首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptin is a protein synthesized and secreted primarily by adipocytes, and the circulating leptin concentration is elevated in obese humans and rodents. Recently, we have established a sandwich enzyme-linked immunosorbent assay for canine leptin. In the present study, plasma leptin concentrations were measured in experimentally developed obese beagles and in clinically obese dogs. When 5 male beagles were given a high-energy diet for 3 months, all of them became obese and the plasma leptin concentration significantly increased from 2.4+/-1.2 to 4.9+/-0.9 ng/ml, positively correlating with body fat content estimated by the deuterium oxide dilution method (r=0.87). The leptin concentrations of plasma samples collected from 59 dogs in veterinary practices were compared with their body condition scores (BCS). The plasma leptin concentrations of obese dogs were 9.7+/-0.7 and 12.3+/-1.5 ng/ml at BCS=4 and BCS=5, respectively, which were significantly higher than those of optimal (BCS=3) dogs (2.7+/-0.3 ng/ml). There was no significant effect of sex and breed. A weak positive correlation (r=0.37) was found between the plasma leptin concentration and age, probably due to the lesser content of visceral fat in puppies younger than 1 year old. These results indicate that plasma leptin is a good index of adiposity in dogs regardless of breed, age and sex, and may be useful for quantitative assessment of obesity in small animal practice.  相似文献   

2.
Serum concentrations of leptin and insulin were compared between gender-matched hypothyroid (n=25) and healthy (n=25) client-owned dogs within comparable age and body condition score (BCS) ranges. Fasted blood samples were collected from each dog and analysed for glucose, cholesterol, triglyceride, leptin and insulin concentrations. Leptin and insulin concentrations were significantly higher in the hypothyroid compared to normal dogs (P=0.006 and P=0.001, respectively) following adjustment for potential confounders. A nearly significant (P=0.051) interaction with BCS was found in the association between hypothyroidism and leptin. Leptin concentrations were significantly higher in hypothyroid dogs compared to normal dogs, in separate analyses for BCS 6 (P=0.036) and 7 (P=0.049). There was no significant difference in glucose concentration between the hypothyroid and normal groups (P=0.84) following adjustment for BCS. This study showed that canine hypothyroidism is associated with increased serum leptin and insulin concentrations, neither of which may be attributed to obesity alone.  相似文献   

3.
Adipose tissue (AT) expresses adipokines, which are involved in the regulation of energy expenditure, lipid metabolism and insulin sensitivity. Visceral (v.c.) and subcutaneous (s.c.) depots largely differ concerning their metabolic characteristics as to the control of lipolysis and the sensitivity to insulin. The adipokines adiponectin, leptin and visfatin influence lipolysis and insulin sensitivity. Signalling by G‐protein coupled receptor 41 (GPR 41) stimulates leptin release via activation by short‐chain fatty acids. We hypothesized that the metabolic differences between v.c. and s.c. fat depots may also apply to the expression of adiponectin, its receptors, leptin, visfatin, insulin receptor (IR) and GPR 41. Therefore, we aimed to compare the mRNA expression of adiponectin, leptin and visfatin, of the adiponectin receptors 1 and 2 (AdipoR1/2) and IR as well of GPR 41 between several s.c. and v.c. fat depots in sheep. Samples from 10 rams were collected at slaughter (40 kg BW) from three s.c. depots, i.e. close to sternum (s.c.S), close to withers (s.c.W), and at the base of tail (s.c.T), and from two v.c. depots, i.e. from perirenal (v.c.P) and omental (v.c.O) fat. The mRNAs of both adiponectin receptors, as well as IR and putative GPR 41, were higher expressed in v.c. fat than in s.c. fat (p ≤ 0.05). Leptin mRNA abundance was greater in s.c. than in v.c. fat (mean ± SEM: s.c.: 2.55 ± 0.81; v.c.: 0.66 ± 0.21) and also differed among the five separately measured fat depots. Our results show differences in mRNA abundance for leptin, AdipoR1 and R2, as well as for IR and GPR 41 in s.c. compared with v.c. fat, thus confirming the need for individual consideration of distinct fat depots, when aiming to characterize adipose functions in ruminants.  相似文献   

4.
Obesity influences the development, progression and prognosis of human breast cancer and canine mammary cancer (MC) but the precise underlying mechanism is not well-documented in the fields of either human or veterinary oncology. In the present study, the expression of major adipocytokines, including leptin, adiponectin, and leptin receptor (ObR) in benign (n = 28) and malignant (n = 70) canine mammary tumors was investigated by immunohistochemistry and on the basis of the subject's body condition score (BCS). To evaluate the relationship between obesity and chronic inflammation of the mammary gland, macrophages infiltrating within and around tumoral areas were counted.The mean age of MC development was lower in overweight or obese dogs (9.0 ± 1.8 years) than in lean dogs or optimal bodyweight (10.2 ± 2.9 years), and the evidence of lymphatic invasion of carcinoma cells was found more frequently in overweight or obese group than in lean or optimal groups. Decreased adiponectin expression and increased macrophage numbers in overweight or obese subjects were significantly correlated with factors related to a poor prognosis, such as high histological grade and lymphatic invasion. Leptin expression was correlated with progesterone receptor status, and ObR expression was correlated with estrogen receptor status of MCs, regardless of BCS. Macrophage infiltration within and around the tumor may play an important role in tumor progression and metastasis in obese female dogs and may represent a prognostic factor for canine MCs.  相似文献   

5.
Objective-To determine associations between serum concentrations of omega-3 polyunsaturated fatty acids or body condition and serum concentrations of adiponectin, leptin, insulin, glucose, or triglyceride in healthy dogs. Animals-62 healthy adult client-owned dogs. Procedures-Body condition score and percentage of body fat were determined. Blood samples were collected after food was withheld for 12 hours. Serum was harvested for total lipid determination, fatty acid analysis, and measurement of serum concentrations of adiponectin, leptin, insulin, glucose, and triglyceride. Associations between the outcome variables (adiponectin, leptin, insulin, glucose, and triglyceride concentrations) and each of several variables (age, sex, percentage of body fat, and concentrations of total lipid, α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) were determined. Results-Serum concentrations of docosapentaenoic acid were significantly positively associated with concentrations of adiponectin and leptin and negatively associated with concentrations of triglyceride. Serum concentrations of α-linolenic acid were significantly positively associated with concentrations of triglyceride. No significant associations were detected between serum concentrations of eicosapentaenoic acid or docosahexaenoic acid and any of the outcome variables. Percentage of body fat was significantly positively associated with concentrations of leptin, insulin, and triglyceride but was not significantly associated with adiponectin concentration. Age was positively associated with concentrations of leptin, insulin, and triglyceride and negatively associated with concentrations of adiponectin. Sex did not significantly affect serum concentrations for any of the outcome variables. Conclusions and Clinical Relevance-Docosapentaenoic acid may increase serum concentrations of adiponectin and leptin and decrease serum triglyceride concentration in healthy dogs.  相似文献   

6.
OBJECTIVE: To evaluate the relationship between plasma leptin concentration and body fat content in dogs. ANIMALS: 20 spayed female Beagles that were 10 months old at the start of the experiment. PROCEDURE: Dogs were kept under regulated feeding and exercise conditions for 21 weeks, resulting in a wide range of body weights, body condition scores (BCS), and subcutaneous thicknesses. Plasma leptin concentration was measured by use of a canine leptin-specific ELISA test to evaluate its correlation to body fat content estimated by the deuterium oxide dilution method. Plasma concentrations of glucose, cholesterol, triglycerides (TG), and nonesterified fatty acids (NEFA) were also measured. RESULTS: Body fat content (9 to 60% of body weight) was positively and closely correlated (r = 0.920; n = 20; P < 0.001) to plasma leptin concentration (0.67 to 8.06 ng/ml), compared with other variables (ie, glucose, cholesterol, TG, and NEFA; r = 0.142, 0.412, 0.074, and 0.182, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: The positive relationship between plasma leptin concentration and body fat content in dogs was similar to correlations reported for humans and rodents, suggesting that plasma leptin is a quantitative marker of adiposity in dogs.  相似文献   

7.
Adiponectin is a protein synthesized and secreted by adipocytes. Decreased adiponectin is responsible for insulin resistance and atherosclerosis associated with human obesity. We obtained a cDNA clone corresponding to canine adiponectin, whose nucleotide and deduced amino acid sequences were highly identical to those of other species. Adiponectin mRNA was detected in adipose tissues, but not in other tissues, of dogs. When 22 adult beagles were given a high-energy diet for 14 weeks, they became obese, showing heavier body weights, higher plasma leptin concentrations, but lower plasma adiponectin concentrations. The adiponectin concentrations of plasma samples collected from 71 dogs visiting veterinary practices were negatively correlated to plasma leptin concentrations, being lower in obese than non-obese dogs. These results are compatible with those reported in other species, and suggest that adiponectin is an index of adiposity and a target molecule for studies on diseases associated with obesity in dogs.  相似文献   

8.
Leptin is the ob gene product secreted from adipocytes in mammals, and thereby its plasma level reflects body fat content. To establish an assay method for leptin in the dog, rabbit anti-canine leptin antibody was obtained using canine recombinant leptin as an antigen. This antibody reacted to canine leptin much stronger than mouse, rat and human leptins. Sandwich enzyme-linked immunosorbent assay (ELISA) using this antibody was developed. The serum leptin levels of 13 healthy dogs were in a range from 1.4 to 5.6 ng/ml with the mean +/- SEM of 3.0 +/- 0.3 ng/ml.  相似文献   

9.
Leptin is an adipocytokine mainly expressed by adipose tissue. Secretion of leptin in healthy animals is closely related to fat mass and metabolic activity. The aim of this study was to investigate plasma leptin variations, in relation to nutritional and exercise parameters in adult show horses during a work season. EDTA-blood samples were taken at rest from 37 Iberian horses. Body weight, body condition score and fat percentage determined by ultrasonic measurement of rump fat thickness were measured. Plasma leptin was determined with a multi-species RIA kit. Linear mixed effects model was used to assess relationship between plasma leptin and other biological parameters. Plasma leptin concentration was <12.6 ng/ml (mean = 2.8 ± 1.6 ng/ml) and was significantly higher during training periods (p < 0.0001) (4.5 ± 1.7 ng/ml) than in show periods (2.0 ± 1.1 ng/ml), despite a significant increase (p < 0.0001) in energy intake. The body weight remained almost constant. The plasma leptin concentrations were significantly affected by exercise (p < 0.0001), body weight (p = 0.04) and BCS (p < 0.0001), but were not affected by percentage of fat. In conclusion, the marked decrease in leptin values observed during a period of intense (i.e. excessive) exercise could result from an adaptation to cumulative alterations in energy balance, to exercise per se or to a combination of both.  相似文献   

10.
Leptin is a cytokine produced by adipocytes, and plays a key role in the regulation of energy balance. In the present study, we measured plasma leptin concentrations of 166 normal and obese dogs visiting veterinary practices, and clarified the influence of age, gender and breed on plasma leptin levels in dogs. Leptin levels were higher in the dogs with higher body condition scores. There was no noticeable influence of age, gender and breed, but those in optimal puppies and obese Miniature Dachshund tended to be lower than those in corresponding groups. We conclude that plasma leptin is a reliable marker of adiposity in dogs regardless of age, gender and breed variations, and thereby useful as a blood biochemistry test for health examinations and treatment of obesity.  相似文献   

11.
The polypeptide hormone leptin is produced by both adipose tissue and the liver and has been shown to induce satiety in chickens. In this study we have investigated the developmental regulation of leptin mRNA expression in growing broiler chickens. Leptin expression generally increases in all tissues from 1-12 weeks of age. In the subcutaneous fat depot there is an apparent pattern of increased leptin mRNA expression occurring at 2, 6, and 10 weeks post-hatch. This pattern was not evident in the other tissues surveyed and may relate to the cycle of loading and unloading of adipocytes with lipid. No consistent gender differences in leptin expression patterns were detected in the tissues surveyed, as is often observed in mammals. Positive correlations between metabolic body weight and adipose leptin expression levels were observed. Leptin expression by the liver was highly correlated with metabolic body weight from 1-6 weeks of age, and uncorrelated from 6-12 weeks of age. This pattern of increasing liver leptin expression with increasing body weight during the early rapid growth phase of the bird may be due to limited fat storage during this period, which is followed by rapid body fat accumulation from 6-12 weeks. The characterization and tissue specific distribution of leptin mRNA expression in the growing broiler indicate similar patterns of leptin production to that of growing mammals. Leptin may be involved in lipid flux through the adipocyte as well as the shift in lipid metabolism to increased storage during pre-puberty.  相似文献   

12.
13.
OBJECTIVE: To validate a recently developed commercially available leptin radioimmunoassay (RIA) for use with feline serum and evaluate the relationship between serum leptin concentrations and body fat mass in domestic cats. ANIMALS: 19 sexually intact male specific-pathogen-free domestic cats that weighed 3.8 to 7.1 kg and were 1.1 to 3.5 years old. PROCEDURE: Specificity for feline leptin was evaluated by use of gel filtration chromatography and reverse-phase high-performance liquid chromatography fractionation of serum. Body fat mass was determined by use of the deuterium oxide (D2O) dilution method. Serum water D2O enrichment was measured by use of gas-phase Fourier transform infrared spectroscopy. RESULTS: Body fat mass and percentage body fat ranged from 0.3 to 2.3 kg and 7.5 to 34.9%, respectively. Serum leptin concentrations were lower in the unfed versus the fed state and ranged between 1.6 and 4.9 ng/ml human equivalent (HE); mean +/- SD value was 2.9 +/- 0.2 ng/ml HE. Leptin concentrations increased with increasing body fat mass and percentage of body fat. CONCLUSIONS: Leptin is in the serum of domestic cats in free (> 78%) and apparently bound forms. The relationship between body fat and serum leptin concentration was similar to that observed in humans and rodents and indicative of a lipostatic role for leptin in cats. Cats that have an overabundance of body fat appear to be less sensitive to the weight-normalizing action of leptin than cats of ideal body condition.  相似文献   

14.
Leptin is an adipocyte-derived hormone that suppresses feed intake and increases energy expenditure. Leptin is also involved in regulating body temperature. Thus, the presence of leptin in milk, which can be absorbed through the gut of neonates immediately after birth, may aid in the survival of neonates born in cold weather. Our objectives were to determine the temporal relationship between concentrations of leptin in postpartum ewe blood serum and ewe milk serum, and to determine whether ewe blood and milk serum leptin concentrations were correlated with concentrations of leptin in lamb blood serum in their off-spring. Approximately 1 wk before the expected date of lambing, blood samples, weights, and body condition scores (BCS; 0 to 5 scale) were collected from 27 mixed-parity ewes. Following parturition, ewe blood and milk samples were collected within 2 h of parturition (d 0), 12 h (d 0.5) and 24 h (d 1) after parturition, again on d 5, and weekly thereafter until d 47. Lambs were blood-sampled and weighed within 2 h of parturition (d 0), bled daily until d 5, and bled and weighed weekly thereafter to d 47. Prior to lambing, ewe blood serum leptin was positively correlated with congruent BCS (r2 = 0, 10, P = 0.06), but not weight (P = 0.14). Following parturition, ewe blood serum leptin was positively correlated with BCS, weight, and milk serum leptin (r2 = 0.14, P < 0.0001, r2 = 0.12, P < 0.0001, and r2 = 0.028, P = 0.04). Leptin in milk serum was correlated with ewe weight (r2=0.05, P = 0.007) but not ewe BCS (P = 0.7); however, concentrations of leptin in both ewe blood and milk serum varied with day of lactation (P = 0.0001), being maximal within 24 h of parturition and declining to nadir concentrations by d 5. Leptin in lamb serum was correlated with milk serum leptin, (r2 = -0.05; P = 0.001), but not ewe blood serum leptin (P = 0.5). Concentrations of leptin in lamb serum increased from birth to d 5 and declined thereafter to nadir concentrations by d 19. Elevated concentrations of leptin in milk during the early stages of lactation may provide a mechanism for thermoregulation, satiation, and homeostatic endocrine control in the neonate.  相似文献   

15.
Leptin and adiponectin play important roles in carbohydrate and lipid metabolism in different species. Information is limited on the effects of diet, weight gain, and fat mass on their concentrations in cats. This study compared fasting and postprandial blood leptin and total adiponectin concentrations before and after 8 wk of ad libitum feeding to promote weight gain in adult cats (n = 32) fed either a low-carbohydrate, high-protein (23% and 47% ME) or a high-carbohydrate, low-protein (51% and 21% ME) diet. There were significant effects of total, abdominal, and nonabdominal fat mass, but not diet or body weight, on mean 24-h and peak leptin (P < 0.01); observed increases in mean and peak leptin were greatest for abdominal fat mass (50% and 56% increase for every extra 100 g, respectively). After weight gain, postprandial leptin concentration increased markedly relative to when cats were lean, and the duration of the increase was longer after a mean weight gain of 37% with the low-carbohydrate, high-protein diet group compared with 17% with the high-carbohydrate, low-protein group (P ≤ 0.01). Adiponectin was lower than fasting at some time points during the postprandial period in both groups (P ≤ 0.05). For both fasting and mean 24-h adiponectin, there was no significant diet effect (P ≥ 0.19) or changes in weight gain relative to when cats were lean (P ≥ 0.29). In conclusion, fat mass, and not diet, has a large effect on postprandial leptin but not adiponectin concentrations in cats.  相似文献   

16.
The objective of this study was to determine the relationships among plasma concentrations of leptin, insulin, and IGF-I with dynamic changes in body condition scores (BCS) in heifers. Nineteen Zebu-Brown Swiss crossbred heifers, 24 to 30 mo old, weighing 322 +/- 9 kg, and with an initial BCS of 2.6 +/- 0.11 (range = 1 to 9) were used. Heifers were fed 60% of their maintenance requirements until they reached a BCS of < or = 2. Heifers were then maintained at that level for 25 d, after which they were fed to gain 1 kg of body weight daily until a BCS of 6 was reached. Heifers were weighed weekly and BCS was measured every 2 wk. Plasma samples were collected twice weekly, and leptin and insulin were determined by RIA. An immunoradiometric assay was used to measure IGF-I from one sample every 2 wk. Plasma concentrations of leptin were positively correlated during nutritional restriction (NR) and weight gain (WG) periods with BCS (r = 0.47 for NR, and r = 0.83 for WG; P < 0.01) and body weight (r = 0.40 for NR, and r = 0.78 for WG; P < 0.01). Plasma concentrations of leptin decreased during nutritional restriction (P < 0.01) as BCS decreased. During weight gain, leptin concentration increased at BCS 3 and thereafter for each integer change in the BCS. Regression analysis showed that changes in body weight affect leptin concentrations within a given BCS. There was a decrease in IGF-I as BCS declined (P < 0.01). During weight gain, by contrast, IGF-I increased significantly (P < 0.01) with every unit change in body condition up to BCS of 4 and plateaued thereafter. Insulin concentrations did not change during nutritional restriction when BCS decreased from 3 to 1. However, once the diet was improved, there was a large increase in insulin concentrations in heifers with BCS 1 (P < 0.01). Among heifers of BCS 2 and 3, insulin did not differ and was lower than in heifers of BCS 1 (P < 0.01). Insulin increased (P < 0.01) among heifers at BCS 4 to 6. Leptin was positively correlated (P < 0.01) with both IGF-I (r = 0.34 for NR, and r = 0.36 for WG) and insulin (r = 0.18 for WG). Insulin was correlated with IGF-I (r = 0.60; P < 0.01). During nutritional restriction, insulin did not correlate with leptin (r = -0.05), BCS (r = -0.03), or IGF-I (r = 0.07). It was concluded that leptin serves as a dynamic indicator of body condition in heifers, as well as an indicator of nutritional status.  相似文献   

17.
To date and to the best of our knowledge, there have been no available data on the interaction between heat stress (HS) and secretion of adipokines and some blood metabolites in Baladi goats from Jordan. Therefore, this study aimed at evaluating the changes in leptin, adiponectin, non‐ester fatty acid (NEFA) and beta‐hydroxybutyrate (BHB) concentrations in Baladi goats under HS conditions in Jordan. Six goats were exposed to direct solar radiation versus six goats exposed to shade regimen. Blood samples were collected and serum concentrations of leptin, adiponectin, NEFA and BHB were measured. Ambient temperature, relative humidity (RH) and body weight (BW) were recorded. Results indicated that leptin and adiponectin concentrations were significantly increased under HS. The concentration of NEFA was significantly increased under HS at the 7th and 14th days of the experiment, while mean total concentration of NEFA was not significantly affected by HS. Neither weekly nor mean total concentrations of BHB were significantly affected by HS during the experimental period. In conclusion, HS is associated with changes in leptin and adiponectin concentrations in Baladi goats. Heat‐stressed goats were able to keep their blood NEFA and BHB concentrations similar to those of thermo‐neutral goats.  相似文献   

18.
瘦素(leptin)是由脂肪细胞分泌的代谢调节因子,通过结合靶细胞膜上的瘦素受体(Lep-Rb)后经过相关的信号转导体系来发挥生物学作用。Leptin可抑制脂肪的沉积,促进脂肪的水解。就其对动物机体脂肪沉积调控作一综述。  相似文献   

19.
20.
Biology of leptin in the pig   总被引:8,自引:0,他引:8  
The recently discovered protein, leptin, which is secreted by fat cells in response to changes in body weight or energy, has been implicated in regulation of feed intake, energy expenditure and the neuroendocrine axis in rodents and humans. Leptin was first identified as the gene product found deficient in the obese ob/ob mouse. Administration of leptin to ob/ob mice led to improved reproduction as well as reduced feed intake and weight loss. The porcine leptin receptor has been cloned and is a member of the class 1 cytokine family of receptors. Leptin has been implicated in the regulation of immune function and the anorexia associated with disease. The leptin receptor is localized in the brain and pituitary of the pig. The leptin response to acute inflammation is uncoupled from anorexia and is differentially regulated among swine genotypes. In vitro studies demonstrated that the leptin gene is expressed by porcine preadipocytes and leptin gene expression is highly dependent on dexamethasone induced preadipocyte differentiation. Hormonally driven preadipocyte recruitment and subsequent fat cell size may regulate leptin gene expression in the pig. Expression of CCAAT-enhancer binding protein (C/EBP) mediates insulin dependent preadipocyte leptin gene expression during lipid accretion. In contrast, insulin independent leptin gene expression may be maintained by C/EBP auto-activation and phosphorylation/dephosphorylation. Adipogenic hormones may increase adipose tissue leptin gene expression in the fetus indirectly by inducing preadipocyte recruitment and subsequent differentiation. Central administration of leptin to pigs suppressed feed intake and stimulated growth hormone (GH) secretion. Serum leptin concentrations increased with age and estradiol-induced leptin mRNA expression in fat was age and weight dependent in prepuberal gilts. This occurred at the time of expected puberty in intact contemporaries and was associated with greater LH secretion. Further work demonstrated that leptin acts directly on pituitary cells to enhance LH and GH secretion, and brain tissue to stimulate gonadotropin releasing hormone secretion. Thus, development of nutritional schemes and (or) gene therapy to manipulate leptin secretion will lead to practical methods of controlling appetite, growth and reproduction in farm animals, thereby increasing efficiency of lean meat production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号