首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main function of primary tillage is to increase the soil's structural macro-porosity, but during secondary tillage operations over these freshly tilled soils, traffic causes significant soil compaction. In terms of soil conservation however, there is evidence that direct sowing is a more sustainable system, even though there is still insufficient information about the rheology of a non-tilled soil under traffic. The objective of this study was to compare the traffic intensity and soil compaction caused by four different tillage regimes currently used by Argentinean farmers (1 direct sowing with a tractor and planter weighing 127 kN and 3 conventional tillage systems with equipment weighing 55.2 kN). The work was performed in the east of the Rolling Pampa region, Buenos Aires State, Argentina at 34°25′S, 59°15′W. Variables measured were: (1) cone index in the 0–450 mm depth profile; (2) bulk density; (3) total soil porosity; and (4) rut depth. (a) Results indicated that in the depth range 0–150 mm with all tillage treatments, bulk density and cone index values generated by tractor traffic were greater than the 1.3 Mg m−3 and 1400 kPa respectively. Similarly in deeper layers these parameters were greater than 1.45 Mg m−3 and 2000 kPa respectively. Measurements revealed that traffic reduced topsoil porosity under direct sowing by an average of 7% and under conventional tillage by 7.6–14.8% confirming that both systems cause both topsoil and subsoil compaction.  相似文献   

2.
The aim of this paper was to quantify soil compaction induced by tractor traffic on two tillage regimes: conventional tillage and direct drilling. Traffic was simulated with one pass of a conventional 2WD tractor, using four configurations of cross-ply rear tyres: 18.4–34, 23.1–30, 18.4–38 and 24.5–32, and four configurations of radial tyres 18.4R34, 23.1R 30, 18.4R 38 and 24.5R 32, with two ballast conditions used in each configuration. The experiment was conducted in the east of the Rolling Pampa region, Buenos Aires State, Argentina at 34°25′S, 59°15′W; altitude 22 m above sea level. Rut depth after traffic and soil bulk density and cone index in a 0–450-mm profile were measured before and after traffic. Considering topsoil level, in two tillage regimes, all treatments induced significant values of soil compaction as compared to the control plot without traffic. Subsoil compaction increased as total axle load increased and was independent of ground pressure. For the same tyre configuration, radial tyre caused less soil compaction than the cross-ply.  相似文献   

3.
This study was in an olive (Olea europea L.) grove in the Vélez Blanco District of Almería, Spain, where the soil is a typical Aridisol. The aim was to evaluate subsoil compaction caused by three different tractors currently used in olive groves. Measurements were made of (i) the cone index (CI), (ii) hydraulic conductivity (HC) and (iii) rut depth after passage of a light tractor (LT = 22.50 kN), a heavy tractor (HT = 42.60 kN) and a medium tractor (MT = 33.30 kN). The CI differed for the topsoil (0–200 mm) for each type of tractor after up to five passes. In this depth soil level, the CI was greatest for LT because the ground pressure (by narrow tyres) was greater than under the MT and HT. For deeper layers, there was a strong positive relationship between number of tractor passes and CI values, and the CI was greater for passes by the HT than the LT or MT. The HT resulted in shallower ruts up to the fifth pass, and the CI values were smaller because there was less ground pressure from this tractor than the others. In all treatments, tractor traffic caused varying decreases in HC in the 0–600 mm depth range. The main conclusion is that subsoil compaction is related directly to tractor weight. For the three tractors, topsoil compaction is caused by ground pressure and not on total axle load.  相似文献   

4.
The volumetric ring and the computerized tomography (CT) techniques were applied to study soil bulk density, in order to understand the compaction of an Albaqualf soil (Planosol) of the Rio Grande do Sul State, Southern Brazil (latitude 31°52′00″S and Longitude 52°21′24″W). Among six different tillage systems and crop rotations the greatest soil bulk density was measured for the continuous irrigated rice crop system and the lowest for the no-tillage treatment under rye grass straw. The CT method enabled the measurement of bulk density variations in the soil profile and indicated critical zones not observed by the volumetric ring method that measures only the mean sample soil bulk densities. A meaningful correlation between soil bulk densities measured by both methods was found, although the CT method presented more reliable results in comparison to the volumetric ring method. A 3% variation in bulk density was observed due to method intrinsic errors, probably also correlated to different samples sizes.  相似文献   

5.
A soil mechanical resistance sensor with a large-diameter disc coulter was developed to delineate areas of differing soil strength across agricultural fields. The instrumented disc coulter consisted of a 76.2 cm disc with two depth-measuring sensors (rotary potentiometer and ultrasonic proximity sensor) along with a global positioning system (GPS) receiver to georeference operating depth measurements. The consistency and repeatability of the system response were evaluated by making six passes across long-term tillage comparison plots with different degrees of soil disturbance, including: 20 cm plowing, 15 cm disking, 30 cm chiseling, and no-till in several combinations. At the time of testing, standard soil cone penetrometer measurements were taken. The relationship between the average cone index in the 0–30 cm soil profile (CI0–30 cm) and the disc operating depth was evaluated. In addition, the cumulative energy density of the given depth of penetration defined as specific cone penetration energy (J m−2 or N cm−1) for each tillage plot was calculated using the cone index profiles. The average measured depth in each tillage plot was compared to the average predicted depth (dci) of a fixed specific cone penetration energy (Pci). Static calibration tests on the depth sensors showed excellent linearity with coefficients of determination (R2) greater than 0.99. The results showed that, on the average, the changes in the depth measured with the rotary potentiometer were 44 and 68% of the changes in the depth measured with the ultrasonic proximity sensor while the disc coulter was passing across, or along, the tillage plots. This difference was primarily due to the sinkage of the tractor wheels. The depth measured with the ultrasonic sensor had significant correlation with both CI0–30 cm and dci. This was partially due to the fact that a significantly high correlation (R2 = 0.97) between the CI0–30 cm and dci was observed, which was not expected and originated from the type of soil profiles present. The instrumented disc coulter is a low soil disturbance system and could be used as an inexpensive and simple sensor to obtain information about the mechanical condition of the soil for spot tillage or other management decisions.  相似文献   

6.
Soil compaction caused by traffic of heavy vehicles and machinery has become a problem of world-wide concern. The aims of this study were to evaluate and compare the changes in bulk density, soil strength, porosity, saturated hydraulic conductivity and air permeability during sugar beet (Beta vulgaris L.) harvesting on a typical Bavarian soil (Regosol) as well as to assess the most appropriate variable factors that fit with the effective controlling of subsequent compaction. The field experiments, measurements and laboratory testing were carried out in Freising, Germany. Two tillage systems (conventional plough tillage and reduced chisel tillage) were used in the experiments. The soil water contents were adjusted to 0.17 g g−1 (w1), 0.27 g g−1 (w2) and 0.35 g g−1 (w3).Taking the increase in bulk density, the decrease in air permeability and reduction of wide coarse pore size porosity (−6 kPa) into account, it seems that CT (ploughing to a depth of 0.25 m followed by two passes of rotary harrow to a depth 0.05 m) of plots were compacted to a depth of at least 0.25 m and at most 0.40 m in high soil water (w3) conditions. The trends were similar for “CT w1” (low soil water content) plots. However, it seems that “CT w1” plots were less affected than “CT w3” plots with regard to bulk density increases under partial load. In contrast, diminishments of wide coarse pores (−6 kPa) and narrow (tight) coarse pores (−30 kPa) were significantly higher in “CT w1” plots down to 0.4 m. Among CT plots, the best physical properties were obtained at medium soil water (w2) content. No significant increase in bulk density and no significant decrease in coarse pore size porosity and total porosity below 0.2 m were observed at medium soil water content. The soil water content seemed to be the most decisive factor.It is likely that, CS (chiselling to a depth of 0.13 m followed by two passes of rotary harrow to a depth 0.05 m) plots were less affected by traffic treatments than CT plots. Considering the proportion of coarse pore size porosity (structural porosity) and total porosity, no compaction effects below 0.3 m were found. Medium soil water content (w2) provides better soil conditions after traffic with regard to wide coarse pore size porosity (−6 kPa), air permeability (at 6 and 30 kPa water suction), total porosity and bulk density. Proportion of wide coarse pores, air permeability and bulk density seems to be suitable parameters to detect soil compaction under the conditions tested.  相似文献   

7.
Heavy wheel traffic causes soil compaction, which adversely affects crop production and may persist for several years. We applied known compaction forces to entire plots annually for 5 years, and then determined the duration of the adverse effects on the properties of a Vertisol and the performance of crops under no-till dryland cropping with residue retention. For up to 5 years after a final treatment with a 10 Mg axle load on wet soil, soil shear strength at 70–100 mm and cone index at 180–360 mm were significantly (P < 0.05) higher than in a control treatment, and soil water storage and grain yield were lower. We conclude that compaction effects persisted because (1) there were insufficient wet–dry cycles to swell and shrink the entire compacted layer, (2) soil loosening by tillage was absent and (3) there were fewer earthworms in the compacted soil. Compaction of dry soil with 6 Mg had little effect at any time, indicating that by using wheel traffic only when the soil is dry, problems can be avoided. Unfortunately such a restriction is not always possible because sowing, tillage and harvest operations often need to be done when the soil is wet. A more generally applicable solution, which also ensures timely operations, is the permanent separation of wheel zones and crop zones in the field—the practice known as controlled traffic farming. Where a compacted layer already exists, even on a clay soil, management options to hasten repair should be considered, e.g. tillage, deep ripping, sowing a ley pasture or sowing crop species more effective at repairing compacted soil.  相似文献   

8.
The aim of this study was to determine potential cumulative effects of repeated passes with current heavy agricultural machinery on topsoil (0–0.3 m) and subsoil (below 0.3 m) physical properties of a Luvisol as affected by long-term tillage (annual mouldboard ploughing to 0.3 m depth (MP), shallow-mixing conservation tillage to 0.1 m depth (SM) with a wing-bladed rigid tine cultivator). Moreover, sugar beet yield was determined. Wheeling was conducted with a six-row self-propelled sugar beet harvester representing contemporary heavy agricultural machinery (wheel load 7.8–11.7 Mg, average ground contact pressure 100–145 kPa). Wheeling was applied once per year over three consecutive years after harvest of sugar beet, cereal and cereal, and moreover, independent from regular plot management with light experimental machinery. Soil moisture at wheeling (0–0.6 m depth) was around 100% field capacity in most years, which was secured by irrigation before wheeling if necessary.Repeated wheeling negatively affected penetration resistance, macropore volume (equivalent diameter >50 μm) and air permeability of topsoil (0.05–0.1 m, 0.18–0.23 m) and subsoil (0.4–0.45 m) layers, while biopore number and surface water infiltration remained unaffected. SM compared to MP tillage increased penetration resistance while decreasing macropore volume and air permeability in the 0.18–0.23 m layer, whereas reverse effects occurred in 0.4–0.45 m depth. Sugar beet yield was decreased by wheeling and SM tillage compared to the control treatments. No significant interactions between wheeling and tillage occurred in any parameter investigated.Conclusively, SM tillage did not provide better subsoil resistance against compaction compared to MP treatment under wheeling and soil conditions prevalent in our experiment. Repeated wheeling with heavy agricultural harvest machinery is obviously at risk to exceed the bearing capacity of susceptible soils. Although (i) under regular harvest conditions just small parts of arable fields (except headlands) are wheeled with high loads, (ii) harvest is by far not every year conducted under high soil moisture, and (iii) effects in the subsoil were small, such risks have to be taken into account. Reduction of tillage depth to <0.1 m is not recommended for high yielding sugar beet crops grown on loessial soils.  相似文献   

9.
M. Gysi   《Soil & Tillage Research》2001,61(3-4):133-142
Subsoil compaction has become a problem of world-wide concern, especially under highly mechanised agricultural practices. Severe structural degradation impedes plant growth. Therefore, compaction must be limited to layers which can be structurally reclaimed with reasonable effort by tillage. The purpose of this study was to investigate the impact of a single pass with a sugar beet harvester on the soil properties of an unploughed Eutric Cambisol. In autumn 1998 and 1999 field measurements and laboratory testing were carried out in Frauenfeld, Switzerland. The wheel loads were 107 kN in 1998 and 108 kN in 1999. Changes of bulk density, total porosity, macroporosity and pre-consolidation pressure show that compaction effects were restricted to the topsoil (0–0.25 m depth). Below 0.25 m depth no changes were measured. The compaction beneath the tyre was modelled with a two phase finite element model in the framework of critical state soil mechanics. The model predicts the degree and depth of compaction of an Eutric Cambisol caused by a single pass in Switzerland. Modelled data and field results agree quite well.  相似文献   

10.
Recommendations are made regarding the analysis and presentation of cone resistance data. Methods for eliminating extreme readings due to stones are compared and the effects of stones on variability and treatment comparisons are discussed. Results showed very high variability between positions, even at 100 mm separation. Measurements separated by more than 1 m were independent of each other except where trends in other soil properties influenced cone resistance. The assessment of compaction under wheels is described for cone resistance measurements made under the rut centre-line. Parameters are derived from measurements made on two-dimensional, vertical grids to quantify the depth, extent and intensity of compaction and loosening. The usefulness of penetrometers in tillage and traffic studies is discussed.  相似文献   

11.
The increased limiting effects of soil compaction on Central Anatolian soils in the recent years demonstrate the need for a detailed analysis of tillage system impacts. This study was undertaken to ascertain the effects of seven different tillage systems and subsequent wheel traffic on the physical and mechanical properties of typical Central Anatolian medium textured clay loam soil (Cambisol), south of Ankara, Turkey. Both tillage and field traffic influenced soil bulk density, porosity, air voids and strength significantly except the insignificant effect of traffic on moisture content. Traffic affected the soil properties mostly down to 20 cm. However, no excessive compaction was detected in 0–20 cm soil depth. The increases of bulk density following wheel traffic varied between 10–20% at 0–5 cm and 6–12% at 10–15 cm depth. In additions, traffic increased the penetration resistance by 30–74% at 0–10 cm and 7–33% at 10–20 cm. Less wheel traffic-induced effects were found on chisel tilled plots, compared to ploughed plots. Soil stress during wheel passage was highly correlated with soil strength. Also, both tillage and traffic-induced differences were observed in mean soil aggregate sizes, especially for mouldboard ploughed plots. The obtained data imply that chisel+cultivator-tooth harrow combination provides more desirable soil conditions for resisting further soil compaction.  相似文献   

12.
The successful production of organic vegetables relies heavily on mechanical weeding, flame weeding and stale seedbeds. These operations involve repeated passes by tractors. Mechanical weeding also involves regular tillage. This combination of repeated tillage and compaction changes soil structure. We studied these structural changes in two fields of organic carrots and one field of beans in eastern Scotland. Structure was described by measuring soil strength with a vane shear tester and a cone penetrometer, by measuring bulk density and by visual assessment. Under beans, vane shear strength below the growing root zone was highly variable and in some areas was high enough to restrict root growth (>50 kPa). The carrots were grown in beds containing crop rows separated by bare soil. The bare soil was regularly weeded mechanically. The structure of this weeded soil in the top 10 cm layer of a loam eventually became disrupted and compacted enough to deter root growth (vane shear strength of 70 kPa). In addition the topsoil and subsoil in the wheel-tracks between the beds became very compact with little distinguishable structure. This compaction extended to the subsoil and persisted into the next cropping season (cone resistance >3 MPa at 35–50 cm depth). Reduced tillage by discing without ploughing was used to incorporate the straw used to protect the carrots overwinter and prepare the soil for the next crop. The resulting topsoil quality was poor leading to anaerobic growing conditions which restricted growth of the following crop and led to losses of the greenhouse gas nitrous oxide. The greatest threat to soil quality posed by mechanical weeding was subsoil compaction by tractor wheeling.  相似文献   

13.
Soil compaction is a big challenge in managing poorly drained clay soils. An on-farm field study was conducted over 2 years in a poorly drained, heavy clay soil, Red River Valley, Manitoba, Canada, where soil compaction, crop growth and root development were perceived as serious concerns. To address these concerns, no-tillage and sub-soiling tillage were proposed and compared with the traditional tillage system in which light-duty field cultivators were used at tillage depths ranging from 50 to 75 mm. Measurements of soil cone index indicated that a hardpan existed at approximately 175 mm soil depth in each fall as a result of wheel traffic during the growing season. It may not be necessary to break the hardpan with fall tillage operations in the studied region, as the hardpan was naturally removed over winter. Effects of tillage practices were evaluated using seeding performance and plant development. No-tillage resulted in the similar speed of emergence, plant population and crop yield, but more uniform seeding depth and more roots in the topsoil layer (0–75 mm), when compared with the conventional tillage. Sub-soiling promoted much faster crop emergence, higher plant populations and crop yield as well as deeper root penetration than the conventional tillage. However, the draft force required for sub-soiling was four times that of the conventional tillage.  相似文献   

14.
A 762‐mm‐diameter pipe 1,886 km long was installed to transfer crude oil in the USA from North Dakota to Illinois. To investigate the impact of construction and restoration practices on long‐term soil productivity and crop yield, vertical soil stresses induced by a Caterpillar (CAT) pipe liner PL 87 (475 kN vehicle load) and semi‐trailer truck (8.9 kN axle load) were studied in a farm field. Soil properties (bulk density and cone penetration resistance) were measured on field zones within the right‐of‐way (ROW) classified according to construction machine trafficking and subsoil tillage (300‐mm‐depth tillage and 450‐mm‐depth tillage in two repeated passes) treatments. At 200 mm depth from the subsoiled surface, the magnitude of peak vertical soil stress from trafficking by the semi‐truck trailer and CAT pipe liner PL 87 was 133 kPa. The peak vertical soil stress at 400 mm soil depth appeared to be influenced by vehicle weight, where the Caterpillar pipe liner PL 87 created soil compaction a magnitude of 1.5 greater than from the semi‐trailer truck. Results from the soil bulk density and soil cone penetration resistance measurements also showed the ROW zones had significantly higher soil compaction than adjacent unaffected corn planted fields. Tillage to 450 mm depth alleviated the deep soil compaction better than the 300‐mm‐depth tillage as measured by soil cone penetration resistance within the ROW zones and the unaffected zone. These results could be incorporated into agricultural mitigation plans in ROW construction utilities to minimize soil and crop damage.  相似文献   

15.
Soil compaction is one of the most important factors responsible for soil physical degradation. Soil compaction models are important tools for controlling traffic-induced soil compaction in agriculture. A two-dimensional model for calculation of soil stresses and soil compaction due to agricultural field traffic is presented. It is written as a spreadsheet that is easy to use and therefore intended for use not only by experts in soil mechanics, but also by e.g. agricultural advisers. The model allows for a realistic prediction of the contact area and the stress distribution in the contact area from readily available tyre parameters. It is possible to simulate the passage of several machines, including e.g. tractors with dual wheels and trailers with tandem wheels. The model is based on analytical equations for stress propagation in soil. The load is applied incrementally, thus keeping the strains small for each increment. Several stress–strain relationships describing the compressive behaviour of agricultural soils are incorporated. Mechanical properties of soil can be estimated by means of pedo-transfer functions. The model includes two options for calculation of vertical displacement and rut depth, either from volumetric strains only or from both volumetric and shear strains. We show in examples that the model provides satisfactory predictions of stress propagation and changes in bulk density. However, computation results of soil deformation strongly depend on soil mechanical properties that are labour-intensive to measure and difficult to estimate and thus not readily available. Therefore, prediction of deformation might not be easily handled in practice. The model presented is called SoilFlex, because it is a soil compaction model that is flexible in terms of the model inputs, the constitutive equations describing the stress–strain relationships and the model outputs.  相似文献   

16.
Viticulture and fruit culture in Mediterranean areas demand frequent tractor traffic in vineyards and orchards for tillage and for the application of herbicides and pesticides, resulting in soil compaction. The aim of this study was to investigate the extent of soil compaction and its effect on infiltration in vineyards and orchards in an area in southern France, known for its wine and fruit production (Vaucluse). Compaction of both the topsoil and the subsoil was demonstrated with measurements of bulk density, penetration resistance and water retention characteristics. Subsoil compaction was attributed to wheel load, not to tillage, and was alleviated within 5 years after termination of tillage operations in vineyards. No effects of topsoil compaction on infiltration were expected on account of the slight differences in the values of infiltration parameters between wheel tracks and inter-rill areas. Effects of subsoil compaction on infiltration were examined with rainfall simulation tests. Under wet initial conditions and high rain intensities, no effect of soil compaction on infiltration was observed. This implies that the frequent tractor traffic associated with viticulture and fruit culture does not enhance run-off on loamy soils in Mediterranean areas.  相似文献   

17.
Soil compaction was assessed in terms of soil strength as measured with a penetrometer. Penetrometer resistance was measured on virgin soil and on the same soil after one and after five passes of a 7,610 kg tractor. Also, comparative studies were made of strength profiles of soils in arable fields and in adjacent areas of virgin soil. The strength of virgin soil was increased by wheel traffic and agricultural operations in all cases. The increase in soil strength was significant down to 0.3 m, which is considerably greater than the normal depth of tillage in the area (0.05 m). Reduction in the coefficient of variation of penetrometer strengths after the passage of wheels was taken as evidence for associated losses of soil structure. Virgin soils provide important reference sites for assessing the impact of agriculture in an area.  相似文献   

18.
Abstract. Trafficked and non-trafficked (12 m gantry) crop production systems, which had been maintained on an Evesham series 60% clay soil since 1986, were used again in 1993 during the cultivation and sowing of winter wheat. After a one year set-aside break, mouldboard ploughing, tine cultivation and rotary digging were compared. Measurements were made of tillage energy, soil tilth, cone penetration resistance, biological activity and crop performance, and on specific plots, soil density, seedbed tilth and water release characteristics. Despite the one year's set-aside break, the effect of the previously applied traffic treatments remained and resulted in a smaller specific plough resistance and tillage energy on the non-trafficked soil. Tine cultivator draught however was greater on the non-trafficked compared with the trafficked plots. The specific energy required for rotary digging on non-trafficked soil was similar to that required during the ploughing of similar plots. A measure of indefinite biotic activity indicated that this was apparently greater on the non-traffficked soil, while soil density was decreased by up to 18% in these conditions compared with the trafficked land. Average cone resistance over the depth range 0 to 0.5 m was 1.51 MPa on the trafficked, compared with 1.24 MPa on the non-trafficked soil. Cone resistance also tended to be greater after tine cultivation compared with that after ploughing. Water release curves were interpreted as showing more macropores within the topsoil of the non-trafficked compared with the trafficked plots. Tine cultivation on trafficked soil had more smaller pores than mouldboard plough cultivation. Winter wheat yield was increased by 25% (from 8 to 10 t/ha) on non-trafficked compared with trafficked soil.  相似文献   

19.
Root growth conditions in the topsoil as affected by tillage intensity   总被引:1,自引:0,他引:1  
Many studies have reported impeded root growth in topsoil under reduced tillage or direct drilling, but few have quantified the effects on the least limiting water range for root growth. This study explored the effects of tillage intensity on critical soil physical conditions for root growth in the topsoil. Samples were taken from a 7-year tillage experiment on a Danish sandy loam at Foulum, Denmark (56°30′ N, 9°35′ E) in 2008. The main crop was spring barley followed by either dyer's woad (Isatis tinctoria L.) or fodder radish (Raphanus sativus L.) cover crops as subtreatment. The tillage treatments were direct drilling (D), harrowing 8-10 cm (H), and ploughing (P) to 20 cm depth. A chisel coulter drill was used in the H and D treatments and a traditional seed drill in the P treatment. Undisturbed soil cores were collected in November 2008 at soil field moisture capacity from the 4-8 and 12-16 cm depths.We estimated the critical aeration limit from either 10% air-filled porosity (εa) or relative gas diffusivity (D/D0) of 0.005 or 0.02 and found a difference between the two methods. The critical limit of soil aeration was best assessed by measuring gas diffusivity directly. Root growth was limited by a high penetration resistance in the D and H soils (below tillage depth). Poor soil aeration did not appear to be a significant limiting factor for root growth for this sandy loam soil, irrespective of tillage treatment. The soil had a high macroporosity and D/D0 exceeded 0.02 at field capacity. Fodder radish resulted in more macropores, higher gas diffusivity and lower pore tortuosity compared to dyer's woad. This was especially important for the H treatment where compaction was a significant problem at the lower depths of the arable layer (10-20 cm depth). Our results suggest that fodder radish could be a promising tool in the amelioration of soil compaction.  相似文献   

20.
Soil compaction has been recognised as the greatest problem in terms of damage to Australia’s soil resource. Compaction by tractor and harvester tyres, related to trafficking of wet soil, is one source of the problem. In this paper an array of soil properties was measured before and immediately after the application of a known compaction force to a wet Vertisol. A local grain harvester was used on soil that was just trafficable; a common scenario at harvest. The primary aim was to determine the changes in various soil properties in order to provide a “benchmark” against which the effectiveness of future remedial treatments could be evaluated. A secondary aim was a comparison of the measurements’ efficiency to assess a soil’s structural degradation status. Also assessed was the subsequent effect of the applied compaction on wheat growth and yield in the following cropping season. Nine of the soil properties measured gave statistically significant differences as a result of the soil compaction. Differences were mostly restricted to the top 0.2 m of the soil. The greatest measured depth of effect was decreased soil porosity to 0.4 m measured from intact soil clods. There was 72% emergence of the wheat crop planted into the compact soil and 93% in the uncompact soil. Wheat yield, however, was not affected by the compaction. This may demonstrate that wheat, growing on a full profile of stored soil water as did the current crop, may be little affected by compaction. Also, wheat may have potential to facilitate rapid repair of the damage in a Vertisol such as the current soil by drying the topsoil between rainfall events so increasing shrinking and swelling cycles. If this is true, then sowing a suitable crop species in a Vertisol may be a better option than tillage for repairing compaction damage by agricultural traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号