首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in the Chongqing Municipality, People’s Republic of China. To find antagonistic bacteria for P. brassicae, 124 bacteria were obtained from the rhizosphere soil of B. juncea var. tumida grown in Fuling, Chongqing. Isolates were preliminarily chosen by evaluating the inhibition rate of the P. brassicae resting spore germination. The biocontrol effects of three antagonistic bacteria against clubroot on B. juncea var. tumida were evaluated in a greenhouse experiment. B18 showed the highest control efficiency, at 63.4% in the greenhouse test. In a field trial, B18 was also effective in controlling clubroot, but only at a 49.7% efficiency rate. According to 16S rDNA sequence analysis, strain B18 had a 100% sequence similarity with type strain Zhihengliuella aestuarii DY66T (EU939716). Based on morphological, cultural, physiological and biochemical characteristics, the DNA G + C content, polar lipids, fatty acids, cell wall analysis, as well as DNA–DNA hybridization, strain B18 was identified as Z. aestuarii B18. Thus, the isolate B18 might have a potential biocontrol application for clubroot. We report for the first time that Z. aestuarii B18 can control clubroot.  相似文献   

2.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

3.
Studies were undertaken on the effects of temperature (14/10 °C and 22/17 °C day/night) and plant age (15, 23, 31 and 40 day-old-plants) on the severity of downy mildew (Hyaloperonospora parasitica) on oilseed Brassica cultivars (temperature: Brassica juncea Montara, B. napus Atomic, ATR-Hyden, Hyola 432, Hyola 450 TT, Thunder TT; plant age: B. juncea Dune, B. napus Surpass 402 and Hyola 450 TT). For temperature studies, there were significant (P?<?0.001) effects of temperature, cultivar, and cultivar x temperature interaction. On cotyledons of susceptible cultivars (B. napus Hyola 450 TT and Thunder TT), plants were symptomatic at 22/17 °C by 48 h post inoculation (hpi) and with abundant sporulation evident by 72 hpi, and with all cotyledons of B. napus Thunder TT collapsed by 7 days post inoculation (dpi). However, at 14/10 °C, there were no symptoms on the same cultivars until 5 dpi, and sporulation only observed at 7 dpi. Percent disease index values (DI%) at 22/17 °C of B. juncea Montara and B. napus ATR-Hyden, Hyola 432, Atomic, Hyola 450 TT and Thunder TT were 4.5, 49.0, 51.4, 65.8, 86.3 and 96.0, respectively, with all except B. juncea Montara having significantly lower (P?<?0.001) disease at 14/10 °C with DI% values of 2.8, 30.4, 27.9, 31.1, 44.4 and 76.4, respectively. For plant age studies, there were significant (P?<?0.001) effects of plant age, cultivar, and cultivar x plant age interaction. DI% was significantly higher at 15 compared to 40 day-old-plants (dop) across all cultivars. B. juncea Dune showed greatest resistance, particularly on 40 dop, with DI% values of 25.8, 24.6, 22.9 and 7.5, for 15, 23, 31 and 40 dop, respectively. B. napus Surpass 402 showed high susceptibility on cotyledons of 15 dop but moderate resistance on leaves of other ages, with DI% values of 59.0, 31.2, 27.1 and 26.2 for 15, 23, 31 and 40 dop, respectively. B. napus Hyola 450 TT showed very high susceptibility at the cotyledon stage on 15 dop, but some resistance on 23 dop and more so on 31 and 40 dop, with DI% values of 84.0, 41.2, 35.4 and 32.9 for 15, 23, 31 and 40 dop, respectively. Together, these findings explain for the first time why development of downy mildew epidemics on susceptible cultivars occurs early in the growing season when warmer seasonal temperatures in autumn coincide with presence of seedlings; in contrast to later in the growing season on less susceptible older plants coinciding with cooler and less favourable winter temperatures. Increasing maximum and minimum temperatures associated with climate change have likely fostered the increased severity of downy mildew over the past 15 years.  相似文献   

4.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

5.
Acibenzolar-S-methyl (ASM), a plant activator known to induce plant resistance, has been used as foliar sprays to manage several plant diseases including bacterial spot on tomato caused by four distinct Xanthomonas species. This study aimed to investigate the effects of soil application rates of ASM on bacterial spot of tomato and the expression levels of the two pathogenesis-related (PR) genes, PR1a and PR1b, in leaf tissues. Tomato seedlings were leaf-applied with ASM at 18.8 mg/l corresponding to the labeled rate, soil-applied with ASM at 0.84 and 10 mg/l, and sprayed with water served as an untreated control. The soil application of ASM at 10 mg/l consistently reduced the final disease severity and disease progress compared to the untreated control in four growth chamber experiments, whereas the soil application of ASM at 0.84 mg/l and foliar spray of ASM significantly reduced the final disease severity and area under disease progress curve (AUDPC) in three out of the four experiments. The expression levels of PR1a and PR1b in the leaf tissues were significantly induced by both soil and foliar applications of ASM. In addition, field trial results suggested that the soil applications of ASM at 10 mg/l markedly reduced disease progress compared to the control and copper standard. Although the control efficiency of soil applications of ASM depends on rates used, this study suggests that ASM can be used as soil applications to induce tomato resistance against bacterial spot.  相似文献   

6.
Stem rot caused by Sclerotium rolfsii is an important problem for Jerusalem artichoke production. Host plant resistance is the most promising method to control disease. If resistant genotypes can be identified in seedlings and this resistance is closely related to resistance at maturity, the evaluation of disease resistance in adult plants could be curtailed or omitted, increasing the speed and efficiency of screening. The objective of this study was to determine the relationship between resistance to S. rolfsii in Jerusalem artichoke in seedling and in adult stages under field conditions. Field experiments were set up in different soil fertility environments in the rainy season during July to October 2014. In each environment, 10 varieties of Jerusalem artichoke with differences in resistance to S. rolfsii were planted and inoculated either 15 or 45 days after transplanting. Higher disease incidence was observed on adult plant stage, but disease severity was similar for both plant stages. The correlations between seedling and adult responses were positive and significant for disease incidence, area under disease progress curve and severity index. Screening for resistance to S. rolfsii in Jerusalem artichoke can be carried out on seedlings, thus improving the efficiency of selection.  相似文献   

7.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

8.
Effects simultaneous and sequential inoculations of Meloidogyne incognita, Ralstonia solanacearum and Phomopsis vexans were studied on the growth, chlorophyll and carotenoid contents of eggplants grown in 25% fly ash and 25% sand mix soil. Plants grown in 25% fly ash mix soil had lesser plant growth than grown in 25% sand ash mix soil. Inoculation of M. incognita / R. solanacearum or P. vexans caused reduction in plant growth, chlorophyll and carotenoid contents in both types of soils but these pathogens in combination caused a greater reduction in than individual inoculation. Inoculation of M. incognita 20 days prior to R. solanacearum caused a greater reduction in plant growth than inoculation of M. incognita prior to P. vexans. Inoculation of P. vexans prior to R. solanacearum caused a lesser reduction in plant growth, chlorophyll and carotenoid contents than inoculation of P. vexans prior to M. incognita. Inoculation of R. solanacearum 20 days prior to M. incognita caused a greater reduction in plant growth, chlorophyll and carotenoid contents than inoculation of R. solanacearum prior to P. vexans. Galling and multiplication of M. incognita was higher in plants grown in 25% sand amended soil than with 25% fly ash soil. R. solanacearum and P. vexans had adverse effects on galling and nematode multiplication. Wilt and blight indices caused by R. solanacearum and P. vexans were 3 respectively. Wilt and blight indices were 4 when two pathogens were inoculated together.  相似文献   

9.
A new dagger nematode, Xiphinema tica n. sp., is described and illustrated from several populations extracted from soil associated with several crops and wild plants in Costa Rica. The new dagger nematode is characterised by a moderate body size (3276–4240 μm), a rounded lip region, ca 13.5 μm wide, separated from body contour by a shallow depression, amphidial fovea large, stirrup-shaped, a moderately long odontostyle ca 135 μm long, stylet guiding ring located at ca 122 μm from anterior end, vulva almost equatorial (50–54%), well-developed Z-organ, with heavy muscularised wall containing in the most of specimens observed two moderately refractive inclusions variable in shape (from round to star-shaped), with uterine spines and crystalloid bodies; female tail short, dorsally convex-conoid, with rounded end and a small peg, with a c’ ratio ca 0.8, bearing two or three pairs of caudal pores and male absent. The unique and novel uterine differentiation based on the coexistence of a well-developed Z-organ mixed with uterine spines and crystalloid bodies in Xiphinema prompted us to update and include this combination of characters in the polytomous key of Loof and Luc (1990). Integrative diagnosis was completed with molecular data obtained, using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA, partial 18S–rDNA and the partial mitochondrial gene cytochrome c oxidase subunit 1 (coxI). The phylogenetic relationships of this species with other Xiphinema spp. indicated that X. tica n. sp. was monophyletic to the other species from the morphospecies Group 4, Xiphinema oleae.  相似文献   

10.
Fusarium wilt, one of the destructive diseases of cucumber can be effectively controlled by using biocontrol agents such as Trichoderma harzianum. However, the mechanisms controlling T. harzianum-induced enhanced resistance remain largely unknown in cucumber plants. Here we screened the potent T. harzianum isolate TH58 that could effectively control F. oxysporum (FO). Glasshouse efficacy trials also showed that TH58 decreased disease incidence by 69.7 %. FO induced ROS over accumulation, while TH58 inoculation suppressed ROS over accumulation and improved root cell viability under F. oxysporum infection. TH58 inoculation could reverse the FO-induced cell division block and regulate the proportional distribution of nuclear DNA content through inducing 2C fraction. Moreover, the expression levels of cell cycle-related genes such as CDKA, CDKB, CycA, CycB, CycD3;1 and CycD3;2 in TH58 - pre-inoculated seedlings were up-regulated compared with those infected with FO alone. Taken together, these results suggest that T. harzianum improved plant resistance against Fusarium wilt disease via alterations in nuclear DNA content and cell cycle-related genes expression that might maintain a lower ROS accumulation and higher root cell viability in cucumber seedlings.  相似文献   

11.
Streptomyces griseorubens E44G is a chitinolytic bacterium isolated from cultivated soil in Saudi Arabia (a hot, arid climatic region). In vitro, antifungal potential of S. griseorubens E44G was assessed against the phytopathogenic fungus, Fusarium oxysporum f. sp. lycopersici (the causative agent of the Fusarium wilt disease of tomato). An inhibition zone of 24 mm was recorded. The chitinolytic activity of S. griseorubens E44G was proved when the colloidal chitin agar plate method was used. A thermostable chitinase enzyme of 45 kDa molecular weight was purified using gel filtration chromatography. The optimum activity was obtained at 60 °C and pH 5.5. The purified enzyme has shown a very pronounced activity against the phytopathogenic fungus, F. oxysporum. The molecular characterization of the chitinase gene indicated that it consists of 1218 bp encoding 407 amino acids. The phylogentic analysis based on the nucleotide DNA sequence and the deduced amino acids sequence showed high similarity percentages with other chitinases isolated from different Streptomyces species. In the field evaluation, application of both S. griseorubens E44G treatments significantly increased all tested growth and yield parameters and decreased the disease severity compared with the infected-untreated tomato plants suggesting potential as a biocontrol agent.  相似文献   

12.
Pomegranate bacterial blight disease caused by Xanthomonas axonopodis pv. punicae is one of the most serious threat to the pomegranate industry in India. So far, the chemicals used to control this pathogen alone are less effective. In this article, an attempt was made to supplement chemical control through improving the systemic acquired resistance of plant using nutrients such as nitrogen (N) and salicylic acid (SA) as elicitor. The study revealed that foliar application of SA at the rate of 300 ppm increased above-ground dry mass of plant by 64.97%, improved chlorophyll content of leaves and resulted higher concentration of macro-elements and micro-elements, particularly Mn and Zn, in leaves. It also significantly increased the activities of nitrate reductase (NR), superoxide dismutase (SOD), catalase and peroxidase. However, the maximum response of SA was recorded when it was sprayed after soil application of N at 100% of the recommended dose. As a consequence, this combination recorded the least bacterial blight infection with average severity of 11.58% followed by without-N application under challenge inoculation of the pathogen. However, sustainable production cannot be realized without N application. The integration of this strategy for activation of defence mechanism of plant with the bactericide streptocycline resulted in further reduction of bacterial blight disease incidence and severity under field condition to very low levels (3.84% and 18.57% respectively).  相似文献   

13.
A blood disease pathogenic strain, Ralstonia syzygii subspecies celebesensis was used to study the possible association of biofilm-forming bacteria with the development and severity of blood disease in banana plants. Therefore, the objective of this study was to determine the effects of mono-culture and co-culture inoculation of isolated biofilm-forming bacteria with the blood disease pathogen in banana pseudostems in glasshouse conditions. Putative biofilm-forming bacteria were isolated from an infected banana plant and were further identified using 16SrRNA sequencing. Four isolates, identified as Enterobacter hormaechei, Enterobacter cloacae, Kosakonia radicincitans and Klebsiella pneumoniae, were inoculated as a mono- and co-culture with R. syzygii subsp. celebesensis into 2 months old banana plants. The observation after the 8 weeks of post inoculation showed that plants which were co-inoculated with the pathogen and K. radicincitans, a biofilm-forming bacterium, were the most susceptible towards the infection. In contrast, plants under two treatments (which were co-inoculated with the pathogen and E. cloacae and the pathogen with E. hormaechei) were less susceptible towards the infection. This study revealed the antagonistic effects of two biofilm-forming strains which reduced the severity of infection caused by the pathogenic agent. Scanning electron micrographs of the cross section of plant rhizomes indicated the dissimilarity of adhesion and host colonization conditions of the pathogen in each infected plant from different treatments.  相似文献   

14.
Ralstonia solanacearum “species complex” (RSSC) represents soil-borne plant pathogenic bacteria, consisting of diverse and widespread strains that cause bacterial wilt on a wide range of host plants. A recent polyphasic taxonomic study has divided the RSSC into three bacterial species; Ralstonia pseudosolanacearum (phylotypes I and III), Ralstonia solanacearum (phylotype II) and Ralstonia syzygii (phylotype IV). Currently, standard identification of RSSC in plant health laboratories mainly relies on performance of two tests that are based on a different principle. However, these tests are inadequate to precisely discriminate among the three bacterial species in the RSSC. The accurate identification of each of the three bacterial species in the RSSC requires additional molecular tests, including a phylotype determination. These methodologies are labor-intensive, time consuming and rather impractical for routine identification purposes in a plant health laboratory. We explored the potential for an accurate identification of R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II) in RSSC, upon implementation of the MALDI-TOF MS tool, and after the creation and validation of an in-house database supplementing the commercial database and covering the entire known genetic diversity in RSSC. MALDI-TOF MS is an emerging approach for identification of bacterial plant pathogens and has been shown to be robust and reproducible. Additionally, when compared to the conventional microbial identification methods it is shown to be less laborious and less expensive. Validation data demonstrated that our in-house database (Mass Spectra Profiles, MSPs) was very specific resulting in the rapid and accurate identification of Ralstonia solanacearum (phylotype II), and Ralstonia pseudosolanacearum (phylotypes I and III). Additionally, no false positive results were obtained with our in-house database for other related Ralstonia sp., such as the R. picketii isolate PD 3286, or for the Pseudomonas syringae and Pseudomonas spp. isolates.  相似文献   

15.
Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate the roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant XfΔpilG and complemented strain XfΔpilG-C were generated. While all strains had similar growth curves in vitro, XfΔpliG showed significant reduction in cell-matrix adherence and biofilm production compared with wild-type X. fastidiosa and XfΔpilG-C. The genes pilE, pilU, pilT, and pilS were down-regulated in XfΔpliG when compared with its complemented strain and wild-type X. fastidiosa. Finally, no Pierce’s disease symptoms were observed in grapevines inoculated with XfΔpilG, whereas grapevines inoculated with the wild-type X. fastidiosa and complemented strain of XfΔpilG-C developed typical Pierce’s Disease (PD) symptoms. The results indicate that pilG has a role in X. fastidiosa virulence in grapevines.  相似文献   

16.
Clubroot, caused by the protozoan parasite Plasmodiophora brassicae Woronin, is one of the most damaging diseases of Brassica napus worldwide. Resistant plant material is valuable for cultivation in all areas of high incidence of the disease and intensive growth of oilseed rape. We have evaluated clubroot resistance, plant morphology and seed quality in 15 lines of an F4 generation and selected six lines of F5 generation of interspecific hybrids obtained from a cross between a male sterile line of B. napus ‘MS8’, selected from resynthesized oilseed rape (B. rapa ssp. chinensis × B. oleracea var. gemmifera) and an ecotype of B. rapa ssp. pekinensis. Clubroot resistance was evaluated using a bioassay with P1-P5 pathotypes of P. brassicae (according to the classification of Somé et al. 1996). The resistance to the pathotype P1 was successfully fixed in the F5 generation, and improved in some lines in respect to the pathotypes P2-P4. The resistance to P1 and the other tested pathotypes was not linked. Characterization of plant material included recent techniques of FISH and BAC-FISH with a special focus on the analysis of ribosomal DNA (rDNA) of selected individuals. Two hybrid lines combined high levels of resistance with appropriate plant morphology, good seed quality traits and a stable chromosome number and arrangement. Recent techniques of ‘chromosome painting’ provided good insight into chromosome organization in the hybrids obtained, and offered opportunities of further improvement of the breeding process.  相似文献   

17.
Phytophthora capsici infection of chili pepper seedlings can cause substantial losses due to damping-off and collar rot diseases. Chemical control is no longer effective due to reported resistance development, on top of the related environmental concerns and the consumer demands for reduced use of fungicides. Biological control is a sustainable option, with several agents having been reported to be effective against this pathogen. This research focused on optimizing the application of strain THSW13 of Trichoderma hamatum and a bacterial isolate BJ10–86 with the objectives of improving chili pepper seed germination, reduce damping-off disease incidence, and improve the growth of the seedlings. Bacterial isolate BJ10–86 was subjected to molecular identification and found to be Pseudomonas aeruginosa. Chili pepper seeds treated with the biocontrol agents, individually or in combination, were seeded into commercial nursery media that had been pre-inoculated with P. capsici zoospores. Over a period of 35 days the chili pepper seed treatments significantly (P = 0.008) reduced the disease incidence of seedlings damping-off. Combined application of T. hamatum and P. aeruginosa was the best biocontrol treatment with an area under disease curve of only 36.61 units compared to 92.87 units for the control treatment. Similar results were observed in vitro where T. hamatum and P. aeruginosa synergistically inhibited P. capsici growth by 73.2 %. The inhibition activity of this treatment was similar to mefenoxam treatment, which implies that it is an effective and sustainable alternative for chili pepper seed treatment. The biocontrol seed treatment had no effect on seed germination and seedling growth.  相似文献   

18.
Bread wheat (BW) and durum wheat (DW) are both strongly affected by Septoria tritici blotch caused by the hemibiotrophic fungus Zymoseptoria tritici. However, only the BW-Z. tritici pathosystem has been well studied so far. Here, we compared compatible interactions between Z. tritici and both BW and DW species at the cytological, biochemical and molecular levels. Fungal infection process investigations showed close spore germination and leaf penetration features in both interactions, although differences in the patterns of these events were observed. During the necrotrophic phase, disease severity and sporulation levels were associated in both interactions with increases of the two cell-wall degrading enzyme activities endo-β-1,4-xylanase and endo-β-1,3-glucanase as well as protease. An analysis of plant defense responses during the first five days post inoculation revealed inductions of GLUC, Chi4, POX and PAL and a repression of LOX gene expressions in both wheat species, although differences in kinetics and levels of induction or repression were observed. In addition, peroxidase, catalase, glucanase, phenylalanine ammonia-lyase and lipoxygenase activities were induced in both wheat species, while only weak accumulations of hydrogen peroxide and polyphenols were detected at the fungal penetration sites. Our study revealed overall a similarity in Z. tritici infection process and triggered wheat defense pathways on both pathosystems.  相似文献   

19.
An enrichment microsphere immunoassay (MIA) was developed, based on the Luminex xMAP® technology, for the simultaneous (duplex) detection of Pectobacterium atrosepticum (former name Erwinia carotovora subsp. atroseptica) (Pca) and Dickeya dianthicola (former name Erwinia chrysanthemi) (Dcd) in potato plant extracts. Target bacteria in the extracts were enriched for 48 h in a semi-selective broth containing polypectate under low oxygen conditions. Samples were subsequently incubated with antibody-coated colour-coded microspheres (beads) and with secondary antibodies conjugated with Alexa Fluor® 532, a reporter dye. Samples were analyzed with the Luminex analyzer, in which one laser identified each microsphere and another laser the reporter dye conjugated to the secondary antibodies. The assay required minimal sample preparation, could be completed in 1 h, was performed in 96 wells microtitreplates and required no wash steps. The limit of detection for the duplex enrichment MIA was 100–1000 cfu ml?1, which was a hundred times lower than of an enrichment-ELISA. Without enrichment, the sensitivity of MIA and ELISA was largely similar and ranged between 106 and 107 cells ml?1. No difference in sensitivity was found between a MIA in a single or duplex format. In a comparative test with non-infected potato plant extracts and extracts from plants infected with Pca or Dcd, results of the enrichment MIA correlated well with those of the enrichment ELISA and enrichment PCR. These results indicate that MIA can be reliably used for multiplex detection of soft rot Enterbacteriaceae in crude potato plant extracts. The technology is an attractive and cost-effective alternative to other detection methods, including ELISA.  相似文献   

20.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号