首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The influence of fish oil (highly unsaturated) and beef tallow (highly saturated) with vitamin E (100 IU/kg) supplementation on the antioxidant status of broiler chicken cockerels was investigated. Chicks were fed a control diet with no added fat, 40 g/kg each of fish oil and beef tallow diets, respectively, from 11 to 42 days of age. Tocopherol concentration and the rate of lipid peroxidation, thiobarbituric acid reactive substance (TBARS) in liver, fatty acid composition of the liver lipids, blood serum total antioxidant status (TAS), and reduced glutathione (GSH) content were determined. Vitamin E supplementation of the diet increased liver alpha-tocopherol content in chicks regardless of the type of dietary fat. Fish oil diet resulted in higher liver TBARS value while beef tallow diet showed lower values compared to the control diet. Vitamin E supplementation reduced liver TBARS as well as serum GSH, and raised serum TAS for all diets. Serum GSH was the same for vitamin E supplemented diets regardless of the fat supplement. Fish oil diets resulted in a significant increase in hepatic lipid n-3 PUFA content. A significant positive correlation was found between liver TBARS and n-3 PUFA content. No relationships were established, however, between liver TBARS and n-6 PUFA or saturated fatty acids. The results suggest that feeding oils rich in n-3 PUFA increases tissue concentration of these fatty acids, consequently increasing tissue lipid peroxidation and reducing the antioxidative status of broiler chickens. Supplementing high levels of vitamin E with such oils may increase tissue oxidative stability. Serum TAS or GSH may be used as a measure of antioxidative status in chickens.  相似文献   

2.
1. Three hundred and twenty d-old chickens were fed on a wheat/maize-soyabean meal diet supplemented with (i) 50 g/kg lard, (ii) 25 g/kg lard and 25 g/kg rapeseed oil, (iii) 50 g/kg rapeseed oil, and (iv) 50 g/kg rapeseed oil and 200 mg copper per kg as copper sulphate pentahydrate. 2. Final weights at 39 d of age in chickens receiving rapeseed oil were lower by 9% than in those fed on the diet containing only lard (P<0.05). The fatty acids profiles of lipids extracted from the tissues of 10 chickens per group reflected those of the diets. 3. The polyunsaturated fatty acid (PUFA) content of breast muscles and abdominal fat (expressed as a percentage of total fatty acids) was increased and the ratio of n-6:n-3 fatty acids was decreased by the substitution of lard by rapeseed oil (P<0.001). These changes were more pronounced for the adipose tissue than for breast muscles. 4. Copper sulphate supplementation increased the final body weight of chickens by 4.3% (P<0.05), reduced the saturated fatty acid (SFA) proportion (P<0.05) in abdominal fat and increased the PUFA:SFA ratio (P<0.05). The magnitude of improvement, however, was small. 5. The substitution of rapeseed oil for lard decreased the concentration of cholesterol in breast muscles by 13%. Copper supplementation further reduced the cholesterol content by 25%. Both effects were significant (P<0.001).  相似文献   

3.
1. Two experiments were carried out to investigate the effect of dietary flaxseed, flax oil and n-3 fatty acid supplementation (Dry n-3) on hepatic fat content, plasma triglycerides, hepatic haemorrhage score, egg production, food intake and body weight in an inbred line of Single Comb White Leghorns (UCD-003) predisposed to fatty liver haemorrhagic syndrome (FLHS) and normal SCWL hens. 2. Feeding diets containing 100 g/kg ground flaxseed, 40 g/kg flax oil, or 100 g/kg Dry n-3 reduced body weight and significantly reduced hepatic fat content compared to feeding the control diet with animal and vegetable oil as a fat source. 3. Hepatic malondialdehyde, an indicator of lipid peroxidation within the liver, was not significantly affected by dietary treatment. 4. Normal SCWL hens tended to have higher egg production, greater body weight, greater food intake and higher blood triglyceride concentrations than UCD-003 hens, although the strain effects were not significant. Liver weight as a percent of body weight was significantly lower in normal SCWL hens. Treatments by strain interactions were not found. 5. The result suggested that dietary flaxseed, flax oil and Dry n-3 decrease hepatic fat content and reduce body weight, 2 of the predisposing factors believed to contribute to FLHS onset. However, haemorrhages were still apparent in both strains regardless of treatment, indicating that other unknown underlying mechanisms may also be responsible for FLHS.  相似文献   

4.
1. Three experiments were conducted using a low temperature model to induce pulmonary hypertension (PH) and ascites in broiler chickens. Diets containing 25 g or 50 g flax oil/kg food and control diets with an equivalent amount of animal/vegetable (A/V) blend oil, with and without supplemental antioxidants (vitamin C and vitamin E) were used. The amount of PH was assessed by the ratio of right ventricle weight to total ventricle weight (RV/TV ratio). Birds were considered to suffer from pulmonary hypertension syndrome (PHS) if the RV/TV ratio was greater than 0.299. 2. In experiment 1, the test diets contained 50 g oil/kg food and were given during the grower period only. Birds fed on the flax oil diet tended to have a lower incidence of PHS, ascites and lower RV/TV ratios than birds fed on the control diet. However, when the flax oil diet was supplemented with antioxidants, the incidence of ascites, PHS, haematocrit and whole blood and plasma viscosity increased compared with birds fed on the flax oil diet without antioxidants. These effects were not seen in experiment 2, when the test diets containing 30 g oil/kg food (25 g flax oil plus 5 g A/V blend oil/kg food compared to 30 g A/V blend oil/kg food) were given during the grower period. However, in experiment 3, when the test diets containing 30 g oil/kg food were given from day 1 to week 8, birds fed on the control diet supplemented with antioxidants had a higher incidence of PHS than those fed on the control diet alone. 3. In all 3 experiments, there was no significant effect of dietary fat source or supplemental antioxidants on total food intake or food conversion. 4. We conclude that diets containing 50 g flax oil/kg food tend to reduce the incidence of PHS and ascites in broilers using a low temperature model but the results were not statistically significant. In some cases, supplementing diets with a combination of vitamin E and vitamin C increased the incidence of ascites and PHS.  相似文献   

5.
(1) This investigation studied the effects of dietary saturated and polyunsaturated fatty acids (PUFAs) from the n-3 and n-6 series on insulin action and glucose uptake in broiler chickens. (2) One-day-old male chicks were fed on a commercial starter diet for 3 weeks, randomly divided into three groups (n = 6) and fed ad libitum on isonitrogenous experimental diets of equal energy density for a further 6 weeks. The diets contained 20.8 g/100 g protein and 80 g/kg of either edible tallow, fish oil or sunflower oil, giving diets high in saturated fatty acids, n-S PUFAs or n-6 PUFAs, respectively. (3) Jugular catheterisation was performed under general anaesthesia during week 4 of the dietary treatments and the birds given 7 d post-surgery to recover. To estimate insulin action, a bolus glucose infusion (1 g/kg) was given to each chicken and sequential blood samples taken over a one-hour period. To estimate the disappearance rate of glucose from the plasma and its incorporation into tissues, 2-deoxy-D-3H glucose (2DG-3H glucose) was infused into each chicken (50 microCi) 2 d later. (4) Although there were no significant differences in glucose clearance rate following the glucose infusion, the maximal insulin release in response to the glucose infusion was higher in the tallow group than in either the n-3 or n-6 PUFA dietary groups. There were no significant differences in the clearance rate of 2DG-3H glucose. Labelled glucose incorporation into the breast muscle was greater in birds given fish oil than in birds given tallow and significantly greater than in birds given sunflower oil. (5) The data suggest that the type of dietary fat can influence glucose metabolism and that this change in glucose utilisation may alter the energy metabolism of the broiler.  相似文献   

6.
Although dietary n-3 fatty acids have been extensively studied in poultry, they have not yet been prospectively investigated in psittacines, despite potential benefits for preventing and treating atherosclerosis, osteoarthritis, and other chronic disease processes. The objectives of this study were to investigate the incorporation of dietary n-3 fatty acids into red blood cells (RBC) and to determine the effects of supplementation of psittacine diets with fish or flax oil on plasma lipids and lipoproteins in the cockatiel. Adult cockatiels were fed a custom-formulated diet containing either 4% (wt/wt, as-fed) beef tallow (CON), 3% fish oil + 1% tallow (FSH), or 3.5% flax oil + 0.5% tallow (FLX; n = 20 per diet group). Baseline measurements were obtained for RBC fatty acid composition, triacylglycerides (TAG), and cholesterol. After 8 to 13 wk on the study diets, plasma chemistry profiles, lipoprotein density profiles, and RBC fatty acid composition were determined. At 8 wk, total plasma cholesterol was least in FSH birds (P < 0.05) and TAG concentrations were less in FSH birds than FLX birds (P < 0.05). Total n-3 fatty acids, docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid were markedly greater in the RBC of FSH birds than FLX or CON birds (P < 0.05). Alpha linolenic acid was greatest in FLX (P < 0.05). Initial and final BW, and nonlipid plasma chemistry values did not differ among diet groups. No adverse effects of dietary supplementation of cockatiels with 3.5% flax oil or 3% fish oil were observed during the 13-wk feeding period. Although fish and flax oils provided similar total n-3 PUFA to the diets, fish oil caused greater reductions in cholesterol and TAG, and greater total RBC n-3 incorporation. Thus, dietary modification of psittacine diets with long chain n-3 PUFA from fish oil appears safe and may be beneficial to these long-lived companion birds.  相似文献   

7.
1. Rice bran lysolecithin (RBL) was evaluated in broiler chicken diets. In the first experiment, RBL was included in diet at 0, 0·5, 2, 8 and 32?g/kg and fed to 250 broiler chickens from 0 to 42?d of age. In the second experiment, RBL was fed at 0, 25 and 50?g/kg diet to 405?day-old broiler chickens until 21?d of age, while during the finisher phase (22–35?d of age) chickens receiving each concentration of RBL were given all three concentrations of RBL in a 3?×?3 factorial manner. The diets were isocaloric.

2. Body weight, food consumption and food conversion efficiency were unaffected by feeding RBL, while the weight of pancreas increased at ≥2?g/kg of RBL in diet (experiment 1). In experiment 2, body weight was greater in the chickens receiving RBL at either 25 or 50?g/kg (21?d) and 50?g/kg (35?d of age). At 21?d of age, food consumption was greater at 25 or 50?g RBL/kg diet, while food conversion efficiency improved with 50?g RBL/kg diet.

3. Fat digestibility increased with RBL at 32?g/kg (experiment 1) and ≤25?g/kg (experiment 2). Rice bran lysolecithin increased ready to cook weight at 50?g/kg during starter phase and decreased abdominal fat at 25 and 50?g/kg during finisher phase (experiment 2). Liver and meat fat content were not affected.

4. It is concluded that lysolecithin from rice bran oil could be used as energy supplement in broiler chicken diet.  相似文献   


8.
The effect of dietary n-3 fatty acids on the fatty acid composition and lipid peroxidation of different tissues in pigs were studied. 20 castrated male pigs were included in this investigation, one half was fed daily a diet containing 1.3 g n-3 fatty acids/kg diet (control) and 10 pigs were fed a diet containing 14 g n-3 fatty acids/kg diet (n-3 diet) at the growing-finishing period. The intake of dietary n-3 fatty acids increased the concentration of these fatty acids in backfat, and the neutral and polar fractions of skeletal muscle and heart homogenates. The polar fraction showed an increased relative concentration of n-3 fatty acids in comparison to control, while the n-6 fatty acid content was reduced. In heart homogenates there was an enlargement of n-3 fatty acids both in polar lipids and in neutral lipids whilst n-6 fatty acids were decreased. Feeding n-3 fatty acid enriched diet had no influence on meat quality parameters drip loss, meat colour or pH value. The lipid peroxidation (measured as malondialdehyde equivalents) was in the order liver > heart > skeletal muscle with higher values in the n-3 group. However, by stimulation of oxidation by Fe2+/ascorbate for 3 hours the order of oxidative products in the n-3 group was muscle > liver > heart, whereas in the control group the order was liver > heart = muscle. Summarized, feeding a highly n-3 fatty acid enriched diet caused an incorporation of these fatty acids and increased the susceptibility to peroxidation in all investigated tissues.  相似文献   

9.
This article reviews recent nutritional approaches for counteracting the development of pulmonary hypertension syndrome (PHS; ascites) in broiler chickens especially when they are reared at high altitudes. High altitudes impose the sustained stress of hypobaric hypoxia, which reduces the availability of atmospheric oxygen to red blood cells passing through the lungs, thereby causing systemic arterial hypoxaemia (undersaturation of haemoglobin with oxygen), pulmonary arterial hypertension and PHS/ascites in susceptible broilers. Proper nutritional strategies are needed to reduce metabolic activity and prevent the development of ascites especially when modern broilers are reared in regions where the existing altitudes limit the availability of atmospheric oxygen. This article also addresses controversies with regard to broiler nutrition in relation to PHS. For example, the catabolism of protein from feed ingredients incurs increased oxygen consumption, suggesting that feeding reduced‐protein diets to broiler chickens may result in reduced PHS incidences. However, experimental and field data indicate that feeding reduced‐protein diets to broilers subjected to hypobaric hypoxia increases the development of PHS. Controversies on the nutrition of unsaturated fat in relation to PHS are also discussed. In conclusion, hypoxia, acidosis, vasoconstriction and enhanced metabolic rate are triggers of PHS. Feeding reduced‐protein diets might promote the susceptibility of broilers to PHS by decreased dietary intake of arginine, decreased uric acid production and increased lipogenesis. Feeding high‐protein diets, dietary arginine supplementation, partial substitution of sodium bicarbonate for sodium chloride, feeding low‐fat diets and effective feed restriction programmes can be considered as nutritional approaches to prevent PHS.  相似文献   

10.
Bacterial autolysate, a down stream product of bacterial biomass grown on natural gas by mainly the methanotrophic bacteria Methylococcus capsulatus, was fed at 8% as is to broiler chickens from 1 to 35 days of age for studies of fatty acid composition, lipid oxidation and sensory quality of thigh meat stored frozen for 6 month at -18 °C or -80 °C. Lipid oxidation was measured by thiobarbituric acid reactive substances (TBARS) and volatile profile by dynamic headspace gas chromatography. Adding bacterial autolysate to diets did not affect the total content of saturated, monounsaturated or polyunsaturated fatty acids in thigh meat, but increased the levels of C14:0, C16:0, C18:0 and C16:1n-7 and reduced the levels of C18:1n-7, C18:2n-6 and C18:3n-3 fatty acids. Feeding of bacterial autolysate tended (p < 0.08) to reduce TBARS of meat samples. Contents of volatiles were generally low, but feeding of bacterial autolysate significantly reduced levels of butanal (p < 0.04) and tended to reduce levels of hexanal (p < 0.11), pentanal (p < 0.09), 1-penten-3-ol (p < 0.08) and butanone (p < 0.08). Bacterial autolysate had no effects on sensory quality parameters of meat related to odour and flavour. To conclude, adding bacterial autolysate to diets did not affect the relative proportion of saturated, monounsaturated or polyunsaturated fatty acids, but reduced content of volatiles in frozen-stored broiler meat. The reduced susceptibility to lipid oxidation in broiler meat may be related to antioxidant properties of the bacterial autolysate.  相似文献   

11.
OBJECTIVE: To determine effects of dietary n-3 fatty acids from Menhaden fish oil on plasma alpha-tocopherol concentrations in Beagles. ANIMALS: 32 female Beagles. PROCEDURE: For 82 days, dogs were fed diets that contained 1 of 2 ratios of n-6:n-3 fatty acids (40:1 [low n-3] and 1.4:1 [high n-3]) and 1 of 3 concentrations of all-rac-alpha-tocopheryl acetate (low, 17 mg/kg of diet; medium, 101 mg/kg; and high, 447 mg/kg) in a 2 X 3 factorial study. RESULTS: Diets high in n-3 fatty acids significantly increased total content of n-3 fatty acids in plasma (17.0 g/100 g of fatty acids), compared with low n-3 diets (2.02 g/100 g of fatty acids). Mean +/- SEM plasma concentration of cholesterol was significantly lower in dogs consuming high n-3 diets (4.59 +/- 0.48 mmol/L), compared with dogs consuming low n-3 diets (5.71 +/- 0.48 mmol/L). A significant interaction existed between the ratio for n-6 and n-3 fatty acids and amount of alpha-tocopheryl acetate in the diet (plasma alpha-tocopherol concentration expressed on a molar basis), because the plasma concentration of alpha-toco-pherol was higher in dogs consuming low n-3 diets, compared with those consuming high n-3 diets, at the 2 higher amounts of dietary alpha-tocopheryl acetate. Plasma alpha-tocopherol concentration expressed relative to total lipid content did not reveal effects of dietary n-3 fatty acids on concentration of alpha-tocopherol. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma alpha-tocopherol concentration is not dependent on dietary ratio of n-6 and n-3 fatty acids when alpha-tocopherol concentration is expressed relative to the total lipid content of plasma.  相似文献   

12.
1. Laying hen performance, yolk fat fatty acid concentrations and firmness of eggs were evaluated with respect to the inclusion in the diet of conjugated linoleic acid (CLA) and fish oil. 2. Nine diets were arranged factorially, with three levels of supplementation of CLA (1, 3 and 5 g/kg) and fish oil (0, 14 and 20 g/kg). 3. Type of diet did not affect egg production traits. 4. CLA addition increased yolk weight and yolk fat concentrations of CLA, saturated and total long-chain n-3 fatty acids, but decreased those of monounsaturated and total long-chain n-6 fatty acids. 5. Fish oil addition increased long-chain n-3 fatty acids yolk fat concentrations but decreased those of CLA, saturated and long-chain n-6 fatty acids. 6. Effects of CLA addition on yolk fat concentrations of C22:4 n-6 and C20:5 n-3 were greater when no fish oil was added to the diet. 7. CLA supplementation increased linearly yolk moisture and firmness and altered albumen and yolk pH.  相似文献   

13.
Supplementing diets with n-3 fatty acids from fish oil has been shown to improve reproductive performance in dairy cattle and sheep, but there is little published literature on its effects in sows. The aim of this study was to evaluate the reproductive performance of sows fed fish oil as a source of n-3 PUFA prefarrowing and during lactation. From d 107.7 ± 0.1 of pregnancy, 328 sows ranging in parity from 0 to 7 (parity 1.95 ± 0.09, mean ± SE) were fed either a diet containing tallow (control) or an isocaloric diet containing 3 g of fish oil/kg of diet (n-3). Diets were formulated to contain the same amount of DE (13.9 MJ/kg), crude fat (54 g/kg), and CP (174 g/kg). Sows were fed their treatment diet at 3 kg daily for 8 d before farrowing and continued on treatment diets ad libitum until weaning at 18.7 ± 0.1 d of lactation. After weaning, all sows were fed a gestation diet without fish oil until their subsequent farrowing. There was no effect (P > 0.310) of feeding n-3 diets prefarrowing on piglet birth weight, preweaning growth rate, piglet weaning weight, or sow feed intake. However, n-3 sows had a larger subsequent litter size (10.7 ± 0.3 vs. 9.7 ± 0.3 total born; 10.2 ± 0.3 vs. 9.3 ± 0.3 born live; P < 0.05). In conclusion, this is the first study to demonstrate that feeding sows a diet containing n-3 PUFA from fish oil fed before farrowing and during lactation increased litter size in the subsequent parity independent of energy intake.  相似文献   

14.
The hypothesis tested was that the feeding of n‐6 polyunsaturated fatty acids (PUFA) results in more whole‐body fatty acid oxidation than the feeding of saturated fatty acids (SFA). It was reasoned that the increased fatty acid oxidation would be associated with enhanced whole‐body energy expenditure and stimulated de novo fatty acid synthesis. To put the hypothesis to the test, broiler chickens were fed diets containing either beef tallow as source of SFA or an oil blend as source of n‐6 PUFA. The broilers either had free access to their diet or were fed a restricted amount. Seven‐day‐old, male broiler chickens were used; they were kept individually in cages from 1 to 4 weeks of age. In the birds fed ad libitum, the n‐6 PUFA diet reduced average daily feed intake (ADFI), but did not significantly affect average daily weight gain (ADG) and the feed:conversion ratio (FCR). The lower ADFI on the n‐6 PUFA diet was associated with a higher apparent digestibility of total fatty acids. The ratio of deposition in the body to intake of digestible total PUFA, which reflected n‐6 PUFA, was significantly decreased by the n‐6 PUFA diet, pointing at preferentially increased n‐6 PUFA oxidation on the n‐6 PUFA diet. The ratio for n‐9 monounsaturated fatty acids (MUFA) was higher than 1.0, which agrees with net de novo synthesis, but the n‐6 PUFA diet induced a lower value than did the SFA diet. Feeding either the n‐6 PUFA or SFA diet did not influence energy expenditure expressed as percentage of energy intake. This study supports the idea that dietary n‐6 PUFA instead of SFA are preferentially oxidized, but no proof was obtained for enhanced energy expenditure and contrary to the hypothesis put forward, the n‐6 PUFA diet depressed de‐novo fatty acid synthesis.  相似文献   

15.
The present study evaluated the development of pulmonary hypertension and right ventricular failure in broiler chickens reared at high altitude (2100 m) as affected by dietary intake of n‐3 and n‐6 fatty acid sources. Flax oil and soy oil were used as sources of n‐3 and n‐6 fatty acids, respectively, either with or without α‐tocopheryl acetate. A total of 192 day‐old broiler chicks (Ross 308) were used in a completely randomized design using isoenergetic and isonitrogenous experimental diets. Results showed that dietary flax oil significantly (p < 0.05) improved feed conversion ratio during 21–42 days of age. However, body weight gain did not significantly differ among the experimental groups in entire trial. Birds received flax oil had significantly higher serum concentration of nitric oxide (NO) but they had lower serum concentration of malondialdehyde when compared with their counterparts fed with soy oil. Liver and abdominal fat weights were significantly (p < 0.05) reduced by substitution of soy oil for flax oil. The right‐to‐total ventricle weight ratio (RV/TV) and mortality from pulmonary arterial hypertension (PAH) were significantly (p < 0.05) decreased in birds that received flax oil. In conclusion, n‐3 fatty acids could significantly reduce RV:TV and PAH mortality in birds by increasing circulatory level of NO and suppressing hepatic lipogenesis.  相似文献   

16.
1. An experiment was conducted to study the comparative effects of peach palm oil (PPO, Bactris gasipaes H.B.K), crude palm oil (CPO, Elaeis guinenesis), maize oil (MO) and beef tallow (BT) on serum total and lipoprotein cholesterol levels and haemostatic factors in broiler chickens. 2. Four experimental diets were formulated to be isocaloric (14·2 MJ AME(N)/kg) and isonitrogenous (230 g CP/kg). PPO was extracted from the whole dry fruit with hexane. Each fat was added to the diet in an amount equivalent to 25% of total dietary calories. Six replicate groups of eight male broiler chicks were assigned randomly to each dietary treatment. Diets were fed on ad libitum basis. The experiment lasted 42 d. 3. At 42 d, birds were fasted overnight and three chickens/dietary treatment were utilised to draw blood for lipoprotein separation. Various haemostatic factors were determined in thrombocyte-poor plasma. Thrombocyte aggregation was assayed in whole blood. 4. No significant differences were detected in body-weight gain or feed efficiency between the chickens fed on the PPO diet and those receiving the CPO, MO or BT diets. Total serum cholesterol (TC), very low density lipoprotein cholesterol and low density lipoprotein cholesterol (LDL(C)) were not significantly affected after consuming the PPO, CPO and MO diets. Serum high density lipoprotein cholesterol (HDL(C)) was reduced only by the MO diet. Birds fed on the PPO diet had a significantly lower [corrected] LDLC/HDLC ratio compared with other dietary treatments 5. Thrombocyte count and thrombin time were not significantly affected by the experimental diets. Dietary oils significantly affected prothrombin time, fibrinogen concentration and thrombocyte aggregation. PPO and MO diets elicited the lowest fibrinogen levels compared to the CPO and BT diets. Thrombocyte aggregation in broilers fed on the PPO diet was similar to that of the CPO, MO and BT diets. 6. The results suggest that PPO might efficiently provide up to 25% of dietary energy in broiler diets. Additionally, PPO elicited a more favourable LDL(C)/HDL(C) ratio and haemostatic pattern in broiler chickens. These findings may be of general interest to the food industry.  相似文献   

17.
To assess the effects of flax addition and flax processing on feedlot performance and carcass characteristics, 128 yearling beef heifers (360 +/- 14 kg of initial BW) were blocked by weight and assigned randomly to feedlot diets that included no flax (control), whole flax (WHL), rolled flax (RLD; 1,300 microm), or ground flax (GRD; 700 microm). Heifers were fed a growth diet (31% corn, 30% corn silage, 18% barley malt pellets, 14% alfalfa, 4% linseed meal, and 3% supplement; DM basis) for 56 d, after which they were adapted to a finishing diet (79% corn, 7% corn silage, 7% alfalfa, 4.75% linseed meal, and 2.25% supplement; DM basis). In WHL, RLD, and GRD, flax replaced all linseed meal and partially replaced corn at 8% of diet DM. All diets provided 0.5 mg of melengestrol acetate, 2,000 IU of vitamin E, and 232 mg of monensin per heifer daily. Cattle were slaughtered by block after 96, 97, and 124 (2 blocks) d on feed. At 24 h postmortem, carcass data were collected, and a portion of the loin was removed, vacuum-packaged, and aged for 14 d. After aging, 2 steaks were removed from each loin for Warner-Bratzler shear force measurement, sensory panel evaluation, and fatty acid analysis (approximately 100 g of muscle was collected). Flax inclusion (WHL, RLD, and GRD vs. control) did not affect DMI (P = 0.79), fat thickness over the 12th rib (P = 0.32), or LM area (P = 0.23). Flax inclusion increased ADG (P = 0.006), G:F (P = 0.006), and USDA yield grade (P = 0.01). Flax processing (RLD and GRD vs. WHL) increased ADG (P = 0.05), G:F (P = 0.08), and apparent dietary NEm and NEg (P = 0.003). Muscle from heifers fed flax had greater phospholipid 18:3n-3 (P < 0.001), 20:5n-3 (P < 0.001), 22:5n-3 (P < 0.001), and 22:6n-3 (P = 0.02) fractions, and greater neutral lipid 18:3n-3 (P < 0.001). Feeding 8% flax to feedlot heifers increased gain and efficiency, and processing flax increased available energy and resulted in increased efficiency of gain. Feeding 8% flax also increased levels of n-3 fatty acids in fresh beef.  相似文献   

18.
  1. A 42-d trial was conducted to investigate the effect of adding a synbiotic supplement to diets containing two different types of fat on performance, blood lipids and fatty acid (FA) composition and oxidative stability of breast and thigh meat in broilers.

  2. A total of 800 one-d-old male broiler chickens were randomly assigned into 1 of 8 treatments with 4 replicates of 25 birds per treatment. The experiment consisted of a 4 × 2 factorial arrangement of treatments including 4 concentrations of synbiotic (0, 0.5, 1 or 1.5 g/kg diet) and 2 types of fat [sunflower oil (SO) or canola oil (CO)] at an inclusion rate of 50 g/kg diet.

  3. Dietary fat type did not affect body weight gain (BWG) or feed conversion ratio (FCR) during the overall experimental period (0–42 d). However, fat type modified serum lipid profile and FA composition and 2-thiobarbituric acid-reactive substances (TBARS) content in breast and thigh meat.

  4. The addition of synbiotic to the diet linearly improved overall BWG and FCR and also decreased serum cholesterol and low-density lipoprotein cholesterol concentrations. The TBARS value in thigh meat after 30 d of storage at 4°C was linearly decreased as the synbiotic inclusion concentrations in the diets increased. Dietary synbiotic also decreased the proportion of monounsaturated fatty acids and increased n-6 polyunsaturated fatty acid (PUFA) concentration in thigh meat, whereas the FA profile of breast meat was not affected by synbiotic supplementation. Moreover, the PUFA/SFA ratio in the breast meat was linearly increased when synbiotic was included in the CO-containing diets.

  5. In conclusion, the addition of synbiotic to broiler diets had a positive effect on growth performance, blood lipid profile and meat quality. The results also support the use of synbiotic to increase the capacity of canola oil for enhancing PUFA/SFA ratio of breast meat in broilers.

  相似文献   

19.
The effect of a diet containing trans fatty acids (TFA) on the fatty acid composition and fat accumulation was investigated in broiler chickens. Female broilers were fed a control or a TFA-containing diet. The difference between the diets was that a part of cis 18:1 in the control diet was replaced by the TFA. Body composition, energy balance and the fatty acid composition were examined. Over the time-period studied (15 days), the body fat content and the protein content did not differ significantly between the TFA-fed group and the control. In energy balance studies, total energy intake, energy loss in excreta, energy expenditure and energy storage did not differ between the treatments. Compared to the control diet, the TFA diet resulted in significantly higher amounts of 14:0 and 18:1n-7 and lower amounts of 18:1n-9 and 20:4n-6 in the body. In conclusion, the data suggest that feeding TFA for 15 days to female broilers had no effect on energy retention, energy expenditure and energy loss in excreta or in body composition in terms of fat and protein. Only the fatty acid composition in the body was affected by the treatment with TFA. In addition, 50% of ingested TFA was incorporated into the body fat. This may have a negative effect on the dietetic value of chicken meat.  相似文献   

20.
We investigated the effects of dietary conjugated linoleic acid (CLA) on fatty acid composition and lipid oxidation in breast meat of broiler chickens. Broiler chickens (28-day-old females) were fed diets containing experimental oils at 20 g/kg diet for 28 days. The experimental oils consisted of either a 2:0, 1:1, or a 0:2 (wt : wt) ratio of safflower oil (high linoleic acid content) to a commercial CLA mixture. In this study, dietary CLA supplementation significantly increased the composition and content of CLA in chicken meat. The predominant CLA in meat from birds with supplemented diets was the cis -9, trans -11 isomer. The proportion of saturated fatty acid in meat significantly increased with increasing CLA supplementation, with a corresponding decrease in monounsaturated fatty acid. Dietary CLA also reduced thiobarbituric acid reactive substances (TBARS) values in raw meat during storage at 4°C for 5 days. These results provide evidence that CLA feeding is a practical strategy not only for adding nutritional benefits to chicken meat but also for improving meat quality including oxidative stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号