首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
The present experiment was conducted to evaluate the ability of the U.S. Meat Animal Research Center's beef carcass image analysis system to predict calculated yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score under commercial beef processing conditions. In two commercial beef-processing facilities, image analysis was conducted on 800 carcasses on the beef-grading chain immediately after the conventional USDA beef quality and yield grades were applied. Carcasses were blocked by plant and observed calculated yield grade. The carcasses were then separated, with 400 carcasses assigned to a calibration data set that was used to develop regression equations, and the remaining 400 carcasses assigned to a prediction data set used to validate the regression equations. Prediction equations, which included image analysis variables and hot carcass weight, accounted for 90, 88, 90, 88, and 76% of the variation in calculated yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score, respectively, in the prediction data set. In comparison, the official USDA yield grade as applied by online graders accounted for 73% of the variation in calculated yield grade. The technology described herein could be used by the beef industry to more accurately determine beef yield grades; however, this system does not provide an accurate enough prediction of marbling score to be used without USDA grader interaction for USDA quality grading.  相似文献   

2.
In two phases, this study assessed the ability of two video image analysis (VIA) instruments, VIASCAN and Computer Vision System (CVS), to augment assignment of yield grades (YG) to beef carcasses to 0.1 of a YG at commercial packing plant speeds and to test cutout prediction accuracy of a YG augmentation system that used a prototype augmentation touchpanel grading display (designed to operate commercially in real-time). In Phase I, beef carcasses (n = 505) were circulated twice at commercial chain speeds (340 carcasses per hour) by 12 on-line USDA graders. During the first pass, on-line graders assigned a whole-number YG and a quality grade (QG) to carcasses as they would normally. During the second pass, on-line graders assigned only adjusted preliminary yield grades (APYG) and QG to carcasses, whereas the two VIA instruments measured the longissimus muscle area (LMA) of each carcass. Kidney, pelvic, and heart fat (KPH) was removed and weighed to allow computation of actual KPH percentage. Those traits were compared to the expert YG and expert YG factors. On-line USDA graders' APYG were closely related (r = 0.83) to expert APYG. Instrument-measured LMA were closely related (r = 0.88 and 0.94; mean absolute error = 0.3 and 0.2 YG units, for VIASCAN and CVS, respectively) to expert LMA. When YG were augmented using instrument-measured LMA and computed either including or neglecting actual KPH percentage, YG were closely related (r = 0.93 and 0.92, mean absolute error = 0.32 and 0.40 YG units, respectively, using VIASCAN-measured LMA; r = 0.95 and 0.94, mean absolute error = 0.24 and 0.34 YG units, respectively, using CVS-measured LMA) to expert YG. In Phase II, augmented YG were assigned (0.1 of a YG) to beef carcasses (n = 290) at commercial chain speeds using VIASCAN and CVS to determine LMA, whereas APYG and QG were determined by online graders via a touch-panel display. On-line grader YG (whole-number), expert grader YG (to the nearest 0.1 of a YG), and VIASCAN- and CVS-augmented YG (to the nearest 0.1 of a YG) accounted for 55, 71, 60, and 63% of the variation in fabricated yields of closely trimmed subprimals, respectively, suggesting that VIA systems can operate at current plant speeds and effectively augment official USDA application of YG to beef carcasses.  相似文献   

3.
Objective quantification of differences in wholesale cut yields of beef carcasses at plant chain speeds is important for the application of value-based marketing. This study was conducted to evaluate the ability of a commercial video image analysis system, the Computer Vision System (CVS) to 1) predict commercially fabricated beef subprimal yield and 2) augment USDA yield grading, in order to improve accuracy of grade assessment. The CVS was evaluated as a fully installed production system, operating on a full-time basis at chain speeds. Steer and heifer carcasses (n = 296) were evaluated using CVS, as well as by USDA expert and online graders, before the fabrication of carcasses into industry-standard subprimal cuts. Expert yield grade (YG), online YG, CVS estimated carcass yield, and CVS measured ribeye area in conjunction with expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, hot carcass weight) accounted for 67, 39, 64, and 65% of the observed variation in fabricated yields of closely trimmed subprimals. The dual component CVS predicted wholesale cut yields more accurately than current online yield grading, and, in an augmentation system, CVS ribeye measurement replaced estimated ribeye area in determination of USDA yield grade, and the accuracy of cutability prediction was improved, under packing plant conditions and speeds, to a level close to that of expert graders applying grades at a comfortable rate of speed offline.  相似文献   

4.
Cut-out data from 2,550 steer carcasses representing British, Continental and Zebu breeding were analyzed to evaluate yield grade classes based on three equations: 1) Ya = 2.5 + .984 AFT + .0084 HCW - .05 REA + .2 KPF; 2) Yb = same as Ya with intercept changed to 3.2 and KPF deleted; 3) Yc = 3.0 + .984 AFT + .0041 HCW - .03 REA, as proposed by USDA in 1984; where AFT = adjusted fat thickness (cm), HCW = hot carcass weight (kg), REA = rib-eye area (cm2), and KPF = kidney and pelvic fat (%). Essentially boneless, closely trimmed (8 mm) roasts and steaks of the four major retail cuts (MRC) were made from one side of each carcass. Cutability was calculated as: Ca, % = 100 (MRC/side) and Cb,c % = 100 (MRC/side, KPF removed). Cutability increased (P less than .01) an average of two percentage points when KPF was removed. In general, removing KPF from the estimation of cutability and changing the coefficients for REA and HCW resulted in a decrease in the number of carcasses yield graded 1 or 4 and an increase in the number of carcasses in yield grade 2. Redistribution of carcasses was greater for Yc than for Yb. Carcasses classified with equation Yc tended (P greater than .05) to have greater cutability in yield grades 1 and 2, and lower (P less than .01) cutability in yield grades 3, 4 and 5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
This study was conducted to determine the accuracy and repeatability of beef carcass longissimus muscle area (LMA) measurements obtained by three different methods. Longissimus muscle area for beef carcass sides (n = 100) randomly selected in a commercial packing plant was determined: 1) independently by three USDA grading supervisor "experts" using the grid method to obtain triplicate measurements of the same longissimus muscle (LM); 2) by three different Colorado State University personnel tracing the LMA on acetate paper and subsequently measuring the area via a polar planimeter three different times (total of 3 x 3 = 9 observations/LM); and 3) by use of two identical video image analysis (VIA) instruments making triplicate measurements for each LM using three different procedures. Video image analysis Procedure 1 required that LMA be measured by placing the camera head unit over the LM and collecting three sequential images without moving the camera head unit while carcasses were in a stationary position; Procedure 2 required measurement of LMA by placing the camera head unit over the LM and collecting three images, but removing and repositioning the camera head unit between collection of each image while carcasses were in a stationary position; and Procedure 3 required that LMA be measured by placing the camera head unit over the LM and obtaining an image while carcasses were in continuous motion (chain speed of 360 carcasses/ h) during three different circulations past the grading stand. Overall, VIA-derived LMA measurements were highly accurate for all three procedures compared with expert-gridded (R2 = 0.92, 0.90, and 0.84 for Procedures 1, 2, and 3, respectively) and acetate/planimeter-traced (R2 = 0.94, 0.93, and 0.86 for Procedures 1, 2, and 3, respectively) LMA measurements. Instrument LMA repeatability also was comparable to expert-gridded and acetate/planimeter-traced LMA repeatability, as the means of the absolute differences between individual measurements and the average of those same measurements per LM were 1.29, 1.35, 0.52, 0.84, and 1.87 cm2 for expert-gridded, acetate/planimeter-traced, and VIA Procedures 1, 2, and 3, respectively. Therefore, VIA instrumentation can be used to assess beef carcass LMA in both a stationary and operational scenario with high levels of accuracy and repeatability.  相似文献   

6.
One hundred beef carcasses were selected to represent the mix of cattle slaughtered across the United States. Selection criteria included breed type (60% British/continental European, 20% Bos indicus, and 20% dairy carcasses), sex class (beef and Bos indicus: 67% steers, 33% heifers; dairy: 100% steers), USDA quality grade (4% Prime, 53% Choice, and 43% Select), USDA yield grade (10% YG 1, 43% YG 2, 40% YG 3, and 7% YG 4), and carcass weight (steers: 272.2 to 385.6 kg, heifers: 226.8 to 340.2 kg). One side of each carcass was fabricated into boneless subprimals and minor cuts following Institutional Meat Purchase Specifications. After fabrication, subprimals were trimmed progressively of fat in .64-cm increments beginning with a maximum of 2.54 cm and ending with .64 cm. Linear regression models were developed for each individual cut, including fabrication byproduct items (bone, fat trim) to estimate the percentage yield of those cuts reported by USDA Market News. Strip loin, top sirloin butt, and gooseneck rounds from heifers tended to have a higher percentage yield at the same USDA yield grade than the same cuts from steers, possibly resulting from increased fat deposition on heifers. Percentage of fat trimmed from dairy steers was 2 to 3% lower than that from other sex-class/carcass types; however, due to increased percentage of bone and less muscle, dairy steers were lower-yielding. Fat trimmed from carcasses ranged from 7.9 to 15.6% as the maximum trim level decreased from 2.54 to .64 cm.  相似文献   

7.
An improved ability to quantify differences in the fabrication yields of beef carcasses would facilitate the application of value-based marketing. This study was conducted to evaluate the ability of the Dual-Component Australian VIASCAN to 1) predict fabricated beef subprimal yields as a percentage of carcass weight at each of three fat-trim levels and 2) augment USDA yield grading, thereby improving accuracy of grade placement. Steer and heifer carcasses (n = 240) were evaluated using VIASCAN, as well as by USDA expert and online graders, before fabrication of carcasses to each of three fat-trim levels. Expert yield grade (YG), online YG, VIASCAN estimates, and VIASCAN estimated ribeye area used to augment actual and expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, and hot carcass weight), respectively, 1) accounted for 51, 37, 46, and 55% of the variation in fabricated yields of commodity-trimmed subprimals, 2) accounted for 74, 54, 66, and 75% of the variation in fabricated yields of closely trimmed subprimals, and 3) accounted for 74, 54, 71, and 75% of the variation in fabricated yields of very closely trimmed subprimals. The VIASCAN system predicted fabrication yields more accurately than current online yield grading and, when certain VIASCAN-measured traits were combined with some USDA yield grade factors in an augmentation system, the accuracy of cutability prediction was improved, at packing plant line speeds, to a level matching that of expert graders applying grades at a comfortable rate.  相似文献   

8.
This research was conducted to determine whether objective measures of muscle color, muscle pH, and(or) electrical impedance are useful in segregating palatable beef from unpalatable beef, and to determine whether the current USDA quality grading standards for beef carcasses could be revised to improve their effectiveness at distinguishing palatable from unpalatable beef. One hundred beef carcasses were selected from packing plants in Texas, Illinois, and Ohio to represent the full range of muscle color observed in the U.S. beef carcass population. Steaks from these 100 carcasses were used to determine shear force on eight cooked beef muscles and taste panel ratings on three cooked beef muscles. It was discovered that the darkest-colored 20 to 25% of the beef carcasses sampled were less palatable and considerably less consistent than the other 75 to 80% sampled. Marbling score, by itself, explained 12% of the variation in beef palatability; hump height, by itself, explained 8% of the variation in beef palatability; measures of muscle color or pH, by themselves, explained 15 to 23% of the variation in beef palatability. When combined together, marbling score, hump height, and some measure of muscle color or pH explained 36 to 46% of the variation in beef palatability. Alternative quality grading systems were proposed to improve the accuracy and precision of sorting carcasses into palatability groups. The two proposed grading systems decreased palatability variation by 29% and 39%, respectively, within the Choice grade and decreased palatability variation by 37% and 12%, respectively, within the Select grade, when compared with current USDA standards. The percentage of unpalatable Choice carcasses was reduced from 14% under the current USDA grading standards to 4% and 1%, respectively, for the two proposed systems. The percentage of unpalatable Select carcasses was reduced from 36% under the current USDA standards to 7% and 29%, respectively, for the proposed systems. These grading systems, which included requirements for maturity, marbling, hump height, and colorimeter readings, could be implemented into the current USDA beef quality grading standards and improve the accuracy and precision of sorting beef carcasses into palatability groups. At the least, measurements of muscle color or pH could be used in a branded-beef program to increase the palatability consistency of its beef products.  相似文献   

9.
Video image analysis (VIA) images from grain-finished beef carcasses [n = 211; of which 63 did not receive zilpaterol hydrochloride (ZIL) and 148 received ZIL before harvest] were analyzed for indicators of muscle and fat to illustrate the ability to improve methodology to predict saleable meat yield of cattle fed and not fed ZIL. Carcasses were processed in large commercial beef processing facilities and were fabricated into standard subprimals, fat, and bone. Images taken by VIA technology were evaluated using computer image analysis software to quantify fat and lean parameters which were subsequently used in multiple-linear regression models to predict percentage of saleable meat yield for each carcass. Prediction models included variables currently quantified by VIA technology such as LM area (LMA), subcutaneous (SC) fat thickness at 75% the length of the LM (SFT75), and intramuscular fat score (IMF). Additional distance and area measures included LM width (LW), LM depth (LD), iliocostalis muscle area (IA), SC fat thickness at 25, 50, and 100% the length of the LM (SFT25, SFT50, SFT100), SC fat area from 25 to 100% the length of the LM (SCFA), and SC fat area adjacent to the 75% length of the LM from the spinous processes (SCFA75). Multiple ratio and product variables were also created from distance and area measures. For carcasses in this investigation, a 6 variable equation (Adj. R(2) = 0.62, MSE = 0.022) was calculated which included coefficients for ZIL treatment, SCFA75, LW, SCFA, SCFA/HCW, and SFT100/HCW. Use of parameters in the U.S. (Adj. R(2) = 0.39, MSE = 0.028) and Canadian [Adj. R(2) = 0.10, root mean square error (MSE) = 0.034] yield grade equations lack the predictability of the newly adapted equations developed for ZIL-fed and non-ZIL-fed cattle. Prediction equations developed in this study indicate that the use of VIA technology to quantify measurements taken at the 12th/13th rib separation could be used to predict saleable meat yield more accurately than those currently in use by U.S. and Canadian grading systems. Improvement in saleable meat yield prediction has the potential to decrease boxed beef variability via more homogeneous classification of carcass fabrication yield.  相似文献   

10.
The objective of this study was to benchmark carcasses and muscles from commercially identified fed (animals that were perceived to have been fed an increased plane of nutrition before slaughter) and nonfed cull beef and dairy cows and A-maturity, USDA Select steers, so that the muscles could be identified from cull cow carcasses that may be used to fill a void of intermediately priced beef steaks. Carcass characteristics were measured at 24 h postmortem for 75 carcasses from 5 populations consisting of cull beef cows commercially identified as fed (B-F, n = 15); cull beef cows commercially identified as nonfed (B-NF, n = 15); cull dairy cows commercially identified as fed (D-F, n = 15); cull dairy cows commercially identified as nonfed (D-NF, n = 15); and A-maturity, USDA Select grade steers (SEL, n = 15). Nine muscles were excised from each carcass [m. infraspinatus, m. triceps brachii (lateral and long heads), m. teres major, m. longissimus dorsi (also termed LM), m. psoas major, m. gluteus medius, m. rectus femoris, and m. tensor fasciae latae] and subjected to Warner-Bratzler shear force testing and objective sensory panel evaluation after 14 d of postmortem aging. Carcass characteristics differed (P < 0.05) among the 5 commercially identified slaughter groups for the traits of lean maturity, bone maturity, muscle score, HCW, fat color, subjective lean color, marbling, ribeye area, 12th-rib fat thickness, and preliminary yield grade. Carcasses from commercially identified, fed cull cows exhibited more (P < 0.01) weight in carcass lean than did commercially identified, nonfed cull cows. There was a group x muscle interaction (P = 0.02) for Warner-Bratzler shear force. Warner-Bratzler shear force and sensory overall tenderness values demonstrates that muscles from the SEL group were the most tender (P < 0.01), whereas muscles from the B-NF group were the least tender (P < 0.01). Sensory, beef flavor intensity was similar (P > 0.20) among cull cow carcass groups and more intense (P < 0.01) than the SEL carcass group. Muscles from the SEL group exhibited less (P < 0.01) detectable off-flavor than the cull cow carcass groups, whereas the B-NF group exhibited the most (P < 0.01) detectable off-flavor. Although carcass and muscle quality from commercially identified, fed, cull beef and dairy cows was not similar to A-maturity, USDA Select beef, they did show improvements when compared with nonfed, cull, beef and dairy cow carcasses and muscles.  相似文献   

11.
An objective method for predicting red meat yield in lamb carcasses is needed to accurately assess true carcass value. This study was performed to evaluate the ability of the lamb vision system (LVS; Research Management Systems USA, Fort Collins, CO) to predict fabrication yields of lamb carcasses. Lamb carcasses (n = 246) were evaluated using LVS and hot carcass weight (HCW), as well as by USDA expert and on-line graders, before fabrication of carcass sides to either bone-in or boneless cuts. On-line whole number, expert whole-number, and expert nearest-tenth USDA yield grades and LVS + HCW estimates accounted for 53, 52, 58, and 60%, respectively, of the observed variability in boneless, saleable meat yields, and accounted for 56, 57, 62, and 62%, respectively, of the variation in bone-in, saleable meat yields. The LVS + HCW system predicted 77, 65, 70, and 87% of the variation in weights of boneless shoulders, racks, loins, and legs, respectively, and 85, 72, 75, and 86% of the variation in weights of bone-in shoulders, racks, loins, and legs, respectively. Addition of longissimus muscle area (REA), adjusted fat thickness (AFT), or both REA and AFT to LVS + HCW models resulted in improved prediction of boneless saleable meat yields by 5, 3, and 5 percentage points, respectively. Bone-in, saleable meat yield estimations were improved in predictive accuracy by 7.7, 6.6, and 10.1 percentage points, and in precision, when REA alone, AFT alone, or both REA and AFT, respectively, were added to the LVS + HCW output models. Use of LVS + HCW to predict boneless red meat yields of lamb carcasses was more accurate than use of current on-line whole-number, expert whole-number, or expert nearest-tenth USDA yield grades. Thus, LVS + HCW output, when used alone or in combination with AFT and/or REA, improved on-line estimation of boneless cut yields from lamb carcasses. The ability of LVS + HCW to predict yields of wholesale cuts suggests that LVS could be used as an objective means for pricing carcasses in a value-based marketing system.  相似文献   

12.
Lamb carcasses (n = 278) were selected immediately after slaughter and fat thickness was measured with the SP2 Hennessy grading probe (HP) at the interface of the 12th and 13th ribs, 3.8 cm from the backbone. After a 24-h chilling period, carcasses were graded by a USDA grader and probed with the HP to obtain a fat thickness measure on the chilled carcass. One hundred sixty-five carcasses were fabricated into wholesale cuts (.64 cm of external fat trim), and 113 carcasses were fabricated into tray-ready retail cuts (.25 cm of external fat trim). Carcass weight, fat thickness (metal probe), adjusted fat thickness, hot and chilled carcass HP fat measures, as well as kidney and pelvic fat percentage and USDA yield grade, were highly correlated to cutting yield for both fabrication methods. Regression models developed to predict wholesale cut yields using HP or grader-collected measures were similar with respect to predictive accuracy. Fat thickness explained most of the variation in wholesale and tray-ready cut yields among the variables collected by the grader. Kidney and pelvic fat accounted for more of the variation in yield of wholesale cuts during stepwise regression to determine HP equations, but for predicting tray-ready yields, fat thickness taken with the HP accounted for the largest amount of variation. Equations developed to predict tray-ready retail cut yields using the HP or USDA grader-collected carcass measures were similar in the amount of variation explained. Kidney and pelvic fat percentage must be included in equations to maximize predictive accuracy when this depot site is left in carcasses.  相似文献   

13.
Cattle (n = 995 steers and 757 heifers) were randomly selected from a commercial abattoir (Emporia, KS) to determine the relationships between USDA quality and yield grade characteristics and serum concentrations of leptin, IGF-I, and GH. Animals were randomly selected postexsanguination on the slaughter line on 4 occasions (March, May, August, and January). Blood was collected at exsanguination and transported to the University of Missouri for analysis. Sex and hide color were recorded. Carcass data included HCW, 12th-rib fat thickness, KPH, LM area, and marbling score, which were collected from each carcass approximately 24 h postmortem. Average serum leptin concentrations were greater (P = 0.008) for heifers (11.9 ng/mL) than steers (10.9 ng/mL). Heifers had lighter carcasses (331.9 vs. 352.2 kg, P < 0.001), greater 12th-rib fat measurements (1.3 vs. 1.1 cm, P < 0.001), greater KPH (2.5 vs. 2.4%, P < 0.001), and more marbling (Small(40) vs. Small(10), P < 0.001) than steers. Positive correlations (P < 0.01) existed between leptin concentration and marbling score (r = 0.28), 12th-rib fat depth (r = 0.37), KPH (r = 0.23), and USDA yield grade (r = 0.32). Negative correlations were found between leptin and IGF-I (r = -0.11; P < 0.001) and leptin and GH (r = -0.32; P < 0.001). Negative correlations (P < 0.01) were observed for IGF-I and KPH (r = -0.23) and marbling score (r = -0.20), whereas GH was most highly negatively correlated with KPH (r = -0.23; P < 0.001). Leptin concentration accounted for variation (P < 0.001) in a model separating least squares means across USDA quality grade, separating USDA standard (8.5 ng/mL), select (10.3 ng/mL), low choice (12.2 ng/mL), and upper 2/3 choice/prime (>12.9 ng/mL) carcasses. There was no difference (P = 0.31) observed in leptin concentrations between the upper 2/3 choice and prime carcasses (12.9 and 14.2 ng/mL, respectively). Relationships within endocrine profiles and between endocrine concentrations and carcass quality characteristics may prove to be a useful tool for the prediction of beef carcass composition.  相似文献   

14.
This study was performed to validate previous equations and to develop and evaluate new regression equations for predicting lamb carcass fabrication yields using outputs from a lamb vision system-hot carcass component (LVS-HCC) and the lamb vision system-chilled carcass LM imaging component (LVS-CCC). Lamb carcasses (n = 149) were selected after slaughter, imaged hot using the LVS-HCC, and chilled for 24 to 48 h at -3 to 1 degrees C. Chilled carcasses yield grades (YG) were assigned on-line by USDA graders and by expert USDA grading supervisors with unlimited time and access to the carcasses. Before fabrication, carcasses were ribbed between the 12th and 13th ribs and imaged using the LVS-CCC. Carcasses were fabricated into bone-in subprimal/primal cuts. Yields calculated included 1) saleable meat yield (SMY); 2) subprimal yield (SPY); and 3) fat yield (FY). On-line (whole-number) USDA YG accounted for 59, 58, and 64%; expert (whole-number) USDA YG explained 59, 59, and 65%; and expert (nearest-tenth) USDA YG accounted for 60, 60, and 67% of the observed variation in SMY, SPY, and FY, respectively. The best prediction equation developed in this trial using LVS-HCC output and hot carcass weight as independent variables explained 68, 62, and 74% of the variation in SMY, SPY, and FY, respectively. Addition of output from LVS-CCC improved predictive accuracy of the equations; the combined output equations explained 72 and 66% of the variability in SMY and SPY, respectively. Accuracy and repeatability of measurement of LM area made with the LVS-CCC also was assessed, and results suggested that use of LVS-CCC provided reasonably accurate (R2 = 0.59) and highly repeatable (repeatability = 0.98) measurements of LM area. Compared with USDA YG, use of the dual-component lamb vision system to predict cut yields of lamb carcasses improved accuracy and precision, suggesting that this system could have an application as an objective means for pricing carcasses in a value-based marketing system.  相似文献   

15.
Over the past 3 yr, 100 carcasses (64 steers, 24 bulls, and 12 heifers) were fabricated into closely trimmed (6 mm maximum fat cover), boxed beef and further evaluated for percentage of retail yield at the Iowa State University Meat Laboratory. Hot carcass weight ranged from 235 to 399 kg with a least squares mean (LSM) and standard error across all sex classes of 318 +/- 3 kg. Additionally, fat cover ranged from .30 to 1.78 cm with an average of .91 +/- .05 cm. The LSM for longissimus muscle area (LMA) across all sex classes was 81.6 +/- 1.0 cm2. Bulls had significantly less subcutaneous fat (P less than .01) and greater LMA (P less than .01) than did either steers or heifers. Retail yield from the boxed chuck, expressed as a percentage of cold carcass weight, was 19.2 for bulls and 14.8 for steers. This difference was due primarily to a reduction of intermuscular fat. Similarly, bulls had a greater yield (P less than .01) of the boxed round than did steers. When cattle of differing frame sizes were compared, only percentage of retail yield of the boxed round was significant (P less than .01): large-framed cattle yielded 14.3 +/- .2%, compared with 12.8 +/- .2% for the small-framed cattle. When all possible regression analyses were run, sex class differences accounted for 25.7% of the variation in retail yield. The current USDA retail yield equation accounted for only 37.2% of the variation. Percentage of closely trimmed, boneless round had an R2-value of .57.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Our objective was to compare the effects of feeding steam-flaked, high-oil corn with normal steam-flaked corn to which yellow grease was added to equalize dietary fat on performance and carcass characteristics of finishing beef steers, and palatability, retail case life, and fatty acid composition of strip loins. Angus steers (n = 120; initial BW = 288 kg) were allotted to dietary treatments consisting of 1) normal mill-run, steam-flaked corn plus added fat (NMR) or 2) high-oil, steam-flaked corn (HOC) and assigned randomly to pens (12 pens/treatment with 5 steers/pen). Performance (ADG, DMI, and G:F) was measured over time, and cattle were shipped to a commercial abattoir for collection of carcass data after 165 d on feed. Carcass data were collected at 48 h postmortem on all carcasses, and 2 carcasses from each pen were selected randomly for collection of strip loins (IMPS #180A). At 14 d postmortem, 4 steaks (2.54 cm thick) were removed for retail display, trained sensory panel analysis, Warner-Bratzler shear force determination, and fatty acid analysis. Daily BW gain was greater (P = 0.03) and G:F was increased 8.4% (P = 0.01) for steers fed NMR compared with HOC, but DMI was not affected (P > 0.10) by treatment. No treatment differences were observed (P > 0.10) for HCW, 12th-rib fat, KPH, and yield grade. Marbling scores were greater (P = 0.01) for NMR than for HOC, and LM area tended (P = 0.07) to be greater in NMR than in HOC carcasses. The proportion of carcasses grading USDA Choice did not differ (P = 0.77) between treatments, but a greater (P = 0.04) proportion of carcasses graded in the upper two-thirds of Choice for NMR vs. HOC. Trained sensory panel traits and Warner-Bratzler shear force values did not differ between treatments (P > 0.10), and no differences (P > 0.10) were detected for purge loss or fatty acid composition. Overall, ADG and G:F were less and marbling score was decreased, but there were no differences between treatments in beef palatability, retail case life, or concentrations of fatty acids in strip loins.  相似文献   

17.
Our objective was to determine the effect of repeated use of implants on feedlot performance and carcass characteristics of Holstein cattle. Holstein steers (n = 128) weighing an average of 211 kg were blocked by weight and randomly assigned to 16 pens. At the start of the trial (d 0), pens were assigned to one of four treatments: 1) nonimplanted control (C); 2) implant on d 0, 112, and 224 (T3); 3) implant on d 112 and 224 (T2); and 4) implant on d 224 (T1). Component TE-S implants (120 mg of trenbolone acetate and 24 mg of estradiol per implant) were used for all treatments during the 291-d feeding period. Over the course of the study, T2 and T3 cattle had greater ADG and final weights than C and T1 cattle (P < 0.05). Steers were harvested at a commercial abattoir on d 291. Hot carcass weights of T3 steers were greater than those of C and T1 steers (P < 0.05). Dressing percentage, adjusted 12th-rib fat, percentage of kidney, pelvic, and heart fat, yield grade, and longissimus color were not different among treatments (P > or = 0.26). Longissimus muscle areas (LMA) of T2 and T3 carcasses were larger than LMA of C (P < 0.01). No USDA Select carcasses were produced from C cattle, whereas the percentage of Select carcasses from implanted cattle ranged from 10 to 18%. Skeletal maturity advanced (P < 0.05) progressively with each additional implant. Steaks from T3 carcasses had a higher percentage of protein than controls (P < 0.05) and were less tender than all other treatments (P < 0.05). Repeated administration of combination trenbolone acetate and estradiol implants increased ADG and resulted in heavier carcasses with larger LMA. Administration of three successive implants decreased tenderness of Holstein beef, and resulted in more advanced skeletal maturity scores.  相似文献   

18.
Two experiments were conducted to evaluate dried full-fat corn germ (GERM) as a supplemental fat source in cattle finishing diets. In Exp. 1, 24 pens totaling 358 crossbred beef steers with an initial BW of 319 kg were allowed ad libitum access to diets containing dry-rolled corn, 35% wet corn gluten feed, and 0, 5, 10, or 15% GERM on a DM basis. Increasing GERM decreased (linear; P < 0.02) DMI and increased (quadratic; P < 0.02) ADG. Steers fed 10% GERM had the greatest ADG (quadratic; P < 0.02) and G:F (quadratic; P < 0.05). The addition of GERM increased (linear; P < 0.05) fat thickness, KPH, and the percentage of USDA Yield Grade 4 carcasses (quadratic; P < 0.03), with steers fed 15% GERM having the greatest percentage of USDA Yield Grade 4 carcasses. In Exp. 2, 48 pens totaling 888 crossbred beef heifers with an initial BW of 380 kg were allowed ad libitum access to diets containing steam-flaked corn, 35% wet corn gluten feed, and either no added fat (control), 4% tallow (TALLOW), or 10 or 15% GERM on a DM basis, with or without 224 IU of added vitamin E/kg of diet DM. No fat x vitamin E (P > or = 0.08) interactions were detected. Fat addition, regardless of source, decreased (P < 0.01) DMI, marbling score, and the number of carcasses grading USDA Choice. Among heifers fed finishing diets containing TALLOW or 10% GERM, supplemental fat source did not affect DMI (P = 0.76), ADG (P = 0.54), G:F (P = 0.62), or carcass characteristics (P > or = 0.06). Increasing GERM decreased DMI (linear; P < 0.01) and ADG (quadratic; P < 0.02), with ADG by heifers fed 10% GERM slightly greater than those fed control but least for heifers fed 15% GERM. Increasing GERM improved (quadratic; P < 0.03) G:F of heifers, with heifers fed 10% GERM having the greatest G:F. Increasing GERM decreased HCW (linear; P < 0.02), marbling score (linear; P < 0.01), and the percentage of carcasses grading USDA Choice (linear; P < 0.01). The addition of vitamin E increased (P < 0.04) the percentage of carcasses grading USDA Select and decreased (P < 0.01) the percentage of carcasses grading USDA Standard. These data suggest that GERM can serve as a supplemental fat source in cattle finishing diets, and that the effect of vitamin E did not depend on source or concentration of supplemental fat.  相似文献   

19.
Carcasses of 342 steers of known genetic backgrounds from four fundamentally different growth types were developed either on pasture or feedlot regimens to study differences in carcass traits. Growth types were large framed-late maturing (LL), intermediate framed-intermediate maturing (II), intermediate framed-early maturing (IE), and small framed-early maturing (SE). Five calves from each growth type were assigned to each regimen in each year of a 9-yr study. Eighteen steers were removed from the study because of accident or illness. Data collected were preslaughter shrunk BW (SBW); hot carcass weight (HCW); chilled carcass weight (CCW); dressing percentage (DRESS); fat thickness at the 12th and 13th-rib interface (FAT); percentage kidney, pelvic, and heart fat (KPH); longissimus muscle area (LMA); marbling score (MARB); quality grade (QG); and yield grade (YG). Differences in carcass traits reflected genetic differences among growth types. The LL steers had heavier BW, HCW, and CCW and larger LMA (P < .05) than steers of other growth types, regardless of development regimen. Among pasture-developed steer carcasses, IE and SE steers had higher (P < .05) MARB and QG than either LL or II steers. Carcasses of large framed-late maturing steers had the lowest (P < .05) MARB and QG of the growth types. Carcasses of the II, IE, and SE steers had a higher (P < .05) numerical value for YG than carcasses of the LL steers. Among the carcasses of the feedlot-developed steers, IE and SE steers had the highest (P < .05) MARB and QG. Carcasses from the IE and SE steers were fatter (P < .05) than those from LL or II steers. Carcasses of the LL steers had the lowest percentage of KPH of growth types developed in the feedlot. No difference was observed in KPH for carcasses of II, IE, and SE steers. The LL steer carcasses had the lowest numerical value for YG of all growth types. These data indicate that variation existed among carcass traits for the four growth types and that carcass traits influenced by fatness were greater and more attainable in the feedlot-developed steers using current methods of evaluation.  相似文献   

20.
Pork carcasses (n = 133) were used to investigate the influence of carcass fatness and muscling on composition and yields of pork primal and subprimal cuts fabricated to varying levels of s.c. fat. Carcasses were selected from commercial packing plants in the southeastern United States, using a 3 x 3 factorial arrangement with three levels of 10th rib backfat depth (< 2.03, 2.03 to 2.54, and > 2.54 cm) and three levels of loin eye area (LEA; < 35.5, 35.5 to 41.9, and > 41.9 cm2). Sides from the selected carcasses were shipped to the University of Georgia for carcass data collection by trained USDA-AMS and University of Georgia personnel and fabrication. Sides were fabricated to four lean cuts (picnic shoulder, Boston butt, loin, and ham) and the skinned belly. The four lean cuts were further fabricated into boneless cuts with s.c. fat trim levels of 0.64, 0.32, and 0 cm. The percentages of four lean cuts, boneless cuts (four lean cuts plus skinned, trimmed belly) at 0.64, 0.32, and 0 cm s.c. fat, fat-free lean, and total fat were calculated. Data were analyzed using a least squares fixed effects model, with the main effects of 10th rib backfat and LEA and their interaction. Fatness and muscling traits increased (P < 0.05) as 10th rib backfat and LEA category increased, respectively. However, fat depth measures were not affected greatly by LEA category, nor were muscling measures greatly affected by backfat category. The percentage yield of cuts decreased (P < 0.05) as backfat category increased. Cut yields from the picnic shoulder, Boston butt, and belly were not affected (P > 0.05) by LEA category, whereas the yield of boneless loin and ham increased (P < 0.05) as LEA category increased. Compositionally, the percentage of four lean cuts, boneless cuts at varying trim levels, and fat-free lean decreased incrementally (P < 0.05) as backfat depth increased, whereas parentage total fat and USDA grade increased (P < 0.05) as backfat depth increased. As LEA increased, percentage boneless cuts trimmed to 0.32 and 0 cm s.c. fat and fat-free lean increased and total fat decreased; however, the difference was only significant in the smallest LEA category. Collectively, these data show that decreased carcass fatness plays a greater role in increasing primal and subprimal cut yields and carcass composition than muscling even in lean, heavily muscled carcasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号