首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken to determine changes in circulating levels of immunoreactive (ir)-inhibin, FSH, LH, estradiol-17beta, progesterone, and testosterone during the ovulatory cycle of Shao ducks. Serial blood samples were taken from two groups of laying ducks for measurement of ir-inhibin, gonadotropins, and steroid hormones at 2 h intervals for 24 h. Plasma concentrations of ir-inhibin did not change significantly during the ovulatory cycle. The highest level of plasma ir-inhibin was observed 6 h prior to ovulation, which coincided with a decreased level of plasma FSH. One FSH surge was found 12 h after ovulation. Estradiol-17beta, progesterone, and testosterone were also determined during the ovulatory cycle. Two peak values were detected for estradiol-17beta 8 h before ovulation and 4 h after ovulation, while progesterone started to increase 4 h before ovulation and reached a peak at ovulation. The highest level of plasma testosterone was detected around the time of ovulation. These results suggest that inhibin may be involved in the control of FSH secretion during the ovulatory cycle. In addition, both LH and progesterone are of importance in the ovulation process of Shao ducks.  相似文献   

2.
The aim of present study was to clarify the post-natal profile of follicle-stimulating hormone (FSH), luteinizing hormone (LH), immunoreactive (ir)-inhibin, progesterone, testosterone, and estradiol-17β, and their relationships in Thoroughbred colts. Six hundred and thirty-six colts were used for the study. Single plasma samples from each animal were harvested from the blood drawn through jugular venipuncture. The subjects were born with high amounts of progesterone, testosterone, and estradiol-17β, all of which dropped significantly and remained at lower levels till the end of 6 months. FSH decreased transiently after birth until day 12 and then gradually increased to peak at day 100 which then maintained in lesser levels towards the end of the studied period. LH was highest during birth which decreased until day 26 and then increased slowly to sub-birth levels up to day 90. Animals were born with high amounts of ir-inhibin. It dropped slowly and halved by day 20 and then decreased towards rest of the studied period. The increase in FSH is negatively correlated with the declining ir-inhibin levels. The early increase in FSH can be the indication of early post-natal maturation of the hypothalamic pituitary testicular axis that ultimately might be responsible for priming the testes for future development.  相似文献   

3.
The objective of this study was to investigate the changes in secretion of inhibin and cellular localization of the inhibin alpha and inhibin/activin (beta(A) and beta(B)) subunits in male Japanese quail from 1 to 7 weeks after hatching. The post-hatch profile of plasma luteinizing hormone (LH), immunoreactive (ir) inhibin and testosterone were measured by radioimmunoassay. Testes were immunostained by the avidin-biotin-peroxidase complex method (ABC) using polyclonal antisera raised against inhibin alpha, inhibin/activin beta(A) and inhibin/activin beta(B) from one week of age to sexual maturity. Testicular weight increased gradually until 4 weeks and abruptly increased from 5 weeks of age onwards. The plasma concentrations of LH and ir-inhibin increased significantly at 5 weeks of age, and the plasma concentration of testosterone increased significantly at 6 weeks of age. Pituitary contents of LH showed a steady increase until 6 weeks of age and then abruptly increased at 7 weeks of age. Coincident to the increase in plasma testosterone, the testicular contents of testosterone significantly increased from 5 weeks through sexual maturity. Immunohistochemically, localization of the inhibin/activin alpha, beta(A) and beta(B) subunits was found in the Sertoli and Leydig cells at all ages of development from one week of age to sexual maturity. These results suggest that Sertoli and Leydig cells are the major source of inhibin secretion during development in male Japanese quail.  相似文献   

4.
This study is the first report on circulating testosterone and inhibin levels in a species of whales, the beluga. Circulating testosterone and immunoreactive (ir-) inhibin levels in two captive male belugas ("Nack", originally from Canada and "Duke", from the Okhotsk Sea) were measured every month for 9 years between 1995 and 2003. Assuming that clearly increased testosterone levels in the circulation indicates that the belugas had reached sexual maturity, at the ages of 10 ("Nack") and 11 years old ("Duke"). Their testosterone levels before the significant increase (pre-pubertal) were 0.42 ± 0.07 ng/ml (n=18) and 0.35 ± 0.10 ng/ml (n=18) and, those of after the increase (maturity) were 1.65 ± 0.14 ng/m l (n=74) and 2.06 ± 0.14 ng/ml (n=74). Circulating ir-inhibin levels before sexual maturity were 0.78 ± 0.04 ng/ml (n=18) and 0.64 ± 0.04 ng/ml (n=15) and, after sexual maturity were 0.52 ± 0.02 ng/ml (n=56) and 0.43 ± 0.02 ng/ml (n=67). Seasonal changes were observed in the testosterone levels after sexual maturity and the levels increased during March and April in Canadian origin "Nack", and peaked in February in Okhotsk origin "Duke". Circulating ir-inhibin level gradually decreased as they aged. A negative correlation between the circulating testosterone and ir-inhibin was observed. No seasonal changes were observed in the ir-inhibin levels after sexual maturity. These data will surely correspond to clarification of endocrinology and the successful reproduction of the beluga.  相似文献   

5.
Gonadal function in the male golden hamster (Mesocricetus auratus) was investigated during exposure to a short photoperiod condition. Within 3 weeks of exposure to the short photoperiod condition, FSH and testosterone in the plasma significantly decreased, and subsequently immunoreactive (ir)-inhibin significantly decreased. Testicular contents of ir-inhibin and testosterone, and pituitary contents of LH and FSH also significantly decreased by 3 weeks with regression of weight of testes, epididymis and seminal vesicles and sperm head count. Circulating LH varied but not significantly. Thereafter, all reproductive parameters and secretion of LH, FSH, ir-inhibin and testosterone gradually recovered after 17 weeks of exposure even though animals continued to be subjected to the short photoperiod condition. Plasma concentrations of inhibin B and inhibin pro-alphaC were detectable and were significantly decreased after 15 weeks of exposure to the short photoperiod, but their levels were still detectable. Immunopositive reaction of inhibin alpha and betaB subunits was found in Sertoli cells and Leydig cells in the regressed testes of animals subjected to short photoperiod as was also seen in animals before exposure to the short photoperiod. Although the spermatogenic cycle was suppressed like prepubertal animals, the present study showed that the testicular recovery, so-called refractoriness, is functionally different from the developing stage of immature animals, especially with regard to inhibin secretion. The present results showed that changes in FSH preceded changes in inhibin during the regression and recovery phases, indicating that FSH is a major regulatory factor of inhibin secretion in male golden hamsters. The present study also demonstrated that regressed testes still secrete a small amount of bioactive inhibin during exposure to a short-photoperiod condition.  相似文献   

6.
To investigate the effect of hypothyroidism on gonadal and adrenal functions in male Japanese quail (Coturnix japonica), hypothyroidism was induced in male adult Japanese quail by daily administration of 2-Mercapto-1-methylimidazole (methimazole) in their drinking water. Four weeks after methimazole treatment, the Japanese quail were sacrificed, and the plasma concentrations of free triiodothyronine (FT3), free thyroxine (FT4), total T3 (TT3), total T4 (TT4), corticosterone, testosterone, LH and immunoreactive (ir) inhibins were measured by radioimmunoassay, the testes and adrenal glands were removed and weighed and the thyroid glands and testes were fixed in 4% paraformaldehyde for histological observation. The results showed that the hypothyroidism induced by methimazole caused a significant decrease in body and testes weight; the plasma levels of FT3, FT4 and TT4 significantly decreased, and the hypothyroid quail possessed a greater number of small follicles and more follicular epithelial cells in the thyroid gland. In addition, hypothyroidism resulted in a significant decrease in the plasma concentrations of corticosterone, LH, testosterone and ir-inhibin. Furthermore, no spermatogenesis was found in the seminiferous tubules of the methimazole treatment groups. These results clearly demonstrate that hypothyroidism caused both gonadal and adrenal disturbances in the adult male Japanese quail.  相似文献   

7.
Azoospermia of dogs with apoptotic germ cells and Leydig cells   总被引:1,自引:0,他引:1  
Apoptotic cell death in the testes of 4 dogs with azoospermia was examined. Blood plasma luteinizing hormone (LH), testosterone (T), and estradiol-17beta (E2) concentrations, and testicular transferrin (Tf) concentration as a marker of Sertoli cell function were measured in the 4 azoospermic dogs and in 5 normal dogs. The spermatids in 2 of the 4 azoospermic dogs and the Leydig cells in 3 of them exhibited apoptotic cell death. Mean LH, E2, and Tf concentrations in the 4 azoospermic dogs were significantly higher than in the normal dogs (P<0.01). These findings suggested that the azoospermia in all 4 dogs might has been caused by abnormal functions of Sertoli cells as well as Leydig cells.  相似文献   

8.
In order to study the effects of steroid hormones on steroidogenesis in the avian ovary, quail granulosa cells were cultured with follicle stimulating hormone (FSH), oestradiol-17beta or testosterone. The progesterone content of the medium during the culture period of 66 h and the following 3 h of incubation with luteinising hormone (LH), was measured by radioimmunoassay. When FSH, oestradiol-17beta or testosterone were added during the 66 h culture, subsequent progesterone production by the cells during 3 h of incubation with LH was significantly increased. However, testosterone also stimulated progesterone production in the medium during the 66 h culture period, whereas FSH oroestradiol-17beta did not. Addition of staurosporine during culture inhibited both LH-stimulated progesterone production and testosterone-stimulated progesterone production. These results indicate that the processes during which granulosa cells acquired responsiveness to LH, and testosterone stimulates progesterone production might both be mediated by a staurosporine-sensitive protein kinase C-dependent pathway in quail granulosa cells.  相似文献   

9.
We tested the hypothesis that mounting and chemoinvestigatory behaviors are testosterone-dependent in bulls. Eighteen bulls were divided into three treatment groups: intact (I), castrated (C) and castrated+testosterone (T). Sexual behaviors of all bulls were tested with an unrestrained receptive female 1 week prior to and weekly for 4 weeks after castration. Mounts with intromissions, aborted mounts and flehmen responses were quantified for each test period. In addition, patterns of LH and testosterone secretion were assessed at these times. Neither mounts with intromissions nor aborted mounts were affected by treatment. In contrast, numbers of flehmen responses were lower in C bulls than in the other groups following castration. Before castration, concentrations of LH were not different among groups and LH pulse frequency was approximately one pulse per hour. Castration resulted in a 2-fold increase in mean concentrations of LH and a 6-fold increase in LH pulse frequency. Neither mean concentration of LH nor LH pulse frequency changed in I or T bulls. The data fail to support the hypothesis that mounting behavior is T-dependent, but supports the hypothesis that this steroid hormone regulates flehmen behavior in sexually experienced bulls.  相似文献   

10.
The temporal pattern of the endocrine changes associated with puberty were studied using 52 bulls born in October or April. Blood samples were taken weekly and at 30-min intervals for 5 h every 4-wk. Bulls were castrated at one of six 4-wk intervals between 12 and 32 wk and blood samples were taken. Season of birth affected concentrations of testosterone (greater for spring-born) in intact bulls, but not luteinizing hormone (LH) or follicle stimulating hormone (FSH). The concentration of FSH increased about 30% between 4 and 32 wk, without evidence of pulsatile discharge. Basal concentration of LH was low and pulsatile discharges were infrequent at 4 or 8 wk. At 12, 16 and 20 wk, however, basal LH concentration was elevated and LH discharges were at less than 2-h intervals. Testosterone concentration did not rise until 18 to 20 wk, but then continued to rise; LH discharge was suppressed concomitantly. Bulls castrated at 16 or 20 wk had higher concentrations of LH in their blood both before and shortly after castration values for bulls, but by 21 d after castration values for bulls of all ages were similar. It was concluded that elimination of an unidentified suppressive factor allows frequent discharges of LH between 12 an 16 wk, but the testes do not respond by secreting more testosterone until 18 to 20 wk. By 24 wk, the testes are secreting more testosterone and pituitary production of LH is restored to a lower level; LH discharges decline in frequency and basal LH level declines. The high frequency discharges of LH between 12 and 20 wk are postulated to induce responsiveness of Leydig cells to LH and, thus, enable elevation of intratesticular testosterone to levels necessary for Sertoli cell differentiation and initiation of spermatogenesis.  相似文献   

11.
To clarify the cellular source and secretory pattern of inhibin in the Japanese quail during follicular development, the plasma concentrations of immunoreactive (ir) inhibin were measured from 1 to 7 weeks after hatching. Localization of the inhibin/activin alpha, beta A and beta B subunits was investigated by immunohistochemistry. To monitor development of the pituitary and ovarian functions, the plasma luteinizing hormone (LH) and progesterone concentrations were also measured. Ovarian weight increased gradually until 6 weeks of age and then abruptly increased at 7 weeks of age just at the onset of egg production. Plasma concentrations of LH increased significantly at 6 weeks of age. The plasma concentrations of ir-inhibin and progesterone and the pituitary contents of LH also increased significantly at 7 weeks of age. Immunohistochemically, the inhibin/activin alpha, beta A and beta B subunits were localized in the granulosa cells of all follicles during different stages of development from 1 to 7 weeks after hatching. The inhibin alpha, beta A and beta B subunits were also found in the interstitial cells but not theca cells of all follicles. These results demonstrated that the plasma concentrations of ir-inhibin of the female Japanese quails rose with ovarian development. The immunohistochemical results suggested that granulosa and interstitial cells are the major source of ovarian inhibins in female Japanese quails.  相似文献   

12.
The aim of this study was to determine the effects of gonadotrophin releasing hormone (GnRH) administration on the plasma concentrations of reproductive hormones in intact and ovariectomized (OVX) bitches. Therefore, blood samples were collected at multiple times before and after the administration of 10 microg/kg GnRH (Fertagyl)) for the determination of the plasma concentrations of luteinizing hormone (LH), oestradiol, progesterone and testosterone in six anoestrus and in six OVX bitches. The mean plasma LH concentrations before and 60 min after GnRH administration were significantly lower in the anoestrous bitches than in the OVX bitches. In both groups GnRH administration resulted in a significant increase in the plasma LH concentration. The highest plasma LH concentrations were found at 10 min after GnRH administration and these values did not differ significantly between the two groups. Only in the anoestrous bitches a significant increase in plasma oestradiol concentrations was found after GnRH administration and these values were significantly higher than those in the OVX bitches. The plasma concentrations of progesterone and testosterone were low (close to or below the limit of quantitation) both before and after GnRH administration and the differences between anoestrous and OVX bitches were not significant. It can be concluded that (i) basal plasma LH concentration is significantly higher in OVX bitches than in anoestrous bitches, (ii) plasma LH concentration increases after GnRH administration in both anoestrous and OVX bitches, (iii) GnRH administration causes a significant rise in plasma oestradiol concentration only if ovarian tissue is present and (iv) measurement of plasma progesterone and testosterone concentrations before and after GnRH administration does not aid in distinguishing between anoestrous and OVX bitches. The results of this study may provide a basis for the diagnosis of remnant ovarian tissue and verification of neuter status in the bitch.  相似文献   

13.
To clarify the endocrinological characteristics of the mares with granulosa theca cell tumor (GTCT), peripheral plasma samples from the 6 mares affected with GTCT were collected before and after the surgical removal of the affected ovary. Concentrations of testosterone (T), follicle stimulating hormone (FSH), luteinizing hormone (LH), immunoreactive-inhibin (ir-INH), progesterone (P) and estradiol-17beta (E(2)) in the plasma samples were measured by radioimmunoassay. Before removal of GTCT in all cases, the concentrations of T were significantly higher than those of normal mares at the breeding and non-breeding seasons, whereas plasma concentrations of FSH, LH, ir-INH, P and E(2) were lower. After surgical removal of the affected ovary, the circulatory concentrations of T was declined, but the concentrations of other hormones were constantly low as compared with those of normal mares. The present study suggests that 1) the source of higher T may be due to the abnormal follicles in ovary of GTCT, 2) in the case of GTCT the elevated level of T is observed due to the lack of aromatase, and 3) the high level of T is a typical characteristics for GTCT in mares. It is also suggested 4) due to the elevated levels of T the concentrations of gonadotropins may be suppressed.  相似文献   

14.
This study was designed to clarify the characteristics of changes in plasma concentrations of reproductive hormones in heifers from birth to puberty. Weekly or daily hormonal changes were observed in 39 heifers. Daily changes in the concentration of follicle-stimulating hormone (FSH) demonstrated a consistent cycle of hormone changes over a 7- to 8-day period in heifers from approximately 10 days to 9 months old. Weekly changes in reproductive hormones showed that there were three brief periods in heifers between birth and puberty in which dramatic changes occur. The first period was the first week after birth, during which a reciprocal relationship between steroid hormones and gonadotropins was observed. At birth, the concentrations of steroid hormones were higher than those at any other age. These hormone levels rapidly decreased within the first week after birth. Gonadotropin levels, however, increased from birth to 1 week of age. The second period of major change was at approximately 4 weeks of age when there was an increase in the concentrations of luteinizing hormone (LH), estradiol-17beta, testosterone, and immunoreactive inhibin. The third period was the last 5 weeks before the first ovulation, when there was an increase in the concentrations of estradiol-17beta followed by an increase in (LH). These results suggest that regular hormone changes start from 10 days after birth and that the periods from birth to 4 weeks of age and the last 5 weeks before the first ovulation in heifers are important to the development of reproductive functions before puberty.  相似文献   

15.
Influence of day length on seasonal endocrine responses were studied using stallions (seven per group). Treatments included 1) control, with natural day length; 2) 8 h light and 16 h dark (8:16) for 20 wk beginning July 16, 1982 then 16:8 from December 2, 1982 until March 5, 1984 (S-L); or 3) 8:16 from July 16, 1982 until March 5, 1984 (S-S). Blood was sampled hourly for 5 h every 4 wk; sera were pooled within horse, and luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone were quantified. Blood was collected every 20 min for 24 h every 8 wk and 2 wk before and after the December light shift. Samples were assayed for LH. Stallions in all groups underwent seasonal changes (P less than .05) in concentrations of LH, FSH, testosterone and basal concentrations of LH and amplitude of LH pulses. Season X treatment (P less than .05) reflected on early recrudescence of LH, FSH and testosterone concentrations in S-L stallions followed by earlier regression. Except for FSH hormone concentrations were depressed in S-S stallions. Number of LH pulses per 24 h was unaffected by season, treatment or their interaction. Mean amplitude of LH pulses was affected (P less than .05) by season X treatment; maximal values occurred in April vs February for control and S-L stallions, and minimal values occurred in December vs April. The season X treatment interaction (P less than .05) similarly affected basal concentrations of LH. Thus, seasonal changes in concentrations of LH, FSH and testosterone can be driven by photoperiod. Increased peripheral concentrations of LH during seasonal recrudescence of reproductive function apparently results from more LH secreted per discharge without an increased frequency of LH discharges.  相似文献   

16.
The results of long-term administration of leuprolide acetate (LA) depot in a 52-yr-old Asian elephant bull (Elephas maximus) for control of musth are presented. Twelve injections were administered for 6 yr during our interpretation of early musth or "premusth." Intervals between musth periods during the study varied from 2 to 34 mo. Blood samples, drawn weekly, were assayed for serum testosterone concentrations; mean levels were 11.78 +/- 1.97 nmol/L throughout the first 26 mo of the study, 7.28 +/- 1.28 nmol/L during the following 21 mo, and 0.45 +/- 0.035 nmol/L in the last 34 mo of this study. Early musth signs ceased within 3 days of drug administration after 10 of 12 injections. The mean serum testosterone concentrations were significantly decreased by the last 34 mo of the study. The results suggest leuprolide is a suitable alternative for controlling or preventing (or both) musth in captive Asian elephants, although permanent reproductive effects may occur. Zoos and wildlife conservation institutions could benefit from the use of LA in Asian elephants to increase the male availability in captivity, consequently ensuring genetic diversity and the perpetuation of the species.  相似文献   

17.
The effects of unilateral castration (UC) and induced unilateral cryptorchidism (UCR) on basal plasma luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone, and on the responses of these hormones to gonadotropin releasing hormone (GnRH), were investigated in bulls altered at 3, 6 or 9 months of age. Blood plasma was collected before and after GnRH (200 micrograms) stimulation approximately 1 year following gonadal manipulation. Neither mean baseline concentrations nor GnRH-induced increases in plasma testosterone were altered (P greater than .1) by hemicastration or UCR (P greater than .1). Both mean baseline LH and GnRH-induced LH release were greater (P less than .05) in bulls altered at 3 months of age than in bulls altered at 9 months of age. UC increased (P less than .05) plasma LH response to GnRH over that observed in intact bulls, but not above that in UCR bulls. UCR had no detectable effect on either baseline concentrations or GnRH-stimulated LH release. FSH was increased (P less than .05) in hemicastrates, while UCR had a variable effect on peripheral FSH: FSH was reduced (P less than .05) in UCR animals altered at 3 months of age but increased (P less than .05) in UCR bulls altered at both 6 and 9 months of age when compared to FSH in intact bulls. The results indicate that, compared with intact bulls, UC bulls release increased amounts of both gonadotropins but similar amounts of testosterone in response to GnRH stimulation. UCR had a variable effect on FSH release and did not alter either LH or testosterone.  相似文献   

18.
Mature boars were subjected to chronic treatment with a gonadotropin-releasing hormone (GnRH) agonist, goserelin (D-Ser[But]6, Azgly-NH210), and serum luteinizing hormone (LH) and testosterone concentrations were measured. Ten sexually mature boars were randomly assigned to treatment (n = 5) or control (n = 5) groups. On day 0, boars were implanted sc (day 0) with 2 GnRH agonist implants (1 mg of GnRH/implant) or sham implants. Blood samples were collected at 12-hour intervals on days -2 and -1, at 6-hour intervals on days 0 through 4, and at 12-hour intervals on days 5 through 8. In addition, blood samples were collected at 15-minute intervals for 6 hours on days -1, 0, 4, and 8. Serum testosterone and LH concentrations were determined by radioimmunoassay. Maximal LH (7 +/- 1 ng/ml) and testosterone (26 +/- 3 ng/ml) concentrations were observed at 5 and 18 hours, respectively, after GnRH agonist treatment. Subsequently, LH and testosterone concentrations decreased to pretreatment values (0.3 +/- 0.1 ng/ml and 1.8 +/- 0.4 ng/ml, respectively) by 24 and 48 hours, respectively, after GnRH agonist implantation. Few differences in the characteristics of pulsatile LH release were observed between the groups. Testosterone and LH concentrations in samples collected at 6- and 12-hour intervals and pulsatile LH release did not change after sham treatment of control boars. Whereas previous reports indicated that chronic GnRH administration suppressed serum LH and testosterone concentrations in rams, rats, and dogs, our results indicate that chronic GnRH agonist treatment induced transitory increases, without subsequent suppression, in LH and testosterone concentrations in mature boars.  相似文献   

19.
The effect of adrenocorticotropin hormone (ACTH) on plasma cortisol and on gonadotropin releasing hormone (GnRH)-induced release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone was determined in nine Holstein bulls and 12 Holstein steers. Treatments consisted of animals receiving either GnRH (200 micrograms, Group G), ACTH (.45 IU/kg BW, Group A) or a combination of ACTH followed 2 h later by GnRH (Group AG). Group G steers and bulls had elevated plasma LH and FSH within .5 h after GnRH injection and plasma testosterone was increased by 1 h after GnRH injection in bulls. In Group A, plasma cortisol was elevated by .5 h after ACTH injection in both steers and bulls, but plasma LH and FSH were unaffected. In Group A bulls, testosterone was reduced after ACTH injection. In Group AG, ACTH caused an immediate increase in plasma cortisol in both steers and bulls, but did not affect the increase in either plasma LH or FSH in response to GnRH in steers. In Group AG bulls, ACTH did not prevent an increase in either plasma LH, FSH or testosterone in response to GnRH compared with basal concentrations. However, magnitude of systemic FSH response was reduced compared with response in Group G bulls, but plasma LH and testosterone were not reduced. The results indicate that ACTH caused an increase in plasma cortisol, but did not adversely affect LH or FSH response to GnRH in steers and bulls. Further, while testosterone was decreased after ACTH alone, neither ACTH nor resulting increased plasma cortisol resulted in decreased testosterone production in the bull after GnRH stimulation.  相似文献   

20.
Effects of a short-term hyper- and hypoprolactinaemia on serum concentrations of LH, testosterone and semen quality in six male Beagles were investigated. Blood samples were collected at 3-day intervals for 12 weeks. The time span was divided into five 3-week periods: pre-treatment, metoclopramide (MCP) treatment (0.2 mg/kg orally three times daily), cabergoline (CAB) treatment (5 μg/kg orally once daily), post-treatment 1 and post-treatment 2. In the latter, only semen characteristics were evaluated. Semen parameters were analyzed once per week during the whole 15-week investigation time. At the end of each period, the effects of a single intravenous injection of thyrotropin-releasing hormone (TRH; 10 μg/kg) on the secretion of prolactin (PRL), LH, testosterone, thyroid-stimulating hormone and thyroxine (T4) were investigated. Pre-treatment serum PRL concentration increased under MCP (p < 0.05), followed by a decrease under CAB administration (p < 0.05). Luteinizing hormone and testosterone concentrations were not affected. Except for straight-line sperm velocity, semen quality did not differ between collection periods. A single iv TRH injection induced a significant PRL increase at 20 min in all experimental periods except during CAB treatment. Luteinizing hormone and testosterone did not show clear TRH-related changes. Basic T4 levels were significantly reduced after CAB treatment (p < 0.05). The results of the present study demonstrate that MCP-induced short-term hyperprolactinaemia in male beagles does not seriously affect the hypothalamo-pituitary axis and semen quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号