawberry fruits (Fragaria x ananassa, Duch) were investigated. Chemical and enzymatic properties of LOX have been characterized, and the LOX capability of oxygenating free and esterified unsaturated fatty acids into C6 volatile aldehydes has been confirmed. Fruits at unripe, turning, and ripe stages were analyzed for LOX activity and protein localization by Western blots, two-dimensional electrophoresis, and immunolocalization analyses. The ability of strawberry tissues to in vivo metabolize linolenic acid or linoleic acid into C6 volatile aldehydes and the LOX products was also analyzed. Analysis of strawberry proteins showed that a number of LOX forms, corresponding to at least two mobility groups of approximately 100 and 98 kDa and pI values ranging between 4.4 and 6.5, were present. Confocal and electron microscopy analyses support the idea that LOX proteins are associated to lipid-protein aggregates. Both exogenously supplied linoleate and linolenate were converted into hexanal and trans-2-hexenal at the three fruit-ripening stages. Our experiments suggest the presence of different LOX isoforms in strawberry fruits and that the lipoxygenase-hydroperoxide lyase pathway plays a role in converting lipids to C6 volatiles during ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号