首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The oriental tobacco worm, Helicoverpa assulta Guenée, is one of the most destructive pests of tobacco and peppers in China. We determined the susceptibility of H. assulta reared on an artificial diet, chili pepper and tobacco to four insecticides (fenvalerate, phoxim, methomyl, indoxacarb) under laboratory conditions associated with the activities of acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione S-transferase (GST) in its larvae. H. assulta larvae that were fed with chili pepper were more susceptible to fenvalerate, indoxacarb, and phoxim than those that were fed with tobacco and the artificial diet, but not to methomyl. The larvae that were fed with chili pepper were 3.65-, 2.49-, 1.92- and 2.44-fold more susceptible to fenvalerate, phoxim, methomyl, and indoxacarb than those fed with tobacco, respectively. The AChE activities of H. assulta larvae that were fed with chili pepper and tobacco were 2.12 and 1.07 μmol mg−1 15 min−1, respectively, almost 2-fold difference. The CarE activity of H. assulta larvae that were fed with chili pepper, tobacco and the artificial diet was 4.12, 7.40 and 7.12 μmol mg−1 30 min−1, respectively. Similarly, the GST activities of H. assulta larvae that were fed with chili pepper, tobacco and the artificial diet was 52.02, 79.37 and 80.02 μmol mg−1 min−1, respectively. H. assulta larvae that were fed with chili pepper were more resistance to the tested insecticides. The low activities of AChE and the high activities of CarE and GST lead to H. assulta become more susceptible to the tested insecticides.  相似文献   

2.
A total of 185 hexanic, dichloromethanic, ethanolic and hydroethanolic extracts from 24 species of Cerrado plants, were tested against Zabrotes subfasciatus, Acanthoscelides obtectus, and human saliva α-amylases. Twelve crude extracts presented inhibition rates greater than 80% against digestive α-amylases of the insect pest Z. subfasciatus, at a concentration of 1 mg mL−1. These extracts were also tested against A. obtectus and human saliva α-amylases to verify their affinity and specificity of action. The hydroethanolic Kielmeyera coriacea stem bark extract presented a strong inhibitory potential, with IC50 values of 110 μg mL−1 for Z. subfasciatus and 272.12 μg mL−1 for A. obtectus, in addition to a 97.09% reduction in enzyme activity of human saliva α-amylases at 125 μg mL−1. The hexanic Aspidosperma macrocarpon root wood extract totally inhibited the activity of Z. subfasciatus α-amylases, reduced the enzyme activity of A. obtectus by 14.69% at 1 mg mL−1, but did not alter the activity of human saliva α-amylases, thus characterizing greater inhibition affinity and specificity. The results suggest that the application of plant extracts against insect α-amylases represent a promising biotechnological tool for development of new insect pest control strategies, with noticeable affinity and specificity of action against different target enzymes.  相似文献   

3.
The continuous increase in the number of new chemicals as well as the discharges of solid and liquid wastes triggered the need for simple and inexpensive bioassays for routine testing. In recent years, there has been increasing development of methods (particularly rapid tests) for testing environmental samples. This paper describes the quick toxic evaluation of an organophosphorus insecticide, acephate (O,S-dimethyl acetylphosphoramidothioate) on Paramecium caudatum for acute and sub-acute toxicity studies with reference to morphology, behaviour, and its generation time. The lethal concentrations for 10 min and 2 h were determined by probit method, as 500 mg L−1 and 300 mg L−1, respectively. Higher concentrations of 10 min exposure caused cell lysis with disintegration of cell membrane and precipitation of protoplasm. Combination of conventional light microscopy and computerized video tracking systems were used to study the locomotor behaviour of paramecia. The test organism was under stress and exhibited an initial increase and subsequent decrease in the swimming speed when exposed to 1/4, 1/2, 3/4, and LC50 concentrations for 10 min (125, 250, 375, and 500 mg L−1, respectively). Similar changes were also noticed when paramecia were exposed to LC50 for 2 h. In a separate set of experiments, the number of generations and generation time in 24 h was evaluated with respect to the different sub-lethal concentrations (30, 60, 120, and 240 mg L−1). The number of generations decreased and generation time extended significantly in a concentration dependent manner. The results indicate that the Paramecium toxicity assay could be used as a complimentary system to rapidly elucidate the cytotoxic potential of insecticides. The major advantages associated with these tests are: they are inexpensive, simple, user-friendly, space saving, and seem to be attractive alternatives to conventional bioassays.  相似文献   

4.
Green mould disease causes serious economic losses in Pleurotus ostreatus crops worldwide, including in Italy, where prochloraz is the only chemical fungicide allowed to control the disease. The effectiveness of the doses 0.01, 0.05, 0.25 and 1.25 μL L−1 (field dose) of prochloraz (Sponix Flow, 450 g L−1), against colony growth rate and spore germination of Trichoderma pleuroti, T. pleuroticola and T. guizhouense strains on wheat straw extract agar plates were evaluated. Complete inhibition of Trichoderma pleuroti and T. pleuroticola growth was shown by the field dose of prochloraz, and also by the 0.25 μL L−1 dose for T. pleuroti. Complete inhibition of spore germination occurred for all Trichoderma strains at field dose, and at 0.25 μL L−1 for T. pleuroti strains. In in vivo assays, the effect of prochloraz doses 0.05, 0.25 and 1.25 μL L−1 on colonization of straw substrate by Tpleuroti, T. pleuroticola and T. guizhouense inoculated at two spore densities (102 and 105 spores mL−1) immediately after P. ostreatus spawn was studied. Trichoderma pleuroti and T. pleuroticola were both responsible for green mould disease, whereas T. guizhouense was not pathogenic. Trichoderma pleuroti was more aggressive than T. pleuroticola. Prochloraz was effective against T. pleuroti at the field dose, and against T. pleuroticola at 0.25 and 1.25 μL L−1. The study on Trichoderma × Pleurotus interaction type showed that Trichoderma species were active against the mycelial growth of P. ostreatus by competition for space and nutrients, and neither hyphal interaction nor effect by volatile or nonvolatile metabolites occurred.  相似文献   

5.
In the present investigation the in vitro activity of nanoemulsion (AUSN1) was evaluated against the plant pathogen Pectobacterium carotovorum sub sp. carotovorum causing the soft rot disease in numerous horticultural crops. With AUSN1 nanoemulsion treatment, minimum inhibitory concentration (MIC) of 0.09 mg ml−1, minimum bacteriostatic concentration (MBC) of 1.30 mg ml−1 and zone of inhibition of 2.90 cm was observed against P. carotovorum. This formulation was able to reduce the bacterial population by 32.2–51.6%, under biofilm formation condition and a complete elimination of population under normal cultivation conditions. When subjected AUSN1 treatment, reduction in biofilm formation, swarming and swimming motility was observed in P. carotovorum strain and also inhibited the N-acyl homoserine lactones (AHL) activity by 13.27–62.3% and AHL production by 32.4–76.13%. Reduction in exo polysaccharide (EPS) synthesis and hydrolytic enzymes production in P. carotovorum strain was observed due to AUSN1 treatment. Reduced hydrophobicity (36.9–56.4%) and adhesion to polystyrene (22.9–47.5%) and potato tuber surfaces (19.5–46.8%) was observed with AUSN1 treatment. All these collective evidences clearly show that, under laboratory conditions, AUSN1 treatment was able to inhibit the soft root incidence in potato tubers.  相似文献   

6.
The effects of lethal and sublethal concentrations of chlorpyrifos and endosulfan on oxygen consumption and ammonia excretion rate of the crab Trichodactylus borellianus were evaluated. Oxygen consumption and energy expenditure had significant effect in relation to exposure times. Regarding endosulfan, a significant difference in consumption among times of exposure was registered in 625 μg L−1. Moreover, at the highest concentration, energy expenditure rate was observed stabilized during 1–3 h. A significant increase in ammonia excretion was evidenced in 150 and 300 μg L−1 of chlorpyrifos. The O:N ratio showed a decrease in chlorpyrifos and in 2500 μg L−1 of endosulfan. This indicated a shift towards protein primary metabolism. An increment in the O:N ratio was observed in the lower endosulfan solutions. The relation oxygen:nitrogen showed a shift towards lipid and carbohydrate primary metabolism. This work indicated the complexity of the metabolism in the freshwater crab affected by xenobiotic elements.  相似文献   

7.
Endosulfan is a worldwide used insecticide suspected to be highly toxic to aquatic organisms, including fish. Most of the available studies have focused in water exposures, although this pollutant can be transferred through food chain. Therefore, in the present study, the effects of Endosulfan on tilapia (Oreochromis niloticus), when administered through the diet. Fish were fed 21 days with diets containing 1 and 0.5 μg g−1 of Endosulfan, after which qualitative histological liver analysis showed that Endosulfan induced hepatocyte destruction, vessel endothelium rupture and increased melanomacrophages aggregates. To test lower environmentally relevant doses of Endosulfan could induce hepatic damage, as well as other negative effects, such as altered phase I metabolism and plasma thyroid hormone levels. Hence, tilapia were orally exposed to 0.1 and 0.001 μg g−1 for 35 days. Low environmentally realistic doses of Endosulfan were still able to induce liver histopathological damage such as increased hepatocyte vacuolization and increased eosinophil granular cell aggregates. Liver cytochrome P450 1A activity, evaluated through ethoxyresorufin-o-deethylase (EROD), was enhanced in tilapia exposed to 0.001 μg g−1, whereas the highest dose had no measurable effects in this enzyme activity. Fish exposed to 0.1 μg g−1 of Endosulfan had depressed T4 plasma levels. Overall, the results of the present study further demonstrate the toxic effects of Endosulfan in tilapia when administered in the diet at environmentally relevant concentrations, which indicates that in the field food chain transfer may also be an importance source of this pollutant.  相似文献   

8.

BACKGROUND

In recent years, biofungicides have drawn increasing interest in vineyards for a more sustainable integrated and copper-limited pest management. Among alternatives, botanicals could represent valuable tools, being rich sources of biologically active compounds. Conversely to the well-known antioxidant and biological properties in relation to health benefits, investigation on bioactivity of hot pungent Capsicum sp. products against fungal phytopathogens in vineyards is still scarce. Therefore, the present study aimed at exploring the biologically active compounds profile of a chili pepper (Capsicum chinense Jacq.) pod extract and its antimicrobial properties against some of the major fungal and Oomycetes pathogens of grapevine, including Botrytis cinerea Pers., Guignardia bidwellii (Ellis) Viala & Ravaz and Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni.

RESULTS

The ethyl acetate-extracted oleoresin from the most pungent varieties was rich in capsaicinoids and polyphenols (371.09 and 268.5 μg mg−1 dry weight, respectively). Capsaicin and dihydrocapsaicin, hydroxycinnamic and hydroxybenzoic acids and quercetin derivatives were the most abundant, while carotenoids represented only a minor fraction. The oleoresin was efficient to inhibit all three pathogenic fungi and ED50 values were determined, evidencing that G. bidwellii was the more sensitive (0.233 ± 0.034 mg mL−1).

CONCLUSION

The results suggested a potentiality of chili pepper extract for the control of some important grapevine pathogens, their possible application being helpful for the recommended limitation in extensive use of copper in vineyard. The complex mixture of high amounts of capsaicinoids, associated to specific phenolic acids and other minor bioactive components might contribute to the observed antimicrobial action of chili pepper extract. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

9.
Susceptibility of eggs of Tribolium confusum du Val. (Coleoptera: Tenebrionidae), Ephestia kuehniella (Zell.) (Lepidoptera: Phycitidae) and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to vapors of essential oil from garlic (Allium sativum L.), birch (Betula lenta L.), cinnamon (Cinnamonum zeylanicum (Blume)) and aniseed (Pimpinella anisum L.) was studied. Preliminary bioassay tests indicated that vapors of the essential oils had a significant effect on the eggs of tested insect species when exposed to a concentration of 20 μl l −1 air for 24 h. Generally, garlic and birch essential oils were more toxic to the eggs of tested insect species than cinnamon and aniseed essential oils (except for eggs of T. confusum). There was also a significant difference between susceptibility of eggs of T. confusum, E. kuehniella and P. interpunctella to tested essential oils. Toxicity data indicated that eggs of T. confusum were more susceptible to tested essential oils, with LC90 values ranging from 3.11 to 33.49 μl l −1 air, than those of E. kuehniella and P. interpunctella; eggs of P. interpunctella were the most tolerant to the essential oils, with LC90 values ranging from 22.02 to 72.42 μl l −1 air. Concentration × time (Ct) products of 0.29, 0.22, 0.13 and 1.37 mg h l −1 for garlic, birch, cinnamon and aniseed essential oil, respectively, were required to obtain 90% kill of T. confusum eggs. Although cinnamon essential oil had a much closer Ct product value to methyl bromide, garlic and birch essential oils were found to be the most promising ones since they had also high fumigant toxicity on eggs of both E. kuehniella and P. interpunctella.  相似文献   

10.
X. Chen  C. Sun  P. Laborda  Y. He  Y. Zhao  C. Li  F. Liu 《Plant pathology》2019,68(2):288-296
Rice bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a prevalent disease worldwide. Melatonin, an indoleamine with the chemical name N-acetyl-5-methoxytryptamine, is known to inhibit the growth of human pathogenic bacteria. However, the impact of melatonin on agricultural pathogenic bacteria remains poorly understood. In this study, the effect of melatonin on Xoc was investigated. Exogenous melatonin (200 μg mL−1) significantly inhibited the growth of Xoc and reduced the mRNA expression level of seven cell division-related genes. Melatonin reduced the pathogenicity of Xoc towards the susceptible rice IR24. The lesion length in IR24 infected by Xoc pretreated with melatonin (200 μg mL−1) was more than 23% smaller than the lesion length of the control group. Similarly, infection of IR24 leaves by Xoc pretreated with melatonin (200 μg mL−1) reduced the bacterial population by 45%. The biofilm formation, swimming motility and extracellular protease activities of Xoc also decreased under melatonin treatment. Melatonin only slightly changed the morphology of Xoc but significantly reduced the mRNA expression of toxin genes. Furthermore, treating leaves with exogenous melatonin reduced the incidence of BLS by 17%. It is reported for the first time that melatonin reduces pathogenicity and may serve as a bactericide for controlling BLS disease.  相似文献   

11.
研究了 10 %千金乳油 (有效成分 :氰氟草酯 )和 78%杀虫安可溶性粉剂对金鱼和麦穗鱼肝脏酯酶及谷胱甘肽-S-转移酶 (GST)活性的亚致死剂量效应。发现杀虫安 (0 .2 34mg· L-1)对两种鱼的 GST活性均具诱导作用 ,而氰氟草酯 (1,2 mg· L-1)仅诱导了麦穗鱼的 GST活性 ;当杀虫安与氰氟草酯混合处理时 ,对麦穗鱼 GST活性的诱导效应最为明显。在一定的浓度范围内 ,氰氟草酯 (1,2 mg· L-1)和杀虫安 (0 .117,0 .2 34mg· L-1)均可诱导金鱼肝脏酯酶活性 ;对麦穗鱼肝脏酯酶而言 ,杀虫安为诱导作用 ,氰氟草酯则抑制其活性。研究结果表明 :两种酶的活性直接或间接地受供试药剂的影响 ,两种试鱼对氰氟草酯和杀虫安的生物反应存在差异。  相似文献   

12.
Fusarium mangiferae is a major causal agent of mango malformation disease (MMD) worldwide. Rapid and accurate detection of the causal pathogen is the cornerstone of integrated disease management. In this paper, a real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for quantitative detection of F. mangiferae in China. The LAMP primer set was designed based on a RAPD marker sequence and positive products were amplified only from F. mangiferae isolates, but not from any other species tested, showing a high specificity of the primer sets. The detection limit was approximately 2.26 × 10−4 ng/μl plasmid DNA when mixed with extracted mango DNA. Quantification of the pathogen DNA of MMD in naturally collected samples was no significant difference compared to classic real-time PCR Additionally, RealAmp assay was visual with an improved closed-tube visual detection system making the assay more convenient in diagnostics.  相似文献   

13.
Seven isolates of the pathogen Colletotrichum musae (Berk & Curt.) v. arx. were isolated from banana fruit. These isolates produced ethylene to varying degrees in methionine-amended Czapek Dox liquid medium as both shake and static cultures. Rates of ethylene production by C. musae were positively associated with the concentration of methionine in the growth medium. C. musae did not produce ethylene on basal medium containing l-glutamate, α -ketoglutarate or l-cysteine. Isolate CM 100 produced the highest cumulative amount of ethylene (2·27 μm g−1 dry wt) over 12 days on 35 mm methionine-amended shake cultures of basal medium. In the presence of methionine, ethylene biosynthesis by C. musae occurred via 2-keto-4-methylthiobutyric acid (KMBA). The capacity of C. musae to produce ethylene may have a role in its pathogenicity on climacteric banana fruit.  相似文献   

14.
The present study was conducted to determine the 96 h-LC50 of benomyl to the Nile tilapia, Oreochromis niloticus and to investigate the biochemical or hematological indices of blood and the alterations in the antioxidant enzymes of this fish in response to sublethal concentrations of benomyl. Fish weighing 71.61 ± 12.05 g were used in this study; they were subjected to fasting for 4 weeks before treatment. An aqueous solution of benomyl (0, 0.5, 1, 2, 4, 8, and 16 mg L−1) was administered for 96 h to determine the LC50. The 96 h-LC50 value of benomyl was 4.39 (3.23-5.60) mg L−1 in the present study. For 5 weeks, the aqueous solution of benomyl (0, 100, 200, and 400 μg L−1) was administered to investigate its effect on the hematological parameters and antioxidant enzymes. The predominant hematological findings in fish exposed to benomyl were as follows: no significant change in the Hb (g dL−1) level, MCV (μm3), MCH (pg) and MCHC (%) as compared to the control. Benomyl exposure led to greater increases in the GPT, GOT (Karmen-unit), LDH (Wroblewski unit), total cholesterol, Fe, and Ca (mg dL−1) values, whereas the levels of ALP (KA unit), total protein, triglyceride, albumin, and Mg (mg dL−1) did not increase. Benomyl increased the in vivo HSI (%), GST (nmol min−1 mg protein−1), and SOD (U mg protein−1) values in the fish livers in the test group, unlike those in the control group for 5 weeks. At concentrations higher than 100 μg L−1, benomyl affected the GST and SOD levels of Nile tilapia in a dose- and time-dependent manner. The present findings suggest that the in vivo hepatotoxicity associated with benomyl may, in part, result from the hematological index, and antioxidants may provide limited protection against benomyl toxicity.  相似文献   

15.
Black rot caused by the fungus Ceratocystis fimbriata causes notable losses in sweet potato production. Perillaldehyde (PAE), a secondary metabolite in perilla, was studied to determine its antifungal effects on mycelial growth and spore germination of C. fimbriata. The effects of PAE on cell wall integrity and cell membrane permeability were also investigated. To elucidate the possible mechanisms of cell death triggered by PAE, sensitivity of C. fimbriata to PAE toxicity was determined by cytoplasmic and mitochondrial calcium ion concentrations ([Ca2+]c and [Ca2+]m), reactive oxygen species (ROS), mitochondrial membrane potential (MMP), cytochrome c (cyt c) release, metacaspase activation, phosphatidylserine (PS) externalization and DNA fragmentation. The results suggest that mycelial growth and spore germination were inhibited by PAE in a dose-dependent manner. Ceratocystis fimbriata spores treated with PAE experienced dramatic Ca2+ overload and elevated ROS production. Compared to untreated controls, the proportion of fluorescent cells stained with the ROS indicator DCFH-DA and treated with a range of PAE concentrations from 0.0625 to 0.50 μL mL−1 increased by 2.9 ± 0.79% to 27.1 ± 0.38%. Ca2+ overload and ROS accumulation induced depolarization of the MMP, contributing to mitochondrial dysfunction. Cyt c was released from the mitochondria to the cytosol, triggering metacaspase activation. The significant antifungal activity of PAE on C. fimbriata was demonstrated by these studies, suggesting that PAE has the potential for wide application to postharvest management of tuber crops, in addition to the application to above-ground fruit and vegetables that have been previously investigated.  相似文献   

16.
17.
Streptomycin has been used for decades in Chile to control Clavibacter michiganensis subsp. michiganensis (Cmm), the causal agent of tomato bacterial canker. The aim of this work was to evaluate streptomycin resistance and to analyse the presence of resistance-related genes in Cmm strains from Chile. A collection of 25 Cmm strains isolated from different localities in central Chile between 1996 and 2015 was analysed. Minimum inhibitory concentration (MIC) of streptomycin was determined. A search of streptomycin resistance-related genes was carried out in Cmm genomes, and the presence of these genes was studied in all Chilean strains using PCR and sequencing techniques. MIC results showed that four of 25 strains were highly sensitive to streptomycin, with MIC values <2 μg mL−1. The remaining 21 strains possessed MIC of streptomycin ≥100 μg mL−1. The strB gene, encoding an aminoglycoside 6-phosphotransferase that inactivates streptomycin, was detected in all Chilean strains, including sensitive and resistant strains. In the 21 resistant strains, a mutation in codon 43 of the rpsL gene was determined, conferring high streptomycin resistance. Interestingly, the four streptomycin-sensitive Cmm strains did not possess this mutation. This study proposes that the continuous use of streptomycin leads to emergence of resistant Cmm strains, challenging researchers to look for novel alternatives to control this plant pathogenic bacterium.  相似文献   

18.
Downy mildew of lettuce, caused by Bremia lactucae, is difficult to control in soilless systems by using conventional methods of disease management because few chemicals are registered, while resistant cultivars face the problem of resistance break down; therefore other methods for disease control need to be investigated. The effect of silicon salt as well as increased electrical conductivities against downy mildew was evaluated in four experiments carried out in hydroponically systems, using the cultivar of lettuce “Cobham Green”, known for its susceptibility to the pathogen. Silicon, as potassium silicate, was added at 100 mg l−1 of nutrient solution at three levels of electrical conductivity: 1.5–1.6 mS cm−1 (EC1), 3.0–3.5 mScm−1 (EC2, 0.70 g l−1 NaCl) and 4.0–4.5 mS cm−1 (EC3, 0.95 g l−1 NaCl) respectively. Lettuce plants, grown for 14–20 (trials 1 and 2) and 36–45 (trials 3 and 4) days in the different nutrient solutions tested, were inoculated with B. lactucae conidia with a maximum of two inoculations before final disease assessment carried out 14–21 days after the inoculation able to give symptoms. EC and potassium silicate significantly influenced downy mildew incidence and severity, while their interaction was not a significant factor. The addition to the standard nutrient solution (EC1) of potassium silicate resulted in a significant reduction of downy mildew severity in trials 1 and 2 where plants were artificially inoculated 15 and 20 days after transplanting. This efficacy was slight on plants grown for 36 and 45 days before inoculation in a soil drenched with EC1 amended with potassium silicate. EC2 gave a significantly similar downy mildew reduction than EC2 added with potassium silicate in trial 3. Plants grown for 36 and 45 days at the highest electrical conductivity (EC3) showed a significant reduction in severity of downy mildew compared with that observed at EC2 level. The best results, in terms of disease control, were given by the addition of potassium silicate to the EC3 solution. This combination also led to a significantly increased plant biomass. The possibility and benefits of applying potassium silicate and increased EC amendments in practice is discussed.  相似文献   

19.
Two viruses that frequently occur in many Lilium species are Lily mottle virus (LMoV) and Cucumber mosaic virus (CMV), which usually co-infect lilies causing severe disease symptoms. Recent reports have revealed that the viral coat protein (CP) affects chloroplast ultrastructure and symptom development. This study used western blot analysis to confirm that in leaves infected by mixed virus infections of LMoV and CMV, CPs of both viruses were accumulated in lily chloroplasts. Immunogold labelling further demonstrated that both the LMoV CP and CMV CP were localized in the stroma and the thylakoid membranes of the chloroplasts. In addition, it was found that CPs of both viruses were rapidly transported into isolated, intact chloroplasts (in vitro), and their transport efficiencies were positively related to CP concentrations. The lowest transmembrane concentration of CMV CP decreased from 38 μg mL−1 recorded in the single CMV CP import system to 10 μg mL−1 in the mixed import system of LMoV CP and CMV CP. CPs of both viruses exhibited species selection in their transmembrane transport into chloroplasts. This is the first report that the CPs from two viruses (LMoV and CMV) are simultaneously present in lily chloroplasts. Accumulation of high levels of LMoV CP and CMV CP inside the chloroplast appears to contribute to a synergistic interaction inducing the development of mosaic symptoms.  相似文献   

20.
Tomato root rot caused by Rhizoctonia solani is a major soilborne disease resulting in significant yield loss. The culture filtrates of six isolates of Trichoderma/Hypocrea species were evaluated for in vitro production of hydrolytic enzymes. Results demonstrated that all the six isolates were able to produce chitinase, β-1, 3 glucanase and protease in the range of 76–235 μmol GlcNAc min-1 mg-1 protein, 31.90–37.72 nmol glucose min-1 mg-1 proteins and 63.05–86.22 μmol min-1 mg-1 proteins, respectively. Trichoderma/Hypocrea-based formulation(s) were prepared with chitin (1% v:v) and CMC (0.5% w:v) for root rot management in a greenhouse. Root dip application with bioformulation(s) resulted in a significant reduction of the root rot index. In addition, bioformulations increased plant growth attributing traits significantly relative to untreated control. Accumulation of total phenols, peroxidase, polyphenoloxidase and phenylalanine ammonia lyase increased in chitin-supplemented Trichoderma/Hypocrea formulation-treated plants challenged with R. solani. The results suggest that chitin-fortified bioformulation(s) could be an effective system to control root rot of tomato in an eco-compatible manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号