首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
An infrared spectroscopic investigation of the complexes of Cu2+, Pb2+, and Ca2+ with humic and fulvic acids demonstrated the participation of OH and CO groups in addition to COOH in the binding of heavy-metal cations. The degree to which metal-carboxylate linkages are ionic or covalent cannot be accurately determined from the positions of antisymmetric and symmetric carboxylate stretching vibrations due to interference from covalent bonding with other groups. The apparent order of the reaction of three divalent cations with humic and fulvic acids was Cu2+ > Pb2+ > Ca2+.  相似文献   

3.
Formation constants for Cu2+ complexes with humic and fulvic acids were determined by a modification of the well-known Bjerrum potentiometric titration method. Highly stable complexes were formed with formation constants of the order of those observed for synthetic polycarboxylic acids. Overall formation constants for a two-step process (B2) ranged from 2.5 · 10?4 to 7.9 · 10?3.  相似文献   

4.
The concentrations of Zn, Cd, Pb and Cu in earthworm tissues were compared with the total and DTPA-extractable contents of these heavy metals in contaminated soils. Samples were taken from a pasture polluted by waste from a metallurgic industry over 70 y ago. Three individuals of Aporrectodea caliginosa and Lumbricus rubellus and soil samples were collected at six points along a gradient of increasing pollution. Total metal contents of earthworms, soil, and metals extracted by DTPA from the soil were measured. Total heavy metal contents of the soils ranged from 165.7 to 1231.7 mg Zn kg−1, 2.7 to 5.2 mg Cd kg−1, 45.8 to 465.5 mg Pb kg−1 and 30.0 to 107.5 mg Cu kg−1. Their correlations with metals extracted by DTPA were highly significant. Contents of the metals in earthworm tissues were higher in A. caliginosa than in L. rubellus, with values ranging from 556 to 3381 mg Zn kg−1, 11.6 to 102.9 mg Cd kg−1, 1.9 to 182.8 mg Pb kg−1 and 17.9 to 35.9 mg Cu kg−1 in A. caliginosa, and from 667.9 to 2645 mg Zn kg−1, 7.7 to 26.3 mg Cd kg−1, 0.5 to 37.9 mg Pb kg−1 and 16.0 to 37.6 mg Cu kg−1 in L. rubellus, respectively. Correlations between body loads in earthworms with either total or DTPA-extractable contents of soil metals were significant, except for Cd in L. rubellus and Cu in A. caliginosa. Considering its simple analytical procedure, DTPA-extractable fraction may be preferable to total metal content as a predictor of bio-concentrations of heavy metals in earthworms. Biota-to-Soil Accumulation Factor (BSAF) of these four metals are Cd>Zn>Cu>Pb, with range of mean values between: Cd (6.18-17.02), Zn (1.95-7.91), Cu (0.27-0.89) and Pb (0.08-0.38) in A. caliginosa, and Cd (3.64-6.34), Zn (1.5-6.35), Cu (0.29-0.87) and Pb (0.04-0.13) in L. rubellus. The BSAF of Ca, Fe and Mn are Ca>Mn>Fe, with mean values of: Ca (0.46-1.31), Mn (0.041-0.111), Fe (0.017-0.07) in A. caliginosa and Ca (0.98-2.13), Mn (0.14-0.23), Fe (0.019-0.048) in L. rubellus, respectively. Results of principal component analysis showed that the two earthworm species differ in the pattern of metal bioaccumulation which is related to their ecological roles in contaminated soils.  相似文献   

5.
Concentrations of the main components and activities of Ca2+, Na+, Cl?, and NO3? were determined in soil solutions displaced from chernozem samples (A1 horizon). To calculate ion activity in these solutions, it was necessary to consider formation of Ca2+, Mg2 and Na+ complexes with organic anions. If 1 : 1-composition of these complexes was assumed, dependence of their stability constants on the ionic strengths was found; this allowed a 17% average error for Ca2+ activity and 8% for Na+ activity in the calculations. As followed from the computations, 68–80% of the Ca2+ and Mg2+ were included in ion pairs and complexes with 91–97% of these amounts bound with organic anions. The values for the calcite solubility product were close to those for pure saltwater systems.  相似文献   

6.
The results from this research indicate that canola meal (CM) can be used for adsorption of Zn2+, Cd2+, Cu2+, Pb2+and Ni2+from aqueous solutions. The order of sorption for these metals in single metal systems was as follows (molar basis): Zn2+> Cu2+> Cd2+> Ni2+> Pb2+. It was noted that a decrease in the concentration of CM caused a higher metal loading on the meal. Increases in the metal concentration, temperature or pH resulted in increased sorption of the metals by the meal. The systems with identical ratios of CM to Zn2+concentrations, regardless of their levels, resulted in the same amount of metal adsorbed per unit weight of meal. The Freundlich isotherm type model was used in this study and was found to fit the experimental equilibrium concentration data of Zn2+and Cd2+; however, the Langmuir isotherm model fit only the equilibrium data of Zn2+. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX) microanalyses revealed that the metal ions were sorbed mainly at the cell wall and only small amounts of ions diffused into the cytoplasm of the CM cells. The Electron Spin Resonance (ESR) tests were inconclusive regarding the direct participation of free radicals in copper sorption.  相似文献   

7.
Inorganic pyrophosphatase activity in three soils decreased when exchangeable and soluble metals were removed by leaching with in NH4OAc (pH 8). The effect of added metal ions at various concentrations in the leached soils showed that, at certain concentrations, Ba2+, Ca2+, Co2+, Mg2+, Mn2+, Ni2+ and Zn2+ promoted, K+ and Na+ had no effect, and Fc2+ and Cu2+ decreased pyrophosphatase activity. At high concentrations (>50 mM). Co2+, Mn2+, Ni2+ and Zn2+ inhibited pyrophosphatase activity in two soils. The concentration of metal ion needed for optimum activity of pyrophosphatase varied among the soils. The efficiency of the metal ions at optimum concentrations (average percentage increase for three soils in parentheses) in promoting pyrophosphatase was Ca2+ (47) > Mg2+ (42) > Ba2+ = Co2+ (29) > Ni2+ (27) > Zn2+ (20) > Mn2+(16). Pyrophosphatase activity in two leached soils adjusted to 50, 75, 100 or 150 mM PPi and Ca2+ or Mg2+ concentrations from 0 to 250 mM was at an optimum when the metal ion: PPi ratio was 1:1. Soil pyrophosphatase in the presence of 200 mM CaCl2 or MgCl2 was protected against inactivation by heat (90 C for up to 30 min).  相似文献   

8.
Humic acid (HA) extracted from a Eustis loamy sand (Psammentic Paleudult, Red Yellow Podzolic soil) was flocculated by titration with Al3+-, Fe3+-, Cu2+-, Zn2+-, Mn2+-, Ba2+-, Ca2+-, and Mn2+-chloride solutions, respectively, to determine possible development of metal-HA complexes, as reported by Flaig et al. (1975), and Tiurin and Kononova (1962). Titration was conducted with HA solutions with an initial pH 11.5 or 7.0. The results indicated that the cations used, except Mg2+, yielded insoluble complexes with HA, irrespective of initial pH. After titration, the pH of the metal-HA flocs was 6.0–7.0, which was expected in view of the presence of cation exchange and buffering capacity of HA compounds. More complex formation through electrovalent and covalent bonding by COO? and phenolic OH groups of the HA molecule was only attained by the use of HA solutions with pH 11.5. On the other hand, less complex formation occurred by the use of HA solutions with an initial pH 7.0, through electrovalent bonding by COO? groups. Differential thermal analysis (d.t.a.) curves of HA showed shifts in temperatures of the main decomposition peak as a result of flocculation with the different metals. Based on the type of the cations involved, the metal-humic acid flocs could be listed in the following decreasing order of thermal stability: Al3+ = Zn2+ = Mg2+ ≥ HA > Ca2+ > Ba2+ > Fe3+ > Cu2+ > Mn2+. A systematic relationship could not be found indicating that trivalent ions resulted in the formation of thermally less stable metal-humic acid flocs than divalent ions, as has been reported for HA-metal complexes. Physical mixtures of HA and metal hydroxides exhibited d.t.a. features resembling those of original (nontreated) HA, but not those of the HA-metal flocs.Infrared spectroscopy revealed increased absorption for COO? vibrations at 1620 and 1400cm?1 in spectrograms of metal-HA flocs compared to that of original humic acid, a phenomenon explained by many authors to be caused by bonding of the metal ions in hydrated form to the carboxyl or phenolic hydroxyl groups or both of the humic acid molecule. HA-flocs formed from solutions with an initial pH 11.5 had identical i.r. spectra compared with those formed from solutions with an initial pH 7.0.  相似文献   

9.
Stability constants describing Al3+ combination with soil polycarboxylates were measured using the methods of Gregor et al. (1955) and Tanford (1961). It is suggested that the high stability of such complexes is derived largely from the electrostatic energy associated with the high surface charge of soluble humus acids. Chemically, the affinity of fulvic acids for Al3+ appeared to be no greater than that of a weak complexant such as adipic or acetic acid. A species distribution model was constructed showing the proportion of soluble Al that is bound by organic complexes. The model uses certain approximations regarding the degree of dissociation of the humus acids, but from measurements of soluble humus and Al in soil solutions it was suggested that these approximations were reasonably valid. The range of the model falls within conditions likely to occur in agricultural topsoils and demonstrates the importance of organic complexants in limiting Al3+ concentrations in natural aqueous systems.  相似文献   

10.
Methylation of Hg2+ (Hg(NO3)2) in the presence of fulvic acid (FA) and various metal ions has been studied. The concentrations of Hg2+ and FA ranged from 5 to 20 mg L?1 and 171 to 285 mg L?1 DOC, respectively. The pH range was 3 to 6.5. FA was isolated from an acid brown-water lake by XAD-8 polymeric adsorbent. Methylmercury production in the dark during 2 to 4 days incubation at 30 °C increased with increasing concentrations of Hg2+ ion and FA as well as with additions of metal ions (5 to 10 × 10?5 mole L?1 The observed catalytic activity of metal ions followed the order Fe3+ (Fe2+) > Cu2+ ≈ Mn2+, > Al3+. The production of methylmercury had a pH-optimum around 4 to 4.5 at the conditions tested.  相似文献   

11.
Copper, Fe, and Mn were used as probes to investigate residual metal reactivity for humic acid (HA) samples extracted from a loam soil, either non-amended or amended with anaerobically digested sewage sludge for 4, 5, 6, or 7 yr at 90 t ha?1. yr?1. Irrespective of their origin, the HA complexes significant amounts of metal, in forms stable against intense water-leaching, in the order Fe > Cl > Mn. Sludge-amended soil HA adsorbed and retained Fe in amounts greater than HA extracted fron non-amended soil. Metal adsorption occurred mainly by cation-exchange replacement of metals previousl: bound to HA. Water-stable Fe3+-HA complexes prepared in the laboratory were partially stable agains H+ and metal ion exchange reactions, whereas Cu2+ and Mn2+ in laboratory-prepared, water-stabl HA complexes were desorbed almost completely by these two reactions. Electron spin resonance spectra indicated that the laboratory-prepared metal-HA complexes had a chemical composition and molecula structure similar to that of indigenous metal-HA complexes, which were stable against all leachin, and cation-exchange treatments. Although the HA samples showed a maximal metal binding (i.e. saturation) as metal loading of the sludge-amended soil increased, they still exhibited a high residua binding capacity for the three metals used as probes.  相似文献   

12.
《Geoderma》2006,130(1-2):124-140
Chemically and physically fractionated samples extracted from the surface horizon of a soil developed under a mix of coniferous and deciduous vegetation in southwestern Colorado were studied. 13C NMR data on this soil's organic matter and its HF(aq)-washed residue, as well as the classic acid/base-separated humic fractions (humic acid, fulvic acid, humin), were examined for chemical–structural detail, e.g., the various structural functionalities present (especially lipids, carbohydrates, aromatics, polypeptides and carbonyl/carboxyls). Among the humic fractions, it was found that the lipid concentrations are in the order humic acid>fulvic acid= humin; for carbohydrates the order is fulvic acid>humin>humic acid; for aromatic carbons the order is humic acid>humin>fulvic acid; for polypeptides it is humic acid>fulvic acid>humin and for carbonyl/carboxyl species it is humin>humic acid>fulvic acid, but the differences are small. 13C spin–lattice relaxation times indicate that at least two types of “domains” exist in each, corresponding to “higher” and “lower” concentrations of paramagnetic centers, e.g., Fe3+.  相似文献   

13.
The evaluation of the mechanisms and extent of interaction of Cu(II) and Zn(II) with fulvic acids (FAs) is of importance for understanding the mobility and bioavailability of these metals in pig slurry (PS)‐amended soils. In this work, a fluorescence titration method and a single site model were used to characterize the interaction of Cu(II) and Zn(II) with FAs isolated from PS, from soils amended with 90 and 150 m3 ha−1 year−1 of PS for 7 years and from the corresponding unamended soil. The binding capacities of FAs and the strengths of metal ion‐FA complexes were larger for Cu(II) than for Zn(II). With respect to the unamended control soil FA, PS‐FA was characterized by smaller binding capacities and stability constants. The binding capacities and affinities of PS‐amended soil FA were intermediate between those of unamended soil FA and PS‐FA, and tended to decrease with increasing amounts of PS applied to soil, thus suggesting a partial incorporation of FA fractions of PS into native soil FA.  相似文献   

14.
The adsorption of heavy metals [cadmium (Cd 2+), cobalt (Co2+), nickel (Ni2+), zinc (Zn2+), and lead (Pb)] and calcium (Ca2+) on humic acid and silica were investigated to understand the adsorptive selectivities of heavy metals on the constituents of soil. The experiments for the adsorption of Cd and Pb were carried out in a 0.1 mol L?1 (M) sodium nitrate (NaNO3) background solution, whereas those for the other metals were done in a 0.1 M sodium chloride (NaCl) solution. The adsorptive affinities of the metal ions on the humic acid and silica were ranked by the intrinsic surface complexation constants [K m 1(int)] that were calculated approximately from the adsorptive data using a constant capacitance model. The log [K m 1(int)] values of the metals were in the order Zn2+(?2.29) > Cd2+(?2.41) > Co2+(?2.74) > Ni2+(?2.92) ?> Ca2+ (?3.33) for the humic acid and Zn2+(?4.23) > Cd2+(?4.49) > Ni2+(?4.51) ? Co2+ (?5.99) > Ca2+(?6.37) for silica.  相似文献   

15.
The parameters of adsorption of Cu2+, Pb2+, and Zn2+ cations by soils and their particle-size fractions were studied. The adsorption of metals by soils and the strength of their fixation on the surface of soil particles under both mono- and polyelement contamination decreased with the decreasing proportion of fine fractions in the soil. The adsorption capacity of the Lower Don chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem ∼ clay loamy southern chernozem > loamy southern chernozem > loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions (C max and k), the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem > loamy chernozem > loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by soils and their particlesize fractions showed that the extensive adsorption characteristic, namely, the maximum adsorption (C max), was a less sensitive parameter characterizing the soil than the intensive characteristic of the process—the adsorption equilibrium constant (k).  相似文献   

16.
wham , an equilibrium chemical model for soils, waters and sediments, centred on a discrete-site/ electrostatic model of humic substances (HS), has been used to analysae batch titration data for organic and mineral horizons of acid soils. In most cases, tolerable fits were obtained by optimizing the soil contents of HS and aluminium, while keeping the model parameters (site densities, equilibrium constants, electrostatic terms) fixed. The optimized contents agreed reasonably with those estimated by chemical extraction. For some mineral soil samples, low in HS and high in aluminium, fitting of the titration data was improved by assuming the formation and dissolution of A1(OH)3 and adjusting its solubility product. Solid-solution distributions of base cations (Na+, Mg2+, K+, Ca2+, NH+4) could be explained by non-specific counterion accumulation, with a small degree of selectivity. The WHAM sub-model for fulvic acid sorption accounted approximately for observed aqueous-phase concentrations of organic carbon and organically-complexed aluminium.  相似文献   

17.
The reactions of two fulvic acid samples with Cu2+ and Cd2+ have been studied by potentiometric titration (pH and ion selective electrode). The metal-uptake curves for samples initially rendered ‘metal-free’ by a precipitation-solvent extraction technique resemble those for citric and malic acids at soil pH (4–6.5). The presence of aliphatic and aromatic components was established by 13C nmr spectroscopy; the presence of phenolic components was inferred from pH titrations. It is shown that a polycarboxylate component (simulated by citrate) would mask reactions of phenolic components with metals in weakly acidic and neutral media. The mode of coordination between fulvic acid and metals will vary with pH and with the metal: fulvic acid ratio.  相似文献   

18.
The effect of Cl?,SO 4 2? , CH3COO?, and NO 3 ? anions on the adsorption of copper, lead, and zinc by an ordinary chernozem has been studied. The effect of the anions on the adsorption of Cu2+, Pb2+, Zn2+ ions is significant but uncertain. It has been shown that the attendant anions affect the shape of the adsorption isotherms, which are described by the Langmuir, Freundlich, or Henri equations. The constants of the adsorption from a nitrate solution calculated from the Langmuir equation (K L) decrease in the following order: Cu2+ > Pb2+ >> Zn2+. The values of the maximum adsorption (C max) decrease in the following order: Cu2+ ≥ Zn2+ > Pb2+ for acetate solutions and in the series Pb2+ > Zn2+ ≥ Cu2+ for nitrate solutions. The values of the Henry constants (K H) calculated for the adsorption of the same cations from chloride solutions decrease in the same order as the values of K L. The CH3COO? anion has the highest effect on the constant values. The NO 3 ? and Cl? anions “switch their places” depending on the attendant cation, but their effect is always lower than that of the acetate anion. The values of C max for copper and zinc are most affected by the CH3COO? anion, and the adsorption of zinc is most affected by the Cl? and NO 3 ? anions. The assessment of the mobility of the adsorbed cations from the extraction with ammonium acetate (pH 4.8) has shown that the content of the desorbed metals is always lower than the content of the adsorbed cations and varies from 0.025 to 83%. According to their mobility, the adsorbed metals form the following order: Zn2+ > Pb2+ > Cu2+. The effect of the attendant anions on the extractability of the adsorbed cations decreases in the following order: chlorides > sulfates > acetates > nitrates.  相似文献   

19.
The binding of metal to humic substances is problematical. The approaches for studying metal binding to organic matter are briefly reviewed. Ion-selective electrodes (Cu2+ and Pb2+) were used to measure metal complexation by a whole peat and an extracted humic acid (HA) fraction. Scatchard plots and calculation of incremental formation constants were used to obtain values for the binding constants for the metals onto both peat and HA. Both the peat and the humic acid had a larger maximum binding capacity for Pb2+ than for Cu2+ (e.g. at pH = 5 HA gave 0·188 mmol Cu2+ g?1 and 0·564 mmol Pb2+ g?1: peat gave 0·111 mmol Cu2+ g?1 and 0·391 mmol Pb2+ g?1). Overall, the humic acid had a larger metal binding capacity, suggesting that extraction caused conformational or chemical changes. The binding constants (K1) for Cu2+ increased with increasing pH in both peat and humic acid, and were larger in the peat at any given pH (e.g. at pH = 5 HA gave log K1= 2·63, and peat gave log K1= 4·47 for Cu2+). The values for Pb2+ showed little change with pH or between peat and humic acid (e.g. at pH = 5 HA gave log K1= 3·03 and peat gave log K1= 3·00 for Pb2+). In the peat, Cu2+ may be more able to bind in a 2:1 stoichiometric arrangement, resulting in greater stability but smaller binding capacity, whereas Pb2+ binds predominantly in a 1:1 arrangement, with more metal being bound less strongly. Whole peat is considered to be more appropriate than an extracted humic acid fraction for the study of heavy metal binding in organic soils, as this is the material with which metals introduced into an organic soil would interact under natural conditions.  相似文献   

20.
Fulvic acids: structure and metal binding   总被引:1,自引:0,他引:1  
Equilibrium calculations have been carried out at 25°C and an ionic strength of 0.04 to determine the predominant metal binding sites on a well-characterized fulvic acid for magnesium(ll), calcium(ll), manganese(ll), iron(lll), copper(ll) and zinc(II). Statistical estimates of the concentration of 14 sites are obtained from a random molecular model of fulvic acid. Protonation and metal formation constants are estimated from those of simple model ligands and corrected to the above conditions. Results indicate the importance of phthalate sites for all metals except iron(III), salicylate sites for iron(lll) and acetylacetonate sites for copper(ll). Iron (III) ions are found to form ML2 type complexes extensively. The affinity of the metal ions for fulvic acid as a whole is found to decrease in the order iron(III) > copper(II) > zinc(II) > manganese(Il) > calcium(II) > magnesium (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号