首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Scrapie in sheep and goats has been known for more than 250 years and belongs nowadays to the so-called prion diseases that also include e.g. bovine spongiform encephalopathy in cattle (BSE) and Creutzfeldt-Jakob disease in humans. According to the prion hypothesis, the pathological isoform (PrPSc) of the cellular prion protein (PrPc) comprises the essential, if not exclusive, component of the transmissible agent. Currently, two types of scrapie disease are known - classical and atypical/Nor98 scrapie. In the present study we examine 24 cases of classical and 25 cases of atypical/Nor98 scrapie with the sensitive PET blot method and validate the results with conventional immunohistochemistry. The sequential detection of PrPSc aggregates in the CNS of classical scrapie sheep implies that after neuroinvasion a spread from spinal cord and obex to the cerebellum, diencephalon and frontal cortex via the rostral brainstem takes place. We categorize the spread of PrPSc into four stages: the CNS entry stage, the brainstem stage, the cruciate sulcus stage and finally the basal ganglia stage. Such a sequential development of PrPSc was not detectable upon analysis of the present atypical/Nor98 scrapie cases. PrPSc distribution in one case of atypical/Nor98 scrapie in a presumably early disease phase suggests that the spread of PrPSc aggregates starts in the di- or telencephalon. In addition to the spontaneous generation of PrPSc, an uptake of the infectious agent into the brain, that bypasses the brainstem and starts its accumulation in the thalamus, needs to be taken into consideration for atypical/Nor98 scrapie.  相似文献   

2.
Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.  相似文献   

3.
ABSTRACT: Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. The purpose of this experiment was to determine susceptibility of white-tailed deer to the agent of scrapie after intracerebral inoculation and to compare clinical signs and lesions to those reported for chronic wasting disease (CWD). Deer (n = 5) were inoculated with 1 mL of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. A non-inoculated deer was maintained as a negative control. Deer were observed daily for clinical signs of disease and euthanized and necropsied when unequivocal signs of scrapie were noted. One animal died 7 months post inoculation (pi) due to intercurrent disease. Examinations of brain tissue for the presence of the disease-associated abnormal prion protein (PrPSc) by western blot (WB) and immunohistochemistry (IHC) were negative whereas IHC of lymphoid tissues was positive. Deer necropsied at 15-22 months pi were positive for scrapie by IHC and WB. Deer necropsied after 20 months pi had clinical signs of depression and progressive weight loss. Tissues with PrPSc immunoreactivity included brain (at levels of cerebrum, hippocampus, colliculus, cerebellum, and brainstem), trigeminal ganglion, neurohypophysis, retina, spinal cord, and various lymphoid tissues including tonsil, retropharyngeal and mesenteric lymph nodes, Peyer's patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation. To further test the susceptibility of white-tailed deer to scrapie these experiments will be repeated with a more natural route of inoculation.  相似文献   

4.
All sheep older than 1 year of age from a flock of the Rygja breed in which clinical scrapie was detected for the first time in two animals (4%) were examined for accumulation of pathogenic prion protein (PrPSc) by immunohistochemistry in the obex, the cerebellum, and the medial retrophayngeal lymph node. In addition, six lambs, 2-3 months old, all offspring of PrPSc-positive dams, were examined for PrPSc in the ileal Peyers' patch (IPP), the distal jejunal lymph node, the spleen, and the medial retropharyngeal lymph node (RPLN). In this flock, 35% (17/48) of the adult sheep showed accumulation of PrPSc, an eightfold increase compared with clinical disease. All positives carried susceptible PrP genotypes. Three sheep had deposits of PrPSc in the RPLN and not in the brain, suggesting that this organ, easily accessible at slaughter, is suitable for screening purposes. Two 7-year-old clinically healthy homozygous V136Q171 ewes showed sparse immunostaining in the central nervous system and may have been infected as adults. Further, two littermates, 86-days-old, showed PrPSc in the IPP. Interestingly, one of these lambs had the intermediate susceptible PrP genotype, VA136QR171. In addition to early immunolabeling in the dorsal motor nucleus of the vagal nerve, a few of the sheep had early involvement of the cerebellum. In fact, a 2-year-old sheep had sparse deposits of PrPSc in the cerebellum only. Because experimental bovine spongiform encephalopathy (BSE) in sheep seems to behave in a similar manner as natural scrapie, these results, particularly regarding spread of infectivity, may have implications for the handling of BSE should it be diagnosed in sheep.  相似文献   

5.
This study investigated whether the abnormal prion protein (PrP(Sc)) in tissues from sheep with scrapie would be destroyed by composting. Tissues from sheep naturally infected with scrapie were placed within fiberglass mesh bags and buried in compost piles for 108 d in experiment 1 or 148 d in experiment 2. The temperature in the compost piles rose quickly; it was above 60 degrees C for about 2 wk and then slowly declined to the ambient temperature. Before composting, PrPSc was detected in all the tissues by Western blotting. In experiment 1, PrPsc was not detected after composting in the tissue remnants or the surrounding sawdust. In experiment 2, 1 of 5 specimens tested negative after composting, whereas PrP(Sc) was detected in the other 4 bags, though in reduced amounts compared with those before composting. Tissue weights were reduced during composting. Analysis of the tissue remnants for microbial 16S ribosomal DNA demonstrated that there were more diverse microbes involved in experiment 1 than in experiment 2 and that the guanine and cytosine content of the microbial 16S DNA was higher in the specimens of experiment 1 than in those of experiment 2, which suggests greater dominance of thermophilic microbes in experiment 1. These results indicate that composting may have value as a means for degrading PrP(Sc) in carcasses and other wastes.  相似文献   

6.
Scrapie and bovine spongiform encephalopathy (BSE) are major global concerns and the emergence of variant Creutzfeldt-Jakob disease (vCJD) has caused turmoil for blood transfusion services and hospitals worldwide. Recent reports of iatrogenic CJD (iCJD) cases following blood transfusions from Transmissible Spongiform Encephalopathies (TSE)-infected donors have fuelled this concern. Major diagnostic tests for BSE and scrapie are conducted post-mortem from animals in late stages of the disease. Although the lymphoreticular system is involved in the earlier pathogenesis of some forms of sheep scrapie and vCJD, which presents great opportunity for diagnostic development, other TSE diseases (some strains of scrapie, sporadic CJD (sCJD) and bovine BSE) do not present such a diagnostic opportunity. Thus, there is an urgent need for pre-mortem tests that differentiate between healthy and diseased individuals at early stages of illness, in accessible samples such as blood and urine using less invasive procedures. This review reports on the current state of progress in the development and use of prion and non-prion biomarkers in the diagnosis of TSE diseases. Some of these efforts have concentrated on improving the sensitivity of PrPSc detection to allow in vivo diagnosis at low abundances of PrPSc whilst others have sought to identify non-prion protein biomarkers of TSE disease, many of which are still at early stages of development. In this review we comment upon the limitations of prion based tests and review current research on the development of tests for TSE that rely on non-prion disease markers in body fluids that may allow preclinical disease diagnosis.  相似文献   

7.
Natural scrapie, new variant Creutzfeldt-Jakob disease and murine experimental transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders. The agent responsible for these diseases is closely related to PrPsc, an abnormal isoform of the cellular prion protein. Before reaching the brain, it invades and replicates in lymphoid organs such as spleen, tonsils and lymph nodes. Follicular dendritic cells (FDC) may support the prion replication in lymphoid tissues of sheep as shown in murine models infected with scrapie. In sheep, specific antibodies recognising FDC are lacking. The CNA42 mAb, directed against human FDC was used to identify these cells in sheep spleen. As well as showing that the pre-treatments needed for immunohistochemical detection of PrPsc did not prevent labelling by the CNA42 mAb, accumulation of PrPsc in FDC of spleens of scrapie affected sheep was demonstrated using a double immunolabelling strategy. Thus, the CNA42 antibody represents a suitable tool to identify FDC and investigate their role in natural sheep scrapie.  相似文献   

8.
In 2005, a prion disease identified in a goat from France was reported to be consistent with disease from the bovine spongiform encephalopathy (BSE) agent. Subsequent retrospective examination of UK goat scrapie cases led to the identification of one potentially similar, but as yet unconfirmed, case from Scotland. These findings strengthened concerns that small ruminant populations exposed to the BSE agent have become infected. The lack of data relating specifically to scrapie in goats has been contributory to past assumptions that, in general, sheep and goats respond similarly to prion infections. In this study, brain material from 22 archived caprine scrapie cases from the UK was reviewed by histopathology and by immunohistochemical examination for accumulations of disease-specific prion protein (PrP(Sc)) to provide additional data on the lesions of caprine scrapie and to identify any BSE-like features. The vacuolar change observed in the goats was characteristic of transmissible spongiform encephalopathies in general. PrP(Sc) immunohistochemical morphologic forms described in scrapie and experimental BSE infections of sheep were demonstrable in the goats, but these were generally more extensive and variable in PrP(Sc) accumulation. None of the cases examined showed a PrP(Sc) immunohistochemical pattern indicative of BSE.  相似文献   

9.
ABSTRACT: In sheep polymorphisms of the prion gene (PRNP) at the codons 136, 154 and 171 strongly influence the susceptibility to scrapie and bovine spongiform encephalopathy (BSE) infections. In goats a number of other gene polymorphisms were found which are suspected to trigger similar effects. However, no strong correlation between polymorphisms and TSE susceptibility in goats has yet been obtained from epidemiological studies and only a low number of experimental challenge data are available at present. We have therefore studied the potential impact of these polymorphisms in vitro by cell-free conversion assays using mouse scrapie strain Me7. Mouse scrapie brain derived PrPSc served as seeds and eleven recombinant single mutation variants of sheep and goat PrPC as conversion targets. With this approach it was possible to assign reduced conversion efficiencies to specific polymorphisms, which are associated to low frequency in scrapie-affected goats or found only in healthy animals. Moreover, we could demonstrate a dominant-negative inhibition of prion polymorphisms associated with high susceptibility by alleles linked to low susceptibility in vitro.  相似文献   

10.
This report describes the genetics of the prion protein gene (PRNP) at codons 136, 154, and 171 for sheep diagnosed with naturally acquired classical scrapie in Canada between 1998 and 2008. Genotyping analysis was performed on 249 sheep with confirmed classical scrapie infection representing 98 flocks from 6 provinces. A further case-control analysis of 3 of these flocks compared the genotypes between infected sheep (n = 72) and those of their healthy flockmates (n = 1990). The incidence of classical scrapie in the Canadian sheep population was highly associated with the ARQ haplotype (91.8%) and the ARQ/ARQ genotype (91.6%). In addition, the ARQ haplotype was found at significantly higher frequency in scrapie-infected sheep when compared with their healthy flockmates. Comparison with other published data suggests that the scrapie risk of PRNP genotypes differs between Canada and countries where the VRQ allele is associated with the highest susceptibility to infection.  相似文献   

11.
Prion diseases, or transmissible spongiform encephalopathies, are neurodegenerative diseases that can only be accurately diagnosed by analysis of central nervous system tissue for the presence of an abnormal isoform of the prion protein known as PrP(Sc). Furthermore, these diseases have long incubation periods during which there are no clear symptoms but where the infectious agent could still be present in the tissues. Therefore, the development of diagnostic assays to detect a surrogate marker for the presence of prion disease is essential. Previous studies on mice experimentally infected with scrapie, an ovine spongiform encephalopathy, suggested that changes in the levels of Mn occur in the blood and brain before the onset of symptoms of the disease. To assess whether these findings have relevance to the animal diseases scrapie and bovine spongiform encephalopathy, tissues from bovine spongiform encephalopathy- and scrapie-infected cattle and sheep were analyzed for their metal content and compared with values for noninfected animals. In field cases and experimentally infected animals, elevated Mn was associated with prion infection. Although some central nervous system regions showed elevated Mn, other regions did not. The most consistent finding was an elevation of Mn in blood. This change was present in experimentally infected animals before the onset of symptoms. In scrapie-infected sheep, elevated Mn levels occurred regardless of the genotype of the sheep and were even detected in scrapie-resistant sheep in which no symptoms of disease were detected. These findings suggest that elevated blood Mn could be a potential diagnostic marker for prion infection even in the absence of apparent clinical disease.  相似文献   

12.
Brain tissue from a case of bovine spongiform encephalopathy (BSE) from Alberta was subjected to a Western immunoblotting technique to ascertain the molecular profile of any disease-specific, abnormal prion protein, that is, prion protein that is protease-resistant (PrP(res)). This technique can discriminate between isolates from BSE, ovine scrapie, and sheep experimentally infected with BSE. Isolates of brain tissue from the BSE case in Alberta, 3 farmed elk with chronic wasting disease (CWD) from different parts of Saskatchewan, and 1 farmed white-tailed deer with CWD from Edmonton, Alberta, were examined alongside isolates of brain tissue from BSE, ovine scrapie, and sheep experimentally infected with BSE from the United Kingdom (UK). The molecular weights of PrP(res) and the cross reactions to 2 specific monoclonal antibodies (mAbs) were determined for each sample. The BSE isolates from Canada and the UK had very similar PrP(res) molecular weights and reacted with only 1 of the 2 mAbs. The PrP(res) isolated from both elk and white-tailed deer with CWD had a higher molecular weight profile than did the corresponding PrP(res) from the scrapie and BSE isolates. The PrP(res) from CWD cases cross reacted with both mAbs, a property shared with PrP(res) in isolates from scrapie but not with PrP(res) isolates from BSE or sheep experimentally infected with BSE. The results from this study seem to confirm that the PrP(res) isolated from the BSE case in Alberta has similar molecular properties to the PrP(res) isolated from a BSE case in the UK, and that it differs in its molecular and immunological characteristics from the CWD and scrapie cases studied.  相似文献   

13.
14.
The purpose of this study was to enhance the sensitivity of the Western blot (WB) test for use as an alternative and confirmatory method for the diagnosis of scrapie and chronic wasting disease (CWD) in Canada by comparing 2 sample preparation procedures: an abnormal prion protein (PrPSc) concentration procedure using sodium phosphotungstic acid (PTA) precipitation and a procedure using crude sample without precipitation. A total of 100 cerebrum samples (52 sheep and 48 elk), including 66 negative (31 sheep, 35 elk) and 34 positive (21 scrapie and 13 CWD positive) samples diagnosed by using immunohistochemistry (IHC) on retropharyngeal lymph node (RPLN) and medulla oblongata at obex, were tested by using WB with the 2 sample preparation procedures. The WB using non-PTA enriched sample (crude extract) detected, on average, only 71.7% (9 of 15, 60.0% for scrapie, 5 of 6, 83.3% for CWD) of the samples that tested positive by using WB with PTA enriched samples. No case was positive by WB using crude extract but negative by WB using PTA enriched sample. No false positive was found. Serial dilution of PTA precipitated samples demonstrated that the technique increases the detection limit approximately 100 fold. Additionally, the comparison of the WB and IHC on cerebrum from all the positive cases demonstrated that WB following PTA precipitation and IHC had 100% agreement by detecting 6 positive for CWD on cerebrum; while IHC detected scrapie in only 14 out of 15 positive cerebrum samples by using WB following PTA precipitation. Phosphotungstic acid precipitation is therefore a useful adjunct to WB analysis of scrapie and CWD and tissues.  相似文献   

15.
Formalin-fixed, paraffin-embedded tissue sections from a 3-year-old female Angora goat suffering from clinical scrapie were immunostained after hydrated autoclaving using a monoclonal antibody (mAb, F99/97.6.1; IgG1) specific for a conserved epitope on the prion protein. Widespread and prominent deposition of the scrapie isoform of the prion protein (PrPSc) was observed in the brain, brainstem, spinal cord, retina, postganglionic neurons associated with parasympathetic ganglia of myenteric and submucosal plexuses, Peyer's patches, peripheral lymph nodes, and pharyngeal and palatine tonsils. The goat was homozygous for PrP alleles encoding 5 octapeptide repeat sequences in the N-terminal region of the prion protein and isoleucine at codon 142, a genotype associated with high susceptibility and short incubation times in goats. The results of this study indicate that mAb F99/97.6.1 is useful for detection of PrPSc deposition, and this is a specific and reliable immunohistochemical adjunct to histopathology for diagnosis of natural caprine scrapie, although precise determination of the diagnostic sensitivity and specificity of the assay as a diagnostic test for scrapie in goats will require examination of a sufficiently large sample size. As with ovine scrapie, prion protein is widely distributed in the central and peripheral nervous systems, gastrointestinal tract, and lymphoid tissues in natural caprine scrapie.  相似文献   

16.
Scrapie is a fatal, neurodegenerative disease of sheep and goats. It is also the earliest known member in the family of diseases classified as transmissible spongiform encephalopathies (TSE) or prion diseases, which includes Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE), and chronic wasting disease in cervids. The recent revelation of naturally occurring BSE in a goat has brought the issue of TSE in goats to the attention of the public. In contrast to scrapie, BSE presents a proven risk to humans. The risk of goat BSE, however, is difficult to evaluate, as our knowledge of TSE in goats is limited. Natural caprine scrapie has been discovered throughout Europe, with reported cases generally being greatest in countries with the highest goat populations. As with sheep scrapie, susceptibility and incubation period duration of goat scrapie are most likely controlled by the prion protein (PrP) gene (PRNP). Like the PRNP of sheep, the caprine PRNP shows significantly greater variability than that of cattle and humans. Although PRNP variability in goats differs from that observed in sheep, the two species share several identical alleles. Moreover, while the ARR allele associated with enhancing resistance in sheep is not present in the goat PRNP, there is evidence for the existence of other PrP variants related to resistance. This review presents the current knowledge of the epidemiology of caprine scrapie within the major European goat populations, and compiles the current data on genetic variability of PRNP.  相似文献   

17.
To detect prion protein, brains from 5 cattle naturally affected with bovine spongiform encephalopathy (BSE) and 3 sheep naturally affected with scrapie were examined and compared with brains of normal cattle and sheep using a histoblot technique. The technique enabled the in situ distinctive detection of the cellular (PrP(C)) and abnormal (PrP(Sc)) isoforms of the prion protein. In BSE- or scrapie-affected brains, the Prp(C) signal decreased, especially in those areas where the PrP(Sc) signal was detected.  相似文献   

18.
Sheep scrapie is a prion disease that requires interaction of exogenous prions with host prion protein (PrP) supporting prion formation. Disease is associated with deposition of a host-generated conformational variant of PrP, PrPsc, in a variety of tissues, including brain, resulting in fatal spongiform encephalopathy. Efficiency of PrPsc formation is determined by polymorphisms in the PrP-coding sequence. This article adds to previous data of natural sheep scrapie, concentrating on the effect of host genotype and age on PrPsc accumulation patterns during preclinical and clinical disease. Two entire scrapie-infected, predominantly Suffolk-cross, sheep flocks euthanized for regulatory purposes were genotyped and analyzed for PrPsc deposition in various tissues using single- and dual-label immunohistochemistry. Scrapie, as defined by PrPsc deposition, occurred in 13/80 sheep. Preclinical disease was evident in nearly 70% of infected sheep, ranging in age from 14 months to 7 years. PrPsc accumulated systemically in the nervous tissue, various lymphoid tissues, both alimentary tract related and non-alimentary tract related, and the placenta. Clinical neurological illness was always associated with spongiform encephalopathy and PrPsc deposition in the brain. Only 6 of 9 sheep with preclinical scrapie had PrPsc deposition in the brain but widespread PrPsc deposition in peripheral lymphoid tissue, supporting previous data showing peripheral PrPsc accumulation preceding deposition in the brain. PrPsc colocalized with a marker for follicular dendritic cells throughout the lymphoid system. PrPsc also accumulated in the peripheral nervous system, particularly the nervous supply of the gastrointestinal tract. Abundant PrPsc was evident in trophoblast cells of placentomes but not in the endometrium, myometrium, or associated nervous plexus. PrPsc deposits were not observed in the mammary parenchyma or bone marrow. Scrapie susceptibility was defined genetically by PrP codon 171: PrPsc deposition was restricted to PrP genotype AA136RR154QQ171 in 12/13 cases or AV136RR154QQ171 in 1/13 cases. The earliest accumulation was observed in the single VRQ/ARQ heterozygous animal, consistent with the reported high scrapie susceptibility and brief incubation period observed in breeds with predominance of the V136R154Q171 allele. Disease occurred within, as well as independent of, mother-daughter lines, suggesting both maternal and nonmaternal transmission in the flocks.  相似文献   

19.
This paper compares the dinical signs, histopathology, detection of PrPSc protein and PrP genetics of the transmission of BSE to sheep and goats, with the effects of the transmission of natural scrapie from a brain homogenate from a single sheep. After intracerebral and oral inoculations there were similarities in the clinical signs due to the two sources of infection, but there were differences in pathology at the end stage of disease and in the genotypes of the sheep which succumbed to the challenges. The incubation period of BSE was associated with the sheep PrP codon 171 genotype, but the natural scrapie source, despite inducing disease only in known susceptible genotypes, showed no clear association with PrP genotype.  相似文献   

20.
Scrapie is a naturally occurring fatal neurodegenerative disease of sheep and goats. This study documents incubation periods, pathologic findings, and distribution of abnormal prion proteins (PrP(Sc)) by immunohistochemistry in tissues of genetically susceptible sheep inoculated with US sheep scrapie agent. Four-month-old Suffolk lambs (QQ at codon 171) were inoculated by 1 of 3 different routes (nasal, peritoneal, and conjunctival) with an inoculum (No. 13-7) consisting of a pool of scrapie-affected sheep brains. Except for 3 sheep, all inoculated animals were euthanized when advanced clinical signs of scrapie were observed between 19 and 46 months postinoculation (MPI). Spongiform lesions in the brains and labeling of PrP(Sc) in central nervous system and lymphoid tissues were present in these sheep. One intranasally inoculated sheep euthanized at 12 MPI had presence of PrP(Sc) that was confined to the pharyngeal tonsil. These results indicate that the upper respiratory tract, specifically the pharyngeal tonsil, may serve as a portal of entry for prion protein in scrapie-infected environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号