首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
d'Anjou cv. pear fruit (Pyrus communis L.) exposed at harvest to 0, 0.42, 4.2, or 42 micromol m(-)(3) 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C were stored at 1 degrees C for up to 8 months. After storage, half of the fruit was continuously exposed to ethylene (0.45 or 4-18 mmol m(-)(3)) for 7 days at 20 degrees C. All fruit treated with 1-MCP had lower respiration and ethylene production compared to untreated controls. Fruit quality changes were delayed following 1-MCP treatment, as was development of superficial scald and peel yellowing. The duration of 1-MCP-induced responses was dependent on 1-MCP treatment concentration. When 1-MCP-treated fruit began to ripen, softening and production of volatile compounds proceeded similar to that of untreated fruit. Post-storage ethylene exposure did not consistently stimulate ripening of fruit previously treated with 1-MCP. Efficacy of ethylene treatment depended on 1-MCP concentration and storage duration.  相似文献   

2.
Conference pears (Pyrus communis L.) were treated with 25 and 50 nL L(-1) 1-methylcyclopropene (1-MCP) at -0.5 degrees C for 24 h, then stored for up to 22 weeks in air (NA) and controlled atmosphere (CA). After 7 and 14 weeks of storage, fruits were retreated with 1-MCP. After 7, 14, and 22 weeks of storage, fruits were kept for up to 7 days at 20 degrees C in air for poststorage ripening. The effects of 1-MCP treatment declined with duration of storage in both storage atmospheres, indicating that retreatments had little additional effects on subsequent ripening. Ethylene production was lower and firmness was higher in 50 nL L(-1) fruits, while the 25 nL L(-1) dose was not very different from the control. Development of superficial scald was not prevented by 1-MCP treatments, but the severity of the symptoms was influenced. The 1-MCP effects were perceivable on texture (juiciness) and flavor. Control fruit and 25 nL L(-1) fruit reached their best sensory quality after 14 weeks of storage, while 50 nL L(-1) fruit reached the same sensory quality later, keeping a fresh flavor when the quality of control fruit declined and became watery or grainy. The fresh flavor in 50 nL L(-1) fruit was probably due to the presence below the odor detection threshold concentrations of the volatile compounds responsible for the "ripe pear" aroma, mainly of butanol and ethyl butanoate. CA prolonged or enhanced the effects of 1-MCP; 1-MCP cannot substitute for CA but can reinforce the CA effects.  相似文献   

3.
Ripening affects the quality and nutritional contents of fleshy fruits, and papayas are climacteric fruits very susceptible to postharvest losses due to the fast softening caused by ethylene. This paper reports the changes in respiration, ethylene production, and pulp color and firmness, along with the contents of soluble sugars and major carotenoids, during ripening of 'Golden' papaya, an important Brazilian cultivar that has been exported to North American and European markets. The results obtained for nontreated and ethylene- or 1-MCP-treated papaya suggest that 1-MCP can decrease the quality of treated fruit and that even the use of ethylene for triggering or inducing homogeneous ripening can result in lower quality when compared to that of fruit allowed to ripe naturally.  相似文献   

4.
Apricots (Prunus armeniaca L. cv. Boccuccia spinosa) picked at the commercial ripening stage [soluble solids content (SSC) 12.6%] were left to reach full ripening in continuously humidified air at 20 degrees C. Changes in the rate of ethylene production, firmness, soluble solids concentration, and titratable acidity were measured. The alpha-D- and beta-D-glucosidases, alpha-L-arabinofuranosidase, alpha-D- and beta-D-galactosidases, beta-D-xylosidase, and alpha-D-mannosidase activities were assayed. To evaluate the influence of ethylene on glycosidase activity, propylene (500 microL x L(-1)) was applied to apricots for 24 and 48 h. In apricots ripened in air, ethylene production increased on the first day and exhibited a typical climacteric pattern. Good edible quality was reached in 5 days when SSC was at least 14% and acidity was between 1.1 and 1.2% (% malic acid). During postharvest ripening, alpha-L-arabinofuranosidase activity increased from 1.9 to 11.6 nkat until day 7. alpha-D-Galactosidase, alpha-D-mannosidase, and beta-D-galactosidase activity increased continuously but at a lower rate. beta-D-Xylosidase activity also increased, but the level of activity was lower than the other glycosidases assayed. Pectinmethylesterase (PME) decreased during the postharvest ripening, and propylene enhanced this pattern, by stimulating ethylene production. Even the activities of alpha-L-arabinofuranosidase, beta-D-xylosidase, alpha-D-mannosidase, and beta-D-galactosidase were greatly stimulated by the propylene treatment, which consequently induced rapid softening of the fruits.  相似文献   

5.
Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.  相似文献   

6.
生长调节剂处理对高州矮香蕉贮藏品质的影响   总被引:2,自引:0,他引:2  
以高州矮香蕉为试材,研究了1-甲基环丙烯(1-MCP)和外源乙烯处理对香蕉贮藏品质的影响。结果表明,200nl/L 1-MCP处理可显著抑制香蕉可溶性糖和可溶性固形物含量上升,延缓果实硬度下降,从而延缓香蕉后熟进程;20μl/L外源乙烯对1-MCP处理果实的后熟进程影响不明显。  相似文献   

7.
Exposure of mango (Mangifera indica cv. Tommy Atkins) fruit to methyl jasmonate (MJ) vapors (10(-)(4) M) for 24 h at 25 degrees C reduced chilling injury during subsequent storage for 21 days at 7 degrees C and after 5 days of shelf life at 20 degrees C. The chilling tolerance induced by MJ was positively correlated with the reduction in the percent ion leakage of mango tissue. The overall quality of MJ-treated fruit was also better than that of control fruit. MJ treatment increased the total soluble solids but did not affect titratable acidity or pH. MJ also did not change the normal climacteric rise in respiration, water loss, and softening rates. The efficacy of MJ to reduce chilling injury and decay of mango could be related to the tolerance induced at low temperature. It was concluded that MJ treatment may prevent chilling injury symptoms of mango without altering the ripening process.  相似文献   

8.
Mature green bananas were treated with the ethylene antagonist 1-methylcyclopropene (1-MCP) at intervals during the 24 h period after initiation of ripening with propylene. Following 1-MCP treatment, the fruits were ripened in either air or propylene while ethylene, carbon dioxide, and volatile production and composition were monitored at regular intervals. The application of 1-MCP significantly delayed and suppressed the onset and magnitude of fruit respiration and volatile production. The 1-MCP treatments also caused a quantitative change in the composition of the aroma volatiles, resulting in a substantial increase in the concentration of alcohols and a decrease in their related esters. The results showed that ethylene has a continuing role in integrating many of the biochemical processes that take place during the ripening of bananas.  相似文献   

9.
Apricots of two varieties, Ceccona with strong aroma and San Castrese with low aroma but good firmness, were treated with 1 microL L(-)(1) 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C and then kept for shelf life at 20 degrees C and 85% relative humidity. 1-MCP treatment strongly inhibited ethylene production in apricots of both varieties, and softening was delayed. Fruit softening started before the rise of ethylene in air-treated apricots, which softened even when the rise of ethylene production was inhibited by 1-MCP. The softening reduction was more significant in Ceccona apricots than in San Castrese. Pectinmethylesterase (PME) activity declined in Ceccona fruit regardless of the treatment; in San Castrese, PME of air-treated fruit slightly increased, whereas in 1-MCP-treated apricots the activity declined. alpha-d-Galactosidase (alpha-gal) and beta-d-galactosidase (beta-gal) activities in Ceccona apricot were significantly reduced by 1-MCP treatment, whereas in San Castrese apricot no difference in activities was observed between air- and 1-MCP-treated fruit. The pattern of beta-d-xylosidase (xyl) activity in San Castrese apricot was similar to that of beta-gal, showing a peak on day 4 without difference between treatments. alpha-d-Mannosidase (alpha-man) activity of air-treated apricots of both varieties rose slightly, and 1-MCP treatment decreased the enzyme activity in both varieties. alpha-d-Glucosidase (alpha-glu) decreased in air-treated apricots in both varieties, and 1-MCP maintained higher activity in Ceccona fruit but not in San Castrese. Acidity decreased during postharvest ripening regardless of the treatment, whereas soluble solids content (SSC) increased in Ceccona apricot and slightly diminished in San Castrese ones without any effect by 1-MCP treatment. 1-MCP did not show any effect on apricot color; in contrast, it affected the volatiles profile, especially in Ceccona apricot, reducing the synthesis of lactones and promoting the rise of terpenols.  相似文献   

10.
The impact of 1-methylcyclopropene (1-MCP) on the synthesis and retention of flavonoid compounds during storage and ripening of red Delicious (Malus x domestica Borkh.) apples was investigated. Numerous anthocyanins, flavonols, flavan-3-ols, and a hydroxycinnamic acid from three different fruit harvest maturities were monitored after a 120 day storage and 1 week shelf life period using high-performance liquid chromatography/diode array detector analysis. The total flavonoid concentration was 5% greater in fruit treated with 1-MCP, whereas chlorogenic acid levels were 24% lower. All compounds analyzed increased in concentration during fruit harvest; however, the anthocyanins generally declined after storage, while chlorogenic acid levels increased. 1-MCP treatment resulted in the retention of anthocyanins in the latter stages of storage but did not affect the flavonols and flavan-3-ols. Chlorogenic acid biosynthesis from early and optimal fruit harvest maturities was greatly inhibited by 1-MCP during storage and the 1 week shelf life period. However, 1-MCP did not affect chlorogenic acid concentrations in late-harvested fruit. Results suggest that 1-MCP may inhibit the activity of phenylalanine ammonia-lyase and subsequent biosynthesis of flavonoid compounds. However, because very little postharvest biosynthesis of flavonoids occurs in apples, 1-MCP treatment may be useful for maintaining some of the intrinsic flavonoid levels of red Delicious apples, if applied at the proper harvest maturity.  相似文献   

11.
梁皓  张明晶  王宝刚  姜微波 《核农学报》2010,24(5):1020-1025
以山东大瓜枣为试材,研究1-甲基环丙烯(1-MCP)负压渗透处理对鲜枣贮藏期间生理指标及抗氧化能力的影响。结果表明:1-MCP处理可以维持鲜枣果实体内较低的活性氧水平(H2O2),提高果实自身抗氧化能力(T-AOC、OH·、O2·-、DPPH),维持果实自身的抗氧化物质抗坏血酸(AsA)及总酚含量;1-MCP处理对果实过氧化氢酶(CAT)呈现抑制表达作用,而对于抗坏血酸过氧化物酶(APX)、超氧化物歧化酶(SOD)、多酚氧化酶(PPO)和过氧化物酶(POD)则有一定的激活作用。  相似文献   

12.
Table grapes (Vitis vinifera L. cv. Crimson Seedless) were coated with Aloe vera gel according to our developed patent (SP Patent P200302937) and then stored for 35 days at 1 degrees C, and the subsequent shelf life (SL) was monitored at 20 degrees C. Uncoated clusters showed a rapid loss of functional compounds, such as total phenolics and ascorbic acid. These changes were accompanied by reduction of the total antioxidant activity (TAA) and increases in total anthocyanins, showing an accelerated ripening process. On the contrary, table grapes coated with Aloe vera gel significantly delayed the above changes, such as the retention of ascorbic acid during cold storage or SL. Consequently, Aloe vera gel coating, a simple and noncontaminating treatment, maintained the functional properties during postharvest storage of table grapes.  相似文献   

13.
Gala apples exposed to the ethylene action inhibitor 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C were stored at 1 degrees C in air or a controlled atmosphere (CA) maintained at 1 kPa O2 and 2 kPa CO2. Volatile compounds were measured after 4, 12, 20, and 28 weeks plus 1 or 7 days at 20 degrees C. Treatment with 1-MCP and then storage in air or CA or storage in CA without 1-MCP treatment reduced volatile production as compared to apples not treated with 1-MCP stored in air. The reduced production of esters, alcohols, aldehydes, acetic acid, and 1-methoxy-4-(2-propenyl)benzene was observed. Ester production by fruit stored in CA decreased throughout the storage period regardless of previous 1-MCP treatment. The production of esters, alcohols, aldehydes, acetic acid, and 1-methoxy-4-(2-propenyl)benzene by 1-MCP-treated fruit stored in air plus 7 days at 20 degrees C increased after 20 or 28 weeks of storage. Continuous exposure to 417 micromol m(-3) ethylene for 7 days at 20 degrees C after 12 or 28 weeks of storage stimulated production of many volatile compounds, primarily esters and alcohols, by fruit stored in CA or 1-MCP-treated apples stored in air. However, exposure to ethylene had no effect on the production of aldehydes or acetic acid.  相似文献   

14.
适宜1-MCP处理保持采后菠萝常温贮藏品质   总被引:4,自引:3,他引:4  
为了探索1-MCP处理对采后菠萝生理及品质的影响,为菠萝贮藏保鲜措施提供理论依据。以‘巴厘’品种的菠萝果实为试材,采用适宜0.45μL/L体积分数的1-MCP对菠萝进行处理,置于25℃条件下贮藏,采用气相色谱定期测定乙烯释放量,并采用常规理化分析方法测定菠萝品质及相关生理指标。结果表明,1-MCP处理能延缓果实贮藏过程中乙烯的合成速率,与相同贮藏条件下的对照(未处理)果实相比,乙烯释放高峰推迟4 d;1-MCP处理可以延缓果实丙二醛(malondialdehyde,MDA)含量的快速升高,同时对脂氧合酶(lipoxygenase,LOX)酶活性起到抑制作用;与对照相比,1-MCP处理推迟了过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)等酶活性高峰的出现,并使POD、CAT、过氧化物歧化酶(superoxide dismutase,SOD)等保持较高的活性,可以有效延缓菠萝在贮藏期间的衰老进程,在贮藏14 d时,分别比对照高出22.30%、32.35%、36.67%,差异显著(P0.05);1-MCP还可减缓果实可滴定酸、维生素C等含量的下降,有助于保持果实的良好品质。1-MCP处理可抑制菠萝贮藏期的果实衰老进程,有利于保持果实品质,提高贮藏效果。研究结果将为菠萝贮藏保鲜措施提供参考。  相似文献   

15.
The application of diphenylamine (DPA) to prevent the apple peel disorder superficial scald can result in accumulation of a number of DPA derivatives resulting from C-nitration, C-hydroxylation, O-methylation, and N-nitrosation during fruit storage. As the presence of these compounds may be indicative of metabolic processes leading to superficial scald development, the contents of DPA and DPA derivatives were determined in fruits treated at harvest with DPA or DPA plus the ethylene action inhibitor 1-methylcyclopropene (1-MCP), which also prevents scald development. Influences of fruit maturity, storage environment, storage duration, and a 14 day poststorage ripening period on accumulation of DPA metabolites were also assessed. Poststorage ripening, 1-MCP treatment, and controlled atmosphere storage had varied effects on DPA derivative contents suggesting that reactive oxygen and nitrogen species, such as *OH, *NO, and *NO2, or enzyme-catalyzed reactions may be present during certain ripening and senescence-related physiological processes. Definitive correlations between superficial scald incidence and contents of specific derivatives were not observed.  相似文献   

16.
为在分子水平阐明外源乙烯利、1-MCP和ABA处理对海沃德猕猴桃内源ABA合成代谢的影响,并揭示ABA调控果实后熟机理。本研究以海沃德猕猴桃果实为试验材料,利用外源乙烯利、1-MCP和ABA处理猕猴桃果实,分别运用高相液相色谱(HPLC)和RT-qPCR分析20℃贮存条件下对猕猴桃内源ABA合成、信号通路相关基因XanDHPYR/PYLPP2CABF的表达量影响。结果表明,乙烯利处理下PP2CABF基因表达量在DAH17~DAH58都显著低于对照组,XanDHPYR/PYL在DAH17均显著高于对照组,而后迅速回落。在ABA处理下XanDH基因表达量呈先下降后上升再下降的趋势,在DAH17表达量最高。PP2CPYR/PYL在DAH17经历高峰后逐渐回落至低水平,与对照组差异显著。ABF在采后前期有较高的表达量,经历峰值后急速回落,在后熟中后期表达水平较低。1-MCP处理下,在整个后熟阶段,XanDH的表达量均显著高于对照组,在DAH17达到最大值,随后逐渐降落。与对照组相比,PP2C基因表达量持续上升,ABF基因持续下调;PYR/PYL在DAH17表达量最高而后下调,但仍显著高于对照组。表明乙烯利、1-MCP、ABA处理对海沃德猕猴桃内源ABA合成、信号传导有较大影响,本试验结果为进一步探究外源乙烯利、1-MCP和ABA对猕猴桃果实采后衰老的调控作用及机理提供了一定的理论依据。  相似文献   

17.
Melon varieties (Cucumis melo L.) differ in a range of physical and chemical attributes. Sweetness and aroma are two of the most important factors in fruit quality and consumer preference. Volatile acetates are major components of the headspace of ripening cv. Arava fruits, a commercially important climacteric melon. In contrast, volatile aldehydes and alcohols are most abundant in cv. Rochet fruits, a nonclimacteric melon. The formation of volatile acetates is catalyzed by alcohol acetyltransferases (AAT), which utilize acetyl-CoA to acetylate several alcohols. Cell-free extract derived from Arava ripe melons exhibited substantial levels of AAT activity with a variety of alcohol substrates, whereas similar extracts derived from Rochet ripe melons had negligible activity. The levels of AAT activity in unripe Arava melons were also low but steadily increased during ripening. In contrast, similar extracts from Rochet fruits displayed low AAT activity during all stages of maturation. In addition, the benzyl- and 2-phenylethyl-dependent AAT activity levels seem well correlated with the total soluble solid content in Arava fruits.  相似文献   

18.
Volatile esters, primarily synthesized in peel tissues, are major aromatic components of apple fruits [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. The use of cold storage combined with 1-methylcyclopropene (1-MCP) treatment prolongs the life of apples but represses the regeneration of esters during poststorage ripening. In this study, the regeneration of total esters was significantly increased in apple fruits treated with salicylic acid (SA) and Ethephon (ETH) that had been treated once or twice with 1-MCP. However, methyl jasmonate (MeJA) treatment resulted in regeneration of total esters after a single 1-MCP treatment. To determine the mechanism by which SA, ETH, and MeJA regulate ester regeneration, the apple alcohol acyltransferase gene (MdAAT2) was investigated at the mRNA, protein, and enzyme activity levels. Genes associated with ethylene perception were also investigated by RT-PCR. The results suggest that MdAAT2 controls ester regeneration and that MdETR1 plays a key role in ethylene perception and regulation of downstream MdAAT2 gene expression during poststorage. Ester compounds and concentrations differed in peels treated with different signal molecules, indicating that regulation of the pathway upstream of straight-chain ester biosynthesis depended on the regulation of lipoxygenase (LOX) and alcohol dehydrogenase (ADH) activity by SA, ETH, and MeJA during poststorage ripening.  相似文献   

19.
Cell wall material from Vitis vinifera L. cv. Cabernet Sauvignon grape skin and flesh was isolated at different stages of grape maturity to determine whether developmental changes in cell wall composition in different tissue types influence the binding of proanthocyanidins (PAs). Trends in cell wall adsorption of, and selectivity for, PAs were determined using two skin PAs that differed in their average molecular masses. Flesh cell walls consistently bound a higher amount of PA than those from skin. Key structural differences that reduced PA adsorption in skin cell walls by comparison with flesh cell walls were endogenously higher concentrations of insoluble PA, Klason lignin, and lower cell wall-bound protein. These differences may confer reduced flexibility and porosity of skin cell walls relative to flesh cell walls. Analysis of skin and flesh cell wall properties revealed that the onset of ripening was associated with a loss of type I arabinogalactan and galacturonic acid, which indicated a degradation of pectin within the cell wall. Flesh cell walls consistently bound PAs of larger molecular mass, and changes in PA adsorption properties after the onset of ripening were minor. For skin cell walls, adsorption of PA was lowest immediately following solubilization of galacturonic acid, and high molecular mass PAs were poorly bound. As ripening progressed, PAs of higher molecular mass were selectively adsorbed by skin cell walls, which indicates that ongoing cell wall remodeling during ripening may confer an increased porosity within the skin cell wall matrix, resulting in a greater adsorption of PA within a permeable structure.  相似文献   

20.
Freshly harvested early- and mid-season Bartlett pears (Pyrus communis) were treated with ethylene (air plus 10 Pa C(2)H(4)) or air at 5, 10, and 20 degrees C for 24 and 48 h (experiment 1) and at 5 and 10 degrees C for 48, 72, and 96 h and at 20 degrees C for 24 h (experiment 2). Following C(2)H(4) or air treatment at different temperatures and durations, pears were transferred to 20 degrees C in air for ripening. Bartlett pears were evaluated for firmness, color, respiration, C(2)H(4) production, and activities of 1-aminocyclopropane-1-carboxylic acid synthase (ACC-S) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACC-O). Ethylene action was temperature dependent. The duration of C(2)H(4) conditioning needed to fully induce ripening was longer at lower temperatures: 72 h at 5 degrees C, 48 h at 10 degrees C, and 24 h at 20 degrees C. Cold storage in air for as little as 3-4 days at 5 or 10 degrees C appeared to hasten subsequent ripening, but to a lesser extent than pears kept for 2 weeks at -1 degrees C in air. Despite a significant increase in ACC-S activity in pears treated with C(2)H(4) at 5 degrees C, there was not a simultaneous increase in ACC-O activity, resulting in low C(2)H(4) production that was insufficient to generate the threshold endogenous levels of C(2)H(4) required for ripening. Contrary to previous findings with pears, these data indicate that ACC-O could be a rate-limiting step in C(2)H(4) biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号