首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以椰壳、杏核、油茶壳和杉木屑为原料,不外加活化剂,采用高温自生压活化法制备微孔发达的活性炭,研究了反应条件对活性炭孔结构和吸附性能的影响。结果表明,以椰壳原料,在自生压力下选择活化温度900℃并保温6 h,制得的活性炭得率13.8%,微孔率达87.8%,比表面积1 194 m2/g、总孔容积0.528 cm3/g、碘吸附值1 280 mg/g和亚甲基蓝吸附值315 mg/g。自生压活化机理研究表明,木质原料热解产生的水蒸气和二氧化碳形成了良好的混合活化气氛,密闭反应器内产生的自生压力有效促进了气固活化反应的进行,明显提高微孔率。为活性炭生产提供了一种无污染,清洁方便,高得率的新型活化方法。  相似文献   

2.
采用杉木屑为原料,氢氧化钠为活化剂制备木质活性炭产品,探讨活化时间、活化温度、氢氧化钠浓度等工艺参数对木质活性炭的得率和吸附性能的影响.结果 表明,随活化温度、氢氧化钠浓度和活化时间的增大,木质活性炭的得率呈不断下降的趋势,木质活性炭的吸附性能呈先上升后下降的趋势.较优的工艺条件为:活化温度850℃、活化时间1.0h、...  相似文献   

3.
竹材是重要的林业可再生资源,以竹材代替木材制备活性炭可节省大量木材。以竹粉为原料,经磷酸活化成型后进行水蒸气二次活化,在不同工艺条件下制备了高吸附性能活性炭。通过碘吸附值、亚甲基蓝吸附值、N_2吸附-脱附等温线、二硫化碳动态吸附量等对所制活性炭的性能进行表征。结果表明:在磷酸浸渍比1.2∶1、活化时间20 min、活化温度450℃,水蒸气活化温度875℃、活化时间1 h、流量3.0 m L/min条件下,制得的活性炭BET比表面积为1 264.60 m~2/g、总孔容积为1.227 cm~3/g、平均孔径为3.88 nm、碘吸附值为1 452.96 mg/g、亚甲基蓝吸附值为307.5 mg/g、强度为91.76%、得率为30.42%;在动态干燥和30%相对湿度条件下,对二硫化碳的单位质量吸附量分别为0.416和0.390 g/g。活性炭对CS2的吸附能力主要与活性炭的孔结构有关,微孔发达、平均孔径小、碘吸附值高的活性炭更有利于CS2的吸附。由于竹材表观密度相对较低,且受到竹材自身组分的限制,所制活性炭的强度低于椰壳活性炭。  相似文献   

4.
竹屑用磷酸活化法制备吸附汽油蒸气和液相脱色的颗粒活性炭。竹屑与磷酸溶液按适当比例混合均匀,在适当温度下塑化,然后经捏和、挤出成型、干燥硬化、炭化、活化、漂洗和烘干等工序制得颗粒活性炭产品。研究了磷酸浓度、酸屑重量比、活化温度、活化时间对活性炭吸附性能的影响。正交试验结果表明较佳的工艺条件为:磷酸浓度85%,酸屑重量比为1.9∶1,活化温度430℃,活化时间90 min。在较佳工艺条件制得活性炭试样的丁烷工作容量为11.95 g·100 m L-1,亚甲基蓝吸附值为255 mg·g-1,活性炭试样的BET比表面积和孔容积分别为1 978.95 m2·g-1和1.4907 cm3·g-1。  相似文献   

5.
以桉树锯末和磷酸为原料制备了颗粒活性炭,研究浸渍比、活化温度、活化时间等对产品得率、强度和吸附性能的影响。实验得到最佳工艺条件为:磷酸与原料浸渍比为2∶1,温度300℃,预处理1 h,机械成型后,再以10℃/min升到活化温度450℃,活化1 h。此条件下,制备得到的活性炭性能指标为:强度95%,亚甲基蓝吸附值172.5 mg/g,碘吸附值790 mg/g,A法焦糖100%,得率40%左右。  相似文献   

6.
以竹热解气化产生的炭副产物为原料,高分子化改性焦油等为黏结剂,经液压成型、热解交联、水蒸气活化制备竹质成型活性炭,分析了不同黏结剂的成型机制,考察了黏结剂类型、改性焦油添加量、活化温度、活化时间对活性炭性能的影响,结果发现:焦油经芳香化交联改性后,相对分子质量和热稳定性提高了,对竹炭孔道的堵塞作用减轻了,炭颗粒间的黏结和热解交联作用增强了,可制备高性能的竹质成型活性炭;以40 g竹炭粉为原料,在改性焦油添加量12 g、炭化温度550℃、炭化时间90 min、水蒸气活化温度850℃、水蒸气活化时间80 min的条件下制得成型活性炭,其碘吸附值1 232 mg/g,亚甲基蓝(MB)吸附值240 mg/g,强度91%,得率48.5%,比表面积和总孔容分别为1 157 m2/g和0.478 1 cm3/g,对甲苯和四氯化碳的吸附率分别为385 mg/g和75.2%,且成型活性炭的微孔孔容与甲苯和四氯化碳吸附率呈正比关系。  相似文献   

7.
研究了以农业秸秆经压块成型后为原料,采用水蒸气活化法制备活性炭工艺。讨论了炭化温度、炭化时间、活化温度和活化时间对活性炭的得率和吸附性能的影响,得到了最佳工艺条件:炭化温度450℃、炭化时间6h、活化温度850℃、活化时间3h。经后处理去灰分后,制得的活性炭的亚甲基蓝吸附值达180 mg·g-1。基本能达到木质净水用活性炭标准要求,具有较大的推广应用前景。  相似文献   

8.
磷酸-复合活化剂法制竹屑活性炭的研究   总被引:8,自引:3,他引:8  
以竹屑为原料,用磷酸 复合活化剂(由磷酸添加一种酸性化合物A和一种盐类化合物S)法制备活性炭。研究了磷酸 复合活化剂用量、炭活化温度、炭活化时间等对活性炭的得率、灰分和pH值的影响,确定了适宜的制备竹屑活性炭工艺条件:磷酸浓度为38°Be′/60℃、添加剂A2%、添加剂S4%(A和S以磷酸质量分数计)、炭活化温度450℃、炭活化时间3h。在此条件下所得活性炭的得率为36%、灰分含量4.8%、pH值4.6。对竹屑活性炭的吸附性能、比表面积和孔隙性质也进行了分析。结果表明:竹屑活性炭的比表面积为1500m2/g、比孔容积1.10mL/g、平均孔隙半径1.46nm、焦糖脱色率(A法)120%和亚甲基蓝吸附值225mg/g。  相似文献   

9.
以木屑气化剩余炭粉为原料,通过添加活化助剂次氯酸钙和使用黏结剂羧甲基纤维素钠、沥青、酚醛树脂成型,经炭化、水蒸气活化,制得成型活性炭。考察了黏结剂种类和添加量、活化助剂添加量、水蒸气活化条件对制备活性炭性能的影响,结果发现:沥青、酚醛树脂作黏结剂时,单独和配合使用都可以制备性能较好的成型活性炭;活化助剂的添加有利于提高制备活性炭的吸附性能,但会影响活性炭强度和得率。当活化助剂添加0.3 g、水蒸气活化温度850℃、水蒸气活化时间45 min、水蒸气流量1.5 mL/min时,沥青(添加量25 g)为黏结剂制备的活性炭AC1、酚醛树脂(添加量6 g)为黏结剂制备的活性炭AC2、沥青(添加量10 g)和酚醛树脂(添加量3 g)共为黏结剂制备的活性炭AC3,3种样品的碘吸附值最高超过900 mg/g,亚甲基蓝吸附值最大达180 mg/g,强度最高为99%,得率最高为32.9%;活性炭的微孔率最高大于83%,比表面积和总孔容积最大达697.04 m2/g和0.38 cm3/g。  相似文献   

10.
水蒸气法制备橡胶籽壳活性炭的研究   总被引:6,自引:0,他引:6  
采用橡胶籽壳炭为原料,以水蒸气为活化剂制备吸附性能优良且得率高的活性炭。通过正交试验设计,研究活化温度、活化时间及水蒸气用量对活性炭吸附性能的影响。得到最佳活化工艺条件为:橡胶籽壳炭量1.0 kg,活化温度880℃,活化时间40 m in,水蒸气用量8 kg/h。制得的优质橡胶籽壳活性炭的亚甲基蓝脱色力240 mg/g,碘值1 113 mg/g,强度94.2%,得率40.5%。  相似文献   

11.
热解活化法制备微孔发达椰壳活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以椰壳为原料,采用热解活化法制备微孔发达活性炭。研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响。实验结果表明:活化温度为900℃,活化时间为4 h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g。N2吸附结果表明活性炭的平均孔径在2 nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%。对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低。  相似文献   

12.
以木屑为原料,磷酸为活化剂,硼酸为催化剂制备活性炭。通过正交实验考察了活性炭制备过程中磷屑比、硼酸添加量,活化温度和活化时间等因素对活性炭性能的影响。实验结果表明:生产活性炭的最佳工艺条件为磷屑比为1.5∶1,硼酸的添加量为1%,活化温度是400℃,活化时间为60 min,此时活性炭的得率为33.5%,亚甲基蓝吸附值为225 mg/g,碘吸附值为855 mg/g。添加硼酸的制备方法要比传统的用磷酸制备时的条件更加温和,通过调整工艺条件,可以改变活性炭产品的孔隙结构,生产出用于不同环境的液相吸附专用活性炭。  相似文献   

13.
以核桃壳和杏壳为原料,采用磷酸法制备活性炭,以亚甲基蓝吸附值、碘吸附值和得率为指标,研究了原料粒径和含水率对磷酸法活性炭性能的影响。结果表明:原料的粒径和含水率对活性炭的吸附性能有重要影响,在一定范围内减小原料粒径,对提高活性炭吸附性能有利,而原料含水率对活性炭吸附性能的影响因不同原料而异。增加原料含水率,对核桃壳活性炭吸附性能的提高有利,但会降低小粒径杏壳活性炭的吸附性能。以核桃壳为原料制备活性炭时,选择粒径0.5~0.7 mm、含水率11%的原料为佳,得率可达41%,亚甲基蓝吸附值230 mg/g,碘吸附值874 mg/g;以杏壳为原料制备活性炭时,选择粒径0.7~1.2 mm、烘干的原料为佳,得率可达42%,亚甲基蓝吸附值87 mg/g,碘吸附值734 mg/g。  相似文献   

14.
本文用吸附等温线、孔径分布、x-ray衍射及TEM法对高吸附性能木素活性炭(比表面积分别为S_L=3831m~2/g;S_L=4004m~2/g)进行了研究。结果表明,此活性炭的孔结构均匀性好,是一种不含石墨微晶的“笼形”准分子筛结构,其碳原子为SP~2杂化。  相似文献   

15.
Nitrogen-containing bamboo charcoals were prepared using bamboo processing residues, and modified by melamine or urea. The iodine value of the products we obtained was analyzed, and two samples were chosen for the Cr(VI) adsorption. The experimental results show that under the KOH and carbon ratio of 3:1 (w1/w2), activation temperature 800 °C and activation time 1 h, the activated carbons modified by melamine boasted the iodine value of 1144 mg/g and the activated carbons modified by urea boasted the iodine value of 1263 mg/g. In addition, the equilibrium adsorption capacity is 95.3 mg/g for the activated carbons modified by melamine with the adsorbent dosage of 1.0 g/L at an initial pH 2 in the presence of 100 mg/L K2Cr2O7 at 30 °C for 180 min and it is 94.2 mg/g for the activated carbons modified by urea in the same reaction condition. The pseudo-second-order kinetic model can better reflect the two kinds of nitrogen-containing activated carbons adsorption kinetic process of Cr(VI). The adsorption process conforms to the Langmuir model, indicating that the process is single molecular layer adsorption.  相似文献   

16.
软锰矿-污泥基活性炭对活性艳红X-3B的吸附特性研究   总被引:3,自引:0,他引:3  
以污水处理厂剩余污泥为原料,添加适量天然软锰矿,采用氯化锌化学活化法制备活性炭,用于吸附活性艳红X-3B染料.结果表明,软锰矿的添加可以改善污泥活性炭的吸附性能,使其对染料的饱和吸附容量(Qm)较未投加软锰矿的污泥活性炭增加50mg/g以上,最大可提高56.5%;软锰矿的投加量因污泥种类而异,控制在0.2%~2%范围内;活性炭的最适宜投加量为4g/L,吸附时间90min,pH值对吸附的影响不大;吸附热力学Langmuir模型比Freundlich模型更适合描述本研究中的等温吸附系统.  相似文献   

17.
丙酮回收用活性炭微结构的研究   总被引:3,自引:0,他引:3  
利用AS-703比表面积、孔径分布测定仪对几种回收丙酮溶剂的商品活性炭进行了比较深入的剖析,从微观结构上阐明了影响丙酮回收用活性炭的主要因素,并提供了国产化样品,与进口商品活性炭相比较具有价格低吸附性能好等优点.微孔容积的大小决定了丙酮吸附量的多少,而与总孔容积关系不大.丙酮回收用活性炭的孔径主要集中在1nm左右,微孔容积在0.40~0.50cm3/g.  相似文献   

18.
Most waste of medium density fiberboard (MDF) is burnt, which could release toxic gases and pollutants to the environment. So, the re-using waste of MDF is highly desired. The nitrogen atoms of waste medium density fiberboard originate from urea–formaldehyde resin adhesive used in the manufacturing process, so nitrogen-enriched activated carbons could prepared easily. Nitrogen-enriched activated carbons were prepared from waste MDF by potassium hydroxide. The activation temperature was ranged from 600 to 900 °C, and the chemical agent/waste MDF varied from 1 to 5. Iodine number was used to evaluate the adsorption ability of waste MDF activated carbons. The pore properties including surface area, pore volume and pore size distribution were determined by N2 adsorption. The method of elemental analysis and XPS were used to estimate how nitrogen functional groups changed with different activation conditions. The results showed that the adsorption of iodine number of activated carbons was ranged from 661 to 1350 mg/g. The surface area of waste MDF activated carbons was different from 941 to 1876 m2/g and total pore volume was from 0.455 to 0.949 cm3/g. The pore size distribution indicated that waste MDF activated carbons included both micropores and mesopores, and the analysis of element implied that the contents of nitrogen varied from 0.41 to 2.31 %.  相似文献   

19.
采用反相气相色谱技术(IGC)测定了甲烷分子在改性前后活性炭上的保留时间,计算出了改性前后的活性炭的表面吸附热变化,并对不同改性剂的改性效果进行了比较.结果表明,改性前活性炭吸附热为17.75 mol/L,改性后的活性炭吸附热分别为18.74(氧化改性)、18.96(还原改性)、18.43 mol/L(盐改性).改性前...  相似文献   

20.
Nitrogen-enriched activated carbons were prepared from waste medium density fiberboard waste by using NaOH, K2CO3 and KOH. The content of nitrogen in the activated carbon was 0.92, 0.74 and 1.33 % by analysis. The influence of contact time, pH, Cr(VI) initial concentration and the amount of activated carbon on the Cr(VI) adsorption capacity were investigated. The maximum adsorption capacity of Cr(VI) could reach 89.21 mg/g at pH 2 and a contact time of 9 h. The kinetics adsorption followed nicely the pseudo-second-order rate expression. In adsorption isotherm, the Langmuir model fitted better than the Freundlich model. Pure Poplar activated carbon was also prepared as the adsorbent for Cr(VI) removal as control sample. This study indicated that the nitrogen-enriched activated carbon prepared from waste medium density fiberboard can be used effectively for the removal of Cr(VI) compound from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号