首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of mineral and symbiotic nitrogen nutrition on proton release of roots, phosphorusuptake and root development of red clover Red clover was cultivated in pots containing a loamy sand soil of low buffer capacity. Nitrogen supply was either NH4NO3 and Ca(NO3)2 in the mineral treatment or Rhizobium fixed N2 in the symbiotic treatment. During six cuts the plants decreased the pH of the soil from 7.6 to 6.0 in the mineral treatment and to 5.2 in the symbiotic treatment. Both treatments yielded the same amount of shoot dry matter per pot. The N2-fixing red clover produced more root fresh weight associated with larger root length, root surface, and root density per pot compared with plants grown with mineral nitrogen. Due to stronger soil acidification and better root growth N2-fixing red clover was able to exploit the rock phosphate component from a partially acidulated P-fertilizer to a higher degree than NH4NO3 or Ca(NO3)2 fed plants. The proton release of symbiotically grown plants could be accounted for by mineral cation excess (difference of cation and anion uptake) in shoots and roots by only 68%. It is therefore assumed that the excess of H+ released was accompanied by a release of anions.  相似文献   

2.
The effect of acidic deposition on the soil under red pine forest in Chunchon, Korea was investigated. Precipitation, stream water, and soil solution chemistry were monitored at the watershed from 1997 to 1998. Acidity of the open-bulk precipitation was often neutralized by large amounts of ammonia (NH3) that might have originated from livestock farming and fertilization. Estimated elemental budget at the watershed showed a positive correlation between loss of base cations and proton (H+) production due to nitrogen transformation in soil (ΔH+ NT: ([NH4 +]in-[NH4 +]out)- ([NO3 ?]in-[NO3 ?]out)). When ΔH+ NT increased, concentrations of nitrate in soil solutions also increased. Consequently, pH values of soil solutions decreased, although ion exchange with base cations contributed to buffer reaction. Since acid buffering capacity of the red pine forest soil was small, it was concluded that the input of ammonium nitrogen enhanced nitrification in soil thus causing soil acidification represented by loss of base cations from the watershed.  相似文献   

3.
长期施肥对土壤固定态铵含量及其有效性影响   总被引:15,自引:0,他引:15  
棕壤连续13年定位试验表明,长期施用化肥或低量有机肥对土壤固定态接含量均无显著影响;而施用高量有机肥区固定态接含量比试验前平均增加30.2%。这部分增加的固定态按主要来自土壤有机氮矿化补充。施肥后固定态铵的净增加量超过作物施氮量是土壤激发效应的结果。土壤原有固定态铵含量在113~116mg/kg,对作物无效,而新固定态按时作物有效。生长季耕层土壤固定态铵总释放量(N)对照区为43kg/hm2,化肥区平均为110kg/hm2;有机肥与化肥配合区平均为165kg/hm2。施钾对固定态铵的释放有一定抑制作用。  相似文献   

4.
The objective of this study was to test if the effects of different nitrogen forms on potato growth depend on the plant growth stage. Plants from different potato cultivars were treated with different forms of nitrogen before tuber initiation and after tuber formation. A nitrification inhibitor was used to prevent the transformation of ammonium (NH4+) to nitrate (NO3?). Plant growth, tuber formation, leaf area, leaf chlorophyll content, and tuber yield were assessed. The results obtained over 2 years indicate that plants treated with NO3-nitrogen (N) before or at tuber initiation produced more tubers per plant than those treated with NH4-N. However, plants treated with NH4-N develop tubers earlier. Additionally, after tuber formation, plants treated with NH4-N had better shoot growth than plants treated with NO3-N. A larger leaf area with higher leaf chlorophyll content resulted in greater dry matter accumulation and higher tuber yield at harvest for plants treated with NH4-N.  相似文献   

5.
植物地上部分氮素的挥发损失   总被引:19,自引:3,他引:19  
采用水培、土培、15N标记试验,在尽量杜绝土壤和空气有关气体干扰的生长室中,捕获和测定了植物生长过程中地上部分释放的N2,N2O和NH3。试验结果表明,植物不挥发N2,但能释放N2O和NH3。释放的N2O数量甚微,而释放的NH3数量较大,是挥发损失的主要形态。挥发损失主要发生在作物生长后期。但是植物挥发损失的NH3量难以与地上部分氮素的减少量相比似。要彻底阐明作物生长后期地上部分减少的氮素的归宿,需要拓宽视野,从多方面进行探索。  相似文献   

6.
To develop optimum nitrogen (N) fertilization practices with the least impact on environmental quality and with the greatest economic return, it is imperative that a greater understanding of crop and soil N dynamics be sought. This paper reports on research conducted with these objectives: (i) to determine the relationship between plant N and dry matter accumulation and soil N status as affected by N‐source fertilization as a function of accumulated growing degree days (GDD), and (ii) to determine if western Oregon soil conditions favor ammonium (NH4) over nitrate (NO3) nutrition during the period of grass seed crop growth. In a companion paper, plant growth and seed yield component data were discussed in relation to N‐source treatments and climatic year effects. Western Oregon field plots of Italian ryegrass (Lolium multiflorum Lam.) were fertilized with calcium nitrate, ammonium nitrate, ammonium sulfate, ammonium chloride, and urea‐dicyandiamide (DCD) to manipulate soil NH4 and NO3 ratios. Italian ryegrass accumulated the greatest portion of plant N and dry mass between tiller elongation and mid‐heading. Reduced growth and seed yield in 1991, compared to 1992, were associated with lodging and low soil pH. Higher soil NH4 levels in 1991 was most likely responsible for a greater reduction in soil pH for that year. Declines in soil pH due to elevated NH4 levels during climate years normal to western Oregon, wet and cool, may have an additive effect to other factors limiting seed yield. When cool wet soil conditions exist NH4 was the predominate mineral N‐form. Information reported here and in the companion paper is valuable to farm managers and consultants in the context of N fertilization of ryegrass grown for seed in western Oregon. It begins to establish criteria for the future development of site specific nutrient management plans and adds knowledge that will aid in improving N‐use efficiency through improving N fertilizer timing and N source use.  相似文献   

7.
为揭示不同施肥时机(全过程、前1/2和后1/2入渗水量施肥)下土壤水氮运移转化规律,以砂壤土和黏壤土质地的一维垂直肥液(尿素)入渗试验为基础,重点分析不同施肥时机下土壤水氮分布与再分布过程中的运移转化规律,并量化比较其对土壤中氮素含量的影响。结果表明,施肥时机对土壤累积入渗量和湿润体中水分分布影响微小,但对不同形态氮素运移转化影响显著;砂壤土和黏壤土入渗结束时刻,全过程和后1/2入渗水量施肥时,其尿素态氮、铵态氮(NH4+—N)和硝态氮(NO3-—N)含量均随土层深度增大而减小;前1/2入渗水量施肥时,尿素态氮和NO3-—N含量在湿润体边缘累积,NH4+—N呈先增大后减小趋势,且主要分布在5—25 cm土层;再分布阶段,全过程和后1/2入渗水量施肥时,砂壤土和黏壤土中尿素态氮分别在再分布3天和5天时基本水解完成,同时NH4+—N含量达到峰值,NO3-—N含量再分布10天内未出现下降趋势;前1/2入渗水量施肥时,尿素态氮再分布10天时基本水解完成,NH4+—N含量再分布5~10天达到峰值,NO3-—N含量则呈先增加后减小趋势;后1/2入渗水量和全过程施肥条件下,砂壤土和黏壤土再分布10天时0—40 cm土层中NH4+—N和NO3-—N含量均大于前1/2入渗水量施肥,说明其氮素潜在利用效率高,故推荐畦(沟)灌合理施肥时机为后1/2入渗水量或全过程施肥。研究结果可为农田畦(沟)灌施肥系统的设计和管理提供理论基础和技术支撑。  相似文献   

8.
Agricultural systems that receive high amounts of inorganic nitrogen (N) fertilizer in the form of either ammonium (NH4+), nitrate (NO3) or a combination thereof are expected to differ in soil N transformation rates and fates of NH4+ and NO3. Using 15N tracer techniques this study examines how crop plants and soil microbes vary in their ability to take up and compete for fertilizer N on a short time scale (hours to days). Single plants of barley (Hordeum vulgare L. cv. Morex) were grown on two agricultural soils in microcosms which received either NH4+, NO3 or NH4NO3. Within each fertilizer treatment traces of 15NH4+ and 15NO3 were added separately. During 8 days of fertilization the fate of fertilizer 15N into plants, microbial biomass and inorganic soil N pools as well as changes in gross N transformation rates were investigated. One week after fertilization 45-80% of initially applied 15N was recovered in crop plants compared to only 1-10% in soil microbes, proving that plants were the strongest competitors for fertilizer N. In terms of N uptake soil microbes out-competed plants only during the first 4 h of N application independent of soil and fertilizer N form. Within one day microbial N uptake declined substantially, probably due to carbon limitation. In both soils, plants and soil microbes took up more NO3 than NH4+ independent of initially applied N form. Surprisingly, no inhibitory effect of NH4+ on the uptake and assimilation of nitrate in both, plants and microbes, was observed, probably because fast nitrification rates led to a swift depletion of the ammonium pool. Compared to plant and microbial NH4+ uptake rates, gross nitrification rates were 3-75-fold higher, indicating that nitrifiers were the strongest competitors for NH4+ in both soils. The rapid conversion of NH4+ to NO3 and preferential use of NO3 by soil microbes suggest that in agricultural systems with high inorganic N fertilizer inputs the soil microbial community could adapt to high concentrations of NO3 and shift towards enhanced reliance on NO3 for their N supply.  相似文献   

9.
土壤加速酸化的主要农业驱动因素研究进展   总被引:13,自引:1,他引:13  
土壤酸化是土壤质量退化的一个重要方面,农业活动对其有极其重要的驱动作用。本文从土壤酸化加速的农业主驱因素:化肥、作物及有机物料等方面阐述它们对土壤酸化的影响。认为化肥尤其是生理酸性肥料和含硫肥料的不合理施用加速土壤酸化,而氮肥的致酸除受氮素形态影响外,硝化作用及硝化产物的淋溶是重要的致酸原因,同时豆科作物的固氮致酸作用也不容忽视。作物通过选择性吸收盐基阳离子,通过秸秆和子粒转移出生产系统后,导致土壤盐基量减少,土壤表面交换性酸增加;作物根系呼吸、根系分泌物及土壤溶液中重碳酸盐的淋溶也引起土壤酸化;而秸秆和畜禽粪便对土壤酸化的影响除受土壤本身性质影响外,秸秆中的灰化碱含量、畜禽粪便中的碳及氮和盐分去向对酸化也有重要的影响。  相似文献   

10.
The effects of varying fertilizer application rates [100–15–100 or 300–46–300 mg L‐1 of nitrogen (N)‐phosphorus (P)‐potassium (K)] and pinching dates on nutrient uptake patterns of poinsettias were studied. During the first seven weeks after potting, varying the N‐P‐K fertilization rate from 100–15–100 to 300–46–300 mg L‐1 N‐P‐K had no effect on plant height, dry weight, nutrient concentration, or nutrient content of poinsettias. The uptake ratios for NO3‐N, K, calcium (Ca), and magnesium (Mg) all were <40% of the amount that was available at the 100 mg L"1 N and K fertilization rate, indicating that poinsettias require lower levels of NO3‐N, K, Ca, and Mg than what was available from the 100–15–100 mg L"1 N‐P‐K fertilization rate. The higher uptake ratios of >60% and >70%, respectively, for NH4‐N and P at the 100 mg L"1 N and K fertilization rate indicated the plants utilized a higher percentage of the available NH4‐N and P, indicating that an application rate >18 mg L‐1 NH4‐N and >15 mg L‐1 P would be required by poinsettias from the week before the plants were pinched through three weeks after pinching. The 300–46–300 mg L‐1 N‐P‐K fertilization rate provided excessive nutrients that were not utilized by the plants during the early stages of plant growth.  相似文献   

11.
Zucchini squash (Cucurbita pepo L. cv. Green Magic) plants were grown hydroponically with nitrate (NO3):ammonium (NH4) ratio of 3:1 until the onset of flowering when the plants were assigned to four NO3:NH4 ratio (1:0, 1:1, 1:3, or 3:1) treatments. Changing the original nitrogen (N) form ratio significantly affected plant growth, fruit yield, nutrient element, and water uptake. Growth of plants was better when NO3‐N (1:0) was the sole form of N than when NH4‐N was part of the N treatment. Fruit yields for plants fertilized with 1:0 or 1:3 N‐form ratio were double those of plants grown continuously with 3:1 N ratio. The largest leaf area and plant water use were obtained with 1:0 N ratio treatment Total uptake of calcium (Ca), magnesium (Mg), and potassium (K) decreased with increasing NH4‐N proportion in the nutrient solution which suggest NH4‐N was competing with these cations for uptake. The results also demonstrated that growers may increase fruit yield by using a predominantly NO3‐N source fertilizer through the vegetative growth stage and by shifting the NO3:NH4 ratio during the reproductive phase.  相似文献   

12.
Abstract

High-yielding, waterlogged cultivations with considerable nitrogen input are widely practiced in Kyushu Island, Japan. Our objective was to determine the role of available phosphorus in relation to nitrogen and soil microorganisms on tomato growth in such systems. Tomato seedlings were grown in a pasteurized soil with ample KNO3 in addition to different amounts of sodium or potassium phosphates to assess effects of phosphorus on growth enhancement and water-use efficiency in the seedlings grown with copious soil water (>-0.7?kPa). Both monobasic and dibasic phosphates applied at 40?mM to near-saturated soil markedly promoted seedling growth when fertilized with 120?mM KNO3 or NH4Cl, but not in the soil without nitrogen. The final concentration of NO3 near the soil surface was maximized in the nitrated soil with no added PO43- but declined significantly when fertilized with any phosphates except Na2HPO4. No significant accumulation of NO3 was detected in the water-saturated bottom soils regardless of soil fertilization with any plant minerals. Increased seedling growth was accompanied by lower dry root/shoot ratios and marked increases in evapotranspiration efficiency. Such positive effects of PO43- were greater with NO3 than NH4 but diminished with increased concentrations of Na up to 160?mM. Nonetheless, growth promotions by ample NO3 with PO43- were nearly negated in the non-pasteurized soil. Apparently, the activities of indigenous soil microbes were more significant than soil nitrogen and phosphorus in limiting the growth potential of tomato plants in near-saturated soils.  相似文献   

13.
High rice (Oryza sativa L.) yields are closely related to plant absorption of a large amount of nitrogen (N). However, there is little information on the fate of N applied at the middle growth stages of rice. Labeled 15N ammonium sulfate was applied at the panicle formation stage in Experiment I, and 10 d after heading in Experiment II. Zeolite was also added at the concentration of 0, 0.01, and 0.1 kg kg-1 to increase the cation exchange capacity (CEC) of the soil. The amount of 15N fertilizer in the soil surface water decreased exponentially and the fertilizer disappeared within 2 d after application. The soil that received zeolite at 0.1 kg kg-1 exhibited significantly less 15NH4 +-N in the surface water and in the soil solution than the soil without the zeolite amendment. A significantly larger amount of exchangeable 15NH4 +-N was observed in the high zeolite-treatment of soil compared to the low zeolite-treatment of soil. The amount of exchangeable 15NH4 +-N increased initially, and thereafter decreased to traces 4 d after application in Experiment I, while 6 or 9 d after application in Experiment II. The disappearance of exchangeable 15NH4 +-N could be attributed mainly to the uptake by plants. The zeolite amendment or the time of N application did not significantly affect the amount of immobilized N. The rate of N adsorption was inhibited with increasing zeolite application. Moreover, zeolite application did not increase the recovery percentage of ammonium sulfate by rice plants. The total recovery of applied N ranged from 65 to 75%, irrespective of the zeolite treatments or the time of N application.  相似文献   

14.
模拟土柱条件下黑土中肥料氮素的迁移转化特征   总被引:3,自引:0,他引:3  
为明确肥料氮素在土壤中的迁移转化动态特征,利用模拟土柱方法,研究了3倍常规施肥量条件下不同肥料处理(尿素、硫铵)黑土的矿质氮变化。结果表明:不同氮肥处理的氮素养分迁移转化特征有明显差异。对照处理(不施肥)土柱内各层次间NH4+-N和NO3--N含量差异不明显;施用尿素或硫铵后,表层0~50mm土层的NH4+-N和NO3--N含量比不施肥对照分别升高100.8~3408.1mg·kg-1、113.4~388.0mg·kg-1和126.7~4671.1mg·kg-1、51.4~63.3mg·kg-1,且在培养前14d内变化最大。在整个培养期内,施用硫铵处理各层次NH4+-N平均含量比尿素处理高2.54~1423.7mg·kg-1,NO3--N平均含量低4.38~335.1mg·kg-1;而尿素处理各层次的硝化率是硫铵处理的0.79~9.12倍。表明肥料氮素的迁移与转化集中在0~50mm土层内,尿素处理的氮素转化速率较硫铵处理高。  相似文献   

15.
Beneficial soil bacteria are able to colonize plant root systems promoting plant growth and increasing crop yield and nutrient uptake through a variety of mechanisms. These bacteria can be an alternative to chemical fertilizers without productivity loss. The objectives of this study were to test bacterial inoculants for their ability to promote nutrient uptake and/or plant growth of rice plants subjected to different rates of chemical fertilizer, and to determine whether inoculants could be an alternative to nitrogen fertilizers. To test the interaction between putatively beneficial bacteria and rice plants, field experiments were conducted with two isolates: AC32 (Herbaspirillum sp.) and UR51 (Rhizobium sp.), and different nitrogen fertilization conditions (0%, 50%, and 100% of urea). Satisfactory results were obtained in relation to the nutrient uptake by plants inoculated with both isolates, principally when the recommended amount of nitrogen fertilizer was 50% reduced. These bacterial strains were unable to increase plant growth and grain yield when plants were subjected to the high level of fertilization. This study indicated that the tested inoculant formulations can provide essential nutrients to plants, especially when the levels of nitrogen fertilizers are reduced.  相似文献   

16.
Aubergine eggplant plants (Solanum melongena L.) were grown under greenhouse conditions with nitrogen and phosphorus fertilization individually, or both, and with a large amount of organic matter and CaSO4 in the soil superficie. The irrigation water was strongly brackish. In the plants, nitrate and phosphate showed an obvious mobility, whereas chloride and sulfate were relatively immobile. Cations in the form of potassium and ammonium were highly mobile, during the growth cycle, whereas the other cations tested were immobile. Translocation of anions was weak with little change in concentration throughout the growth cycle, whereas cations showed marked variations in different stages due to the influence of NH4 + and K+ mobilization. The accumulation of cations was offset by hydrogen extrusion to maintain foliar pH within physiological limits. Sharp changes in pH were buffered by the effect of citric acid as an organic anion, which absorbed the excess positive charge. Alterations in cations increased the formation of organic acids, a process clearly dependent on the stage of the growth cycle. The finding of this study is that behavior of ion balances remained constant regardless of the dose of fertilizer applied, but changed in response to the stage of the growth cycle.  相似文献   

17.
With the reduction of sulfur levels in high‐analysis nitrogen (N) and phosphorus (P) fertilizers and in atmospheric deposition, sulfur (S) fertilization may become more important, especially with intensive cropping systems. When high clay content is likely to limit root development into the subsoil, low extractable sulfate‐sulfur (SO4‐S) levels in the topsoil may suggest possible plant response to S fertilization. Even though ammonium sulfate [(NH4)2SO4] is widely used and readily available for plant uptake, field data are limited on the use of (NH4)2SO4 as an S source for soybeans [Glycine max (L.) Merr.]. A study was initiated to determine the effect of S fertilization as (NH4)2SO4 on: (i) the yield, seed weight, grain quality, and leaf and whole‐plant nutrient concentrations of four soybean cultivars grown on soils with high clay content subsoils; and (ii) selected soil chemical characteristics. Sulfur rates were 0, 28, 56, and 84 kg/ha, and soybean cultivars were two Maturity Group IV beans, DeSoto and Douglas, and two Maturity Group V beans, Bay and Essex.

The study was conducted on a Parsons silt loam soil (fine, mixed, thermic, Mollic Albaqualf) in 1986 and 1987, and on a Cherokee silt loam (fine, mixed, thermic, Typic Albaqualf) in 1987. Sulfur application did not significantly affect soybean yield or seed protein or oil concentrations. For whole plants, S concentration increased and N:S ratios decreased with increasing S fertilization. Similar trends were found in soybean leaves. Although N:S ratios of both whole plant and leaf tissue were lowered with S fertilization, the values generally were not below 20:1 which is above cited critical levels. Fertilization with (NH4)2SO4 increased the levels of extractable SO4‐S in the soil, especially in the 15–30 cm depth. The first‐year accumulation of soil SO4‐S with increasing S fertilization appeared to be more at a site that was lower in organic matter.  相似文献   

18.
Potassium (K), a plant nutrient with diverse roles to play in plant metabolism, is required in large amounts by most crops. It interacts with many other plant constituents to affect crop yield and quality. The magnitude of this interaction is high in areas of high cropping intensity, as in the tropics. The interaction of nutrients with K may be in the soil or in plant. Potassium modifies ammonium (NH4 +) ion fixation in soils to restrict nitrogen (N) availability. On the other hand, an antagonistic effect between K and NH4 absorption has been suggested in which K absorption is restricted. Similarly, magnesium (Mg) or calcium (Ca) deficiency occurs from ion antagonism in acid soils following K fertilization and in soils with high exchangeable K. Sulfur (S) has been reported to increase K absorption and productivity of oilseed crops. With increasing levels of applied or soil K, the severity of phosphorus (P)‐induced zinc (Zn) deficiency in corn has been observed to decrease. Application of K decreases manganese (Mn) content and iron (Fe) toxicity in rice. Application of K has been reported to decrease B levels in plants and to increase incidence of boron (B) deficiency. Top‐dressing with K fertilizer was reported to lower the copper (Cu) content of alfalfa forage. In root, sugar‐producing, or fiber‐producing crops, the sodium (Na) and K relationship is important with the specific response to either element depending on which element is in low or high supply. Molybdenum (Mo) stimulated K uptake in alfalfa and com. In intensive agriculture with high‐yielding single crops or with multiple crops per year, farm management must include strategies to maintain substantial K reserves in the soil and to balance K nutrition with other fertilization practices.  相似文献   

19.
The effect of soil heating on the dynamics of soil available nutrients in the rhizosphere was evaluated. A pot experiment was carried out by using a rhizobox; a pot which enables to sample soils and soil solutions not only temporally with plant growth but also spatially depending on the distance from the root-accumulating compartment. The experiment consisted of 4 treatments; soils with or without heating treatment (150°C, 3 h), each of which was either planted with maize (Zea mays L.) or not. During the 17-d experiment, soil solutions at 0–2 mm from the root-accumulating compartment were collected 5 times. Soils depending on the distance from the root-accumulating compartment and plants were also collected after the experiment. The ionic concentrations of the soil solutions and soil water extracts, and the nutrient contents of plants were analyzed. Immediately after soil heating, the concentrations of cations, SO4 2-, CI-, water-soluble P, and water-soluble organic carbon increased significantly. With plant growth, the total ionic concentration in the rhizosphere soil solution increased for heated soil, whereas it decreased for unheated soil. The increase of the concentrations of cations and SO4 2- in the rhizosphere of heated soil was appreciable, suggesting that the movement of cations such as Ca2+ and Mg2+ by mass flow was regulated by that of SO4 2-. Moreover soil heating inhibited nitrification, resulting in the supply of N mainly in the form of NH4 + within 10 mm from the root-accumulating compartment. As a result, the soil pH decreased in the rhizosphere of heated soil. The amount of nutrients absorbed by plants, on the other hand, did not change significantly by soil heating except for an increase of P uptake. The increase of P uptake could be explained not only by the immediate increase of the water-soluble P concentration but also by the dissolution of Ca-bound P and the hydrolysis of water-soluble organic P in the rhizosphere.  相似文献   

20.
Influence of ammonium and nitrate nitrogen on the growth of young beech plants Young beech plants were grown in aerated nutrient solutions with NH4 or NO3 nitrogen for a period of 12 weeks. pH-changes caused by the source of nitrogen were corrected every second day. Absorption of NH4-N was higher than of NO3-N. NH4-N was superior for shoot growth and development of lateral roots, NO3-N for growth of the main root. Nutrient solution containing both sources of nitrogen was the most favorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号