共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
高光谱遥感在植被特征识别研究中的应用 总被引:4,自引:0,他引:4
总结了高光谱遥感在植被物种识别、结构特征分析、理化信息提取等主要领域的应用研究现状; 分析了高光谱遥感在植被特征识别中所涉及的光谱特征优化、混合光谱分解、图像分类识别等关键性技术环节的最新进展; 剖析了目前研究中存在的主要问题, 并对今后的发展态势进行了展望。 相似文献
5.
樟树幼林叶绿素含量的高光谱遥感估算模型 总被引:4,自引:0,他引:4
高光谱遥感的快速发展使得定量估算植被叶绿素含量成为可能.采用美国ASD公司生产的野外光谱辐射仪测量樟树幼林的冠层光谱,并对观测叶片进行同步叶绿素含量的测定;采用统计相关分析法,分析樟树冠层光谱与叶绿素含量之间的相关关系,并建立相应的估算模型.结果表明:樟树幼林叶绿素含量的敏感波段位于400、556、621 nm;通过建立各敏感段与叶绿素含量之间的估算模型并进行精度检验,得出了叶绿素含量估算的高光谱模型分别为y=exp(1.191 1458.912x)和y=3.29×exp(1458.912x).说明利用高光谱遥感数据可以估测樟树幼林的叶绿素含量. 相似文献
6.
阆中市发展板栗生产的可行性初探孙成仁(四川师范学院)板栗是经济价值很高的干果,味道鲜美,富于营养,且包装容易,运输方便,是出口创汇的重要产品之一;又因其富含淀粉,可以代主食。植株适应性强,寿命长,管理省工,百岁以上的老树仍可以硕果累累,故又有“铁杆庄... 相似文献
7.
森林叶绿素含量的高光谱遥感估算模型的建立 总被引:1,自引:0,他引:1
高光谱遥感提供一个通过窄波段的地物光谱反射率、诊断和检测植被叶绿素光谱特征波段的手段,为精确反演森林叶绿素含量提供更高光谱分辨率的数据。利用Epp-2000地物光谱仪测量叶片的反射光谱,并用SPAD-502对观测叶片进行叶绿素含量的同步测量;采用统计相关分析方法,分析叶片反射光谱、光谱特征参数及其各种植被指数与叶片叶绿素含量的相关关系,并建立相应的估算模型。结果表明:叶绿素含量的敏感性参数分别为Diff(R749)、Log(R466)、红边参数RVP以及比值叶绿素指数PSSR。通过多元统计回归分析,剔除不相关和存在共线性的参数后,得到叶绿素含量的估算模型为:SPAD=54.559—0.865×PSSR+65.146×Diff(R749)-6.030×Log(R466)-0.238×RVP模型及其参数均通过统计检验,模型的决定系数砰达到0.812,均方根误差RMSE=13.35379,模型精度为88.743258%。 相似文献
8.
基于高光谱遥感技术的森林树种识别研究进展 总被引:3,自引:0,他引:3
在详细介绍高光谱树种识别研究方法的基础上,总结了国内外利用高光谱数据进行森林树种识别的研究应用现状;剖析了目前研究中存在的主要问题;指出了今后开展高光谱树种研究的方向与潜力。 相似文献
9.
10.
11.
基于RS的长株潭绿心区植被覆盖动态变化研究 总被引:1,自引:0,他引:1
以2000年、2005年、2011年3个时期的landsat5TM遥感影像为数据源,利用像元二分法模型反演三个时期的植被覆盖度,并研究3期植被覆盖度变化特征、植被覆盖度转移矩阵。结果表明:研究区植被覆盖状况良好,3期Ⅳ级和Ⅴ级植被覆盖度(f_c0.5)区域的面积和占总面积百分比均为79%以上。2000—2011年,研究区植被覆盖度总体呈下降趋势,2000年平均植被覆盖度为0.78,2005年平均植被覆盖度为0.72,2011年平均植被覆盖度为0.70。 相似文献
12.
RapidEye卫星遥感影像几何精度的实验分析 总被引:1,自引:0,他引:1
对一景RapidEye的3A级数据进行实验,测定了该数据的真实空间分辨率。通过4种不同的方法对影像做几何纠正,并对该影像的内部几何误差作了分析。得出的RapidEye数据完全可以满足1?500 00地形图数据的更新。 相似文献
13.
14.
介绍遥感技术的物理学基础电磁波理论,论述遥感技术在森林资源动态监测、立地质量评价、森林病虫害监测、森林多种效益规划、制作专题地图、林火监测等方面中的应用。 相似文献
15.
16.
18.
Forest wildfires pose significant and growing threats to human safety, wildlife habitat, regional economies and global climate change. It is crucial that forest fires be subject to timely and accurate monitoring by forest fire managers and other stake-holders. Measurement by spaceborne equipment has become a practical and appealing method to monitor the occurrence and development of forest wildfires. Here we present an overview of the principles and case studies of forest fire monitoring (FFM) with satellite- and drone-mounted infrared remote sensing (IRRS). This review includes four types of FFM-relevant IRRS algorithms: bi-spectral methods, fixed threshold methods, spatial contextual methods, and multi-temporal methods. The spatial contextual methods are presented in detail since they can be applied easily with commonly available satellite IRRS data, including MODIS, VIIRS, and Landsat 8 OLI. This review also evaluates typical cases of FFM using NOAA-AVHRR, EOS-MODIS, S-NPP VIIRS, Landsat 8 OLI, MSG-SEVIRI, and drone infrared data. To better implement IRRS applications in FFM, it is important to develop accurate forest masks, carry out systematic comparative studies of various forest fire detection systems (known as forest fire products), and improve methods for assessing the accuracy of forest fire detection. Medium-resolution IRRS data are effective for landscape-scale FFM, and the VIIRS 375 m contextual algorithm and RST-FIRES algorithm are helpful for closely tracking forest fires (including small and short-lived fires) and forest-fire early warning. 相似文献
19.
浅谈遥感在我国森林资源监测中的应用现状 总被引:5,自引:0,他引:5
目前我国森林资源监测由单一化逐步向综合化转变,其表现为监测内容的日益丰富。传统的森林资源监测重点主要在森林的蓄积、面积上。现在,监测内容已经扩展到森林生态系统的各个方面,林业部门除了有国家森林资源连续清查监测体系外,还有森林火灾监测、森林病虫害监测、荒漠化监测、湿地监测、珍稀野生动物资源监测等。为了提高森林资源监测的效率和精度,普遍采用了遥感技术。本文主要介绍了遥感技术在森林资源各监测内容中的应用现状,并对遥感技术的发展趋势作出了展望。 相似文献
20.
The estimation of the soil organic carbon content (SOC) is one of the important issues in the research of the global carbon
cycle. However, there are great differences among different scientists regarding the estimated magnitude of SOC. There are
two commonly used methods for the estimation of SOC, with each method having both advantages and disadvantages. One method
is the so called direct method, which is based on the samples of measured SOC and maps of soil or vegetation types. The other
method is the so called indirect method, which is based on the ecosystem process model of the carbon cycle. The disadvantage
of the direct method is that it mainly discloses the difference of the SOC among different soil or vegetation types. It can
hardly distinguish the difference of the SOC in the same type of soil or vegetation. The indirect method, a process-based
method, is based on the mechanics of carbon transfer in the ecosystem and can potentially improve the spatial resolution of
the SOC estimation if the input variables have a high spatial resolution. However, due to the complexity of the process-based
model, the model usually simplifies some key model parameters that have spatial heterogeneity with constants. This simplification
will produce a great deal of uncertainties in the estimation of the SOC, especially on the spatial precision. In this paper,
we combined the process-based model (CASA model) with the measured SOC, in which the remote sensing data (AVHRR NDIV) was
incorporated into the model to enhance the spatial resolution. To model the soil base respiration, the Van’t Hoff model was
used to combine with the CASA model. The results show that this method could significantly improve the spatial precision (8
km spatial resolution). The results also show that there is a relationship between soil base respiration and the SOC as the
influence of environmental factors, i.e., temperature and moisture, had been removed from soil respiration which makes the
SOC the most important factor of soil base respiration. The statistical model of soil base respiration and the SOC shows that
the determinant coefficient (R
2) is 0.78. As the method in this paper contains advantages from both direct and indirect methods, it could significantly improve
the spatial resolution and, at the same time, keep the estimation of SOC well matched with the measured SOC.
__________
Translated from Journal of Remote Sensing, 2007, 11(1): 127–136 [译自: 遥感学报] 相似文献