首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双流体喷嘴具有雾化效果稳定、显著节能、药量调整范围大和优异的抗堵塞性能等特点,对于提高施药精确性、降低药液浪费和减少环境污染有重要意义。为此,将双流体喷嘴用于猕猴桃园喷雾,使用自主搭建的双流体喷雾试验平台,采用了扇形喷嘴、圆形喷嘴、广角圆形喷嘴3种喷嘴,进行了不同气压下雾化流场的喷雾试验,研究了最佳液体压力恒定的情况下,气路气压的变化对雾化角、贯穿距、流量及压力损失等雾化特性参数的影响。结果表明:扇形喷嘴优于圆形喷嘴和广角圆形喷嘴;随着气压的增大,喷雾的贯穿距先增大后减小;随着气压的增大,雾化角呈现先增大后减小的趋势;随着气压的增大气体流量增大,液体流量减小,气路压力损失较大。对猕猴桃园来说,气压在2.5bar时,选用扇形喷嘴较为适宜,为气液双流式变量喷雾的研究奠定了基础。  相似文献   

2.
针对目前雾化喷嘴存在的雾化压力高、雾化范围小等问题,设计了一种雾化喷头,并分析了该喷头的雾化特性.利用激光粒度测试仪探究压力为0.15~0.30 MPa、出口直径为0.3~0.9 mm等条件下对喷头雾化锥角、速度场和液滴粒径的影响,获取了不同试验条件下流场流动特性的变化规律:在低压力下,雾化锥角受喷头出口直径的影响较大,出口收缩角越大则雾化特性越优良;出口直径为0.9 mm的喷头,喷腔长孔比为1、出口收缩角为75°时更能实现大范围的作业;随着喷雾压力增大,水滴速度最大值也显著增大,但压力对雾化流场整体速度分布趋势的影响不大.水滴直径也随着喷头出口直径增大而增大,且喷头出口直径对水滴直径影响显著,但水滴直径相同时,出口直径越大,水滴速度越小.该结果为雾化喷头在中低压范围内的应用提供了理论参考.  相似文献   

3.
为提高农药有效利用率,基于2400×1500×1500(mm)透明雾化实验平台选用外混式空气雾化喷嘴,利用激光检测和高速摄相机拍摄,针对雾化液滴在3个自变量:气体压力、液体流量、液体温度工艺条件下,同时引入索太尔平均粒径(SMD)计算公式,展开喷嘴雾化液滴粒径特性影响的研究。并基于ANSYS Fluent17.0软件,仿真模拟喷嘴外雾化粒径。由实验获得了影响最佳工况液体流量15kg/h、气体压力0.20MPa、液体温度30℃。同时获得结论:随着液体温度、气体压力的增大,SMD值逐渐减小,雾化效果逐渐上升,农药利用率逐渐提高。  相似文献   

4.
针对目前现有静电喷头雾化效率低、雾化锥角较小等问题,通过改变静电雾化过程中气力式感应型静电喷头的液压、气压和静电压,并对其进行了正交试验设计,获得了不同因素水平下的雾化锥角。利用SPSS软件进行数据分析,最终得到最优的试验因素组合气压0.25MPa,液压0.05MPa,电压-1 000V,并通过方差分析得到影响雾化锥角最显著的试验因素。试验结果表明:气压和液压对喷头的雾化锥角有一定的影响,电压对雾化锥角的影响较小。  相似文献   

5.
使用自主搭建的一套基于相位多普勒粒子分析仪(PDPA)的开放式雾化试验台,开展了不同工况下双流体雾化流场的测试试验,研究了气体流量和水流量对雾化特性(包括喷雾锥角、有效射程以及雾滴粒径、速度、个数的分布)的影响。结果表明:随着气体流量的增大以及水流量的减小,喷雾锥角呈增大趋势,雾滴的索特平均直径(SMD)、速度以及个数均呈减小趋势,而有效射程随着气体流量以及水流量的增大而增大;随着轴向距离的增大,雾滴的SMD、速度以及个数均呈现增大的分布规律;随着径向距离的增大,雾滴的SMD呈增大的分布规律,而雾滴速度以及个数呈现先增大后减小的分布规律。气体流量和水流量对喷嘴出口与振动头之间区域的湍流程度、对冲现象有明显影响,进而显著影响雾化特性。当气体流量为0.8 m3/h、水流量为35 L/h时,与优化前(气体流量为0.95 m3/h、水流量为40 L/h)相比,SMD减小了21.50%,有效射程、雾滴速度、雾滴个数分别增加了10.26%、39.08%、61.54%,喷嘴雾化能耗降低的同时综合雾化效果得到了提升。  相似文献   

6.
为了研究低压喷头异形喷嘴水量分布的均匀性,依据面积相同原则,设计出圆形、三角形、正方形3种以及不同锥角形式的喷嘴,研究低压下异形喷嘴喷头对喷灌水量分布的影响.通过外特性试验测量了异形喷嘴喷头的流量、射程和水量分布,利用Matlab软件分析不同喷嘴喷头的喷洒均匀性,同时采用高速摄影技术观测不同喷嘴形式下喷头射流空间流态.结果表明:同一压力下,随着喷嘴锥角的增大,喷头流量逐渐减小,且正方形喷嘴喷头流量最大,三角形喷嘴喷头流量最小;喷头射程随着喷嘴锥角的增大呈先增大后减小变化趋势,且圆形喷嘴喷头射程最远,三角形喷嘴喷头射程最短.由高速摄影图像可以看出,三角形喷嘴喷头的射流破碎段最短,圆形喷嘴喷头的射流破碎段最长;随着喷嘴锥角的增大,3种喷嘴喷头的射流破碎长度段呈减小趋势;综合射程和雾化效果可知,锥角为45°时圆形喷嘴喷头为最优.同时,通过对圆形喷嘴和异形喷嘴的水量分布均匀性测量,发现异形喷嘴喷洒组合均匀性系数比圆形喷嘴明显要高.  相似文献   

7.
研究了不同低压下喷头喷嘴直径和喷嘴锥角对射流破碎的影响。采用高速摄像仪对低压圆柱射流的射流核心长度和射流破碎长度进行实验,测量了不同喷嘴结构的流量、射程和末端水滴直径。结果表明:同一压力下,当喷嘴锥角不变时,随着喷嘴直径的增大,喷头流量、射程和喷头末端水滴直径都变大,射流核心长度和破碎长度均增大;当喷嘴直径不变时,随着喷嘴锥角的增大,喷头流量逐渐减小,而喷头射程呈先增大后减小趋势,喷头末端水滴直径也变大,射流核心长度逐渐减小,射流破碎长度先减小后增大。综合考虑射程和雾化效果,直径为5 mm、锥角为45°的喷嘴为最优选择。同时通过对不同Re数和We数的实验和分析,给出了适合低压喷嘴的两种射流特征长度的拟合关联式。  相似文献   

8.
金属加工喷雾冷却是将液体直接雾化,雾化的小液滴汽化时带走热量,从而降低刀具工作区的温度.影响喷雾降温关键的因素是雾滴粒径,雾滴粒径越小,其表面积越大,越易汽化,液体蒸发、汽化从而产生良好的冷却效果.建立了用于金属切削加工冷却的气动喷雾系统,利用PDA测试系统对喷嘴的雾化特性进行了试验研究,测量了在不同工况下的雾滴粒径及滴速信息.试验结果表明,喷嘴孔径及气动压力对雾化特性有着重要影响,在0.4 MPa气压和1.2 mm喷嘴孔径条件下喷雾系统可得到最佳的雾化效果,喷雾冷却作用集中体现在喷雾射流中心区域.  相似文献   

9.
气泡雾化喷嘴泡状流喷雾特征试验与仿真   总被引:1,自引:0,他引:1  
孙春华  宁智  乔信起  李元绪  吕明 《农业机械学报》2019,50(10):367-374,409
建立了气泡雾化喷射可视化试验系统及喷嘴内部和喷雾场中气液流动模型;采用试验和仿真方法对一特定可视化喷嘴的泡状流喷雾特征进行了研究。结果表明,喷雾表面存在气相膨胀凸起现象,气相膨胀凸起宽度随液相流量和气液质量比增加而增大,凸起间距随气液质量比增加而减小;在相同气液质量比下,喷雾锥角随液相流量增加而增大,较高液相流量时液相流量的影响变弱,喷雾贯穿距在较低气液质量比时随液相流量增加而增大,较高气液质量比时则减小;低气液质量比时,喷雾形态受气液质量比影响明显,喷雾锥角和贯穿距随气液质量比增加而增大;液滴碰撞率随喷雾轴向距离增加而减小并逐渐趋于稳定;喷孔出口气液流量脉动对喷孔出口截面附近液滴轴向速度的影响只局限于很短距离内;随着与喷孔出口轴向距离增加,液滴直径分布范围变宽、液滴峰值数量减少,液滴峰值直径和液滴直径分布向大直径方向移动;随着与喷孔出口轴向距离增加,大尺度液滴区内液滴粒径增大,大尺度液滴区的径向范围变宽。  相似文献   

10.
基于异形喷嘴结构的低压喷头水力性能   总被引:1,自引:0,他引:1  
对2种流量相等的出口截面形状为正方形和正三角形的异形喷嘴与圆形喷嘴进行了对比研究,研究其压力、喷嘴锥角、出口截面形状对流量、射程、喷灌强度和喷灌均匀性等水力性能的影响.结合试验和Matlab软件,分析低压下异形喷嘴在矩形布置下的组合均匀性,确定了组合喷灌均匀性最好的喷嘴型号及其最佳组合间距.研究表明:锥角一定时,喷嘴的流量和射程均随着压力增大而增大;压力一定时,喷嘴的流量和射程随着锥角变大而减小.低压条件下,异形喷嘴的喷灌均匀性较圆形喷嘴有极大改善,低压组合喷灌均匀性最佳的喷嘴为锥角45°的正三角形喷嘴,最佳组合间距为一个有效喷洒半径.异形喷嘴的组合均匀性系数比圆形喷嘴的高,说明在组合喷灌时选用异形喷嘴更能体现喷灌均匀性优势.  相似文献   

11.
高压旋芯喷嘴的雾化特性   总被引:13,自引:3,他引:10  
对直射式喷嘴进行加旋芯改进,改进后喷嘴的喷雾情况符合不稳定性理论规律。利用三维激光多普勒粒子测速仪(3D—PDPA),测量了单相流细水雾喷嘴在1m处截面的雾化特性参数;研究了喷嘴直径和喷射压力对雾化特性的影响。试验结果表明,喷雾压力大于2MPa后,1m处截面的喷雾锥角、雾滴索太尔平均直径(SMD)和轴向速度的变化不大。所测试的系列喷嘴的最佳压力范围为7~8MPa;所形成的细水雾雾滴SMD均小于100μm,属于超细水雾范畴。  相似文献   

12.
气泡雾化是一种新型的两相流雾化方法,具有更小的雾滴直径和更低的工作压力.为此,设计了一种新型农业施药用的气泡雾化喷嘴,并对其流量和雾化特性进行了实验研究.其试验结果发现:喷嘴的雾化特性主要受气液比的影响,流量特性比较复杂, 气体流量和液体流量之间相互影响,一相流量的变化必引起另一相的流量变化;水平喷射时,颗粒直径沿径向的分布不对称,下方沿径向增大;上方基本不变.喷嘴出口直径的大小对雾化质量影响较小.  相似文献   

13.
设计了一种弹性喷嘴的变量喷头,其喷嘴直径随压力的增大而变大,从而降低喷头的雾化程度。为研究确定弹性喷嘴锥形角、喷嘴直径、末端圆柱段长度、弹性材料厚度和喷嘴伸出量等主要参数,利用ANSYS建立了变量喷头及其内流道的三维实体模型,采用k-ε模型在CFX和ANSYS单向流固耦合中模拟喷头弹性喷嘴在不同工作压力,不同喷嘴直径组合下的内流道流场和喷嘴的变形过程,建立了工作压力、喷嘴直径变形和喷头流量等参数的关系模型。采用全面喷洒的方法对喷头样品进行了试验,通过测量喷头流量和喷头工作压力等,对模拟结果进行验证。  相似文献   

14.
弹尾形稳流器对摇臂式喷头内流道水力性能影响   总被引:4,自引:0,他引:4  
对PY140型摇臂式喷头在不同的弹尾形稳流器与喷嘴直径组合工况下进行了喷头内流道水力性能试验。结果表明:喷头内流道阻力损失与喷嘴直径、稳流器长度及进口工作压力呈正比,并建立了回归模型;喷管段产生的阻力损失与喷头内流道阻力损失之比的平均值为0.666;当进口工作压力一定时,喷嘴工作压力与喷嘴直径、稳流器长度呈反比,喷头流量的最大相对误差为4.7%;锥角为40°的圆锥形喷嘴流量系数算术平均值是0.928。  相似文献   

15.
为了找到喷嘴最佳喷涂效果时的喷嘴几何参数组合,通过数值分析和试验进行了研究。利用Fluent软件搭建了简化的雾化喷嘴模型,通过正交试验原理,研究了喷嘴气液夹角、喷嘴出口直径、喷嘴出口缩进距离3个结构参数综合作用下的喷嘴雾化性能。搭建了喷雾试验台并进行喷雾试验。仿真和试验结果表明:喷嘴结构组合为气液夹角为30°、缩进距离1.5mm、喷嘴出口直径1.5mm时,雾化效果是最好的。  相似文献   

16.
料液脉动燃烧尾气雾化试   总被引:2,自引:2,他引:0  
脉动燃烧器产生的高温振荡尾气流可用于料液的脉动气流雾化干燥,作业成本低,干燥质量好.本文采用小型亥尔姆霍茨(Helmholtz)型脉动燃烧器,利用激光测试仪测定雾滴粒度和粒度分布,研究了脉动燃烧尾气流雾化料液过程中料液流量、料液粘度和脉动气流频率对雾滴粒度和粒度分布的影响规律.试验结果分析表明,料液流量35 L/h、脉动气流频率100 Hz、料液粘度适中时的雾化效果最好.  相似文献   

17.
介绍了激光相位多普勒粒子测速仪(PDPA)的基本结构、测量原理及分析了相关测量的误差,并运用该系统对不同喷嘴压力条件下的喷雾场进行了测试。结果表明,与其它非接触式测试仪器相比,PDPA测试系统在喷嘴雾化特性试验研究中具有较大的优势。运用该系统能够方便地分析、考察不同测试条件下喷雾场的主要运动结构状况。采用条件雾化角的测量概念,可以直接测定喷雾雾化角且精度较高。直观、明了的雾滴数分布状况可为相关器械设计及性能评价提供参考。  相似文献   

18.
为降低夏季高温时温室内的温度,通过试验研究双拱双膜温室单喷头喷雾降温过程.探究单喷头不同雾化指标、喷雾时长及侧窗开闭条件下的室内温湿度变化规律.结果表明:①固定喷头工作时间和喷嘴直径,增大水压力,降温和增湿幅度增大;固定喷头工作时间和水压力,增大喷嘴直径,降温和增湿幅度增大.固定相同的雾化指标,降温和增湿幅度随喷雾时间...  相似文献   

19.
斯特林发动机喷雾特性试验研究   总被引:3,自引:2,他引:1  
采用高速摄影技术研究比较了不同背压下斯特林发动机的喷雾过程,并分析了燃油流量、燃烧室背压以及喷嘴参数对斯特林发动机喷雾特性的影响.结果表明,燃烧室背压对喷雾过程具有明显的影响;随着流量的增大,贯穿距离和喷雾锥角都增大,但流量达到一定程度后,喷雾锥角的增加趋势减缓;随着燃烧室背压加大,喷雾的贯穿距离增大,喷雾锥角减小,背压对喷雾具有压缩作用,当背压增大到一定程度后,它对喷雾锥角的影响程度降低;相同流量工况下,随喷嘴流道通径的减小,喷雾的贯穿距离增大,喷雾锥角减小.  相似文献   

20.
为了了解高压水射流喷嘴结构参数变化对射流性能的影响,以出口扩张角、锥孔深度、入口收缩角作为参考因素,以喷射角、射流流量作为评价指标,对喷嘴各结构参数对射流性能的影响进行仿真分析和试验验证.按照单因素试验法和二次旋转正交组合设计的方法进行仿真试验,对试验结果进行显著性检验和方差分析,建立相应的回归方程.结果表明:锥孔深度是研究所涉及3个参考因素中对射流性能影响最为显著的因素,其显著性水平P<0.000 1.采用响应面法、加权法对喷嘴结构参数进行寻优,发现当出口扩张角θ=68°、锥孔深度h=8 mm、入口收缩角α=65°时喷嘴的射流流量为27.8 L/min,喷射角的大小为45.3°.在此参数下喷嘴的喷射角和射流流量都得到了显著提升,喷嘴更易获得较好冲击压力和清洗效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号